首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abelson murine leukemia virus (Ab-MLV) encodes the v-Abl protein tyrosine kinase and induces transformation of immortalized fibroblast lines and pre-B cells. Temperature-sensitive mutations affecting the kinase domain of the protein have demonstrated that the kinase activity is absolutely required for transformation. Despite this requirement, mutations affecting other regions of v-Abl modulate transformation activity. The SH2 domain and the highly conserved FLVRES motif within it form a phosphotyrosine-binding pocket that is required for interactions between the kinase and cellular substrates. To understand the impact of SH2 alterations on Ab-MLV-mediated transformation, we studied the Ab-MLV mutant P120/R273K. This mutant encodes a v-Abl protein in which the beta B5 arginine at the base of the phosphotyrosine-binding pocket has been replaced by a lysine. Unexpectedly, infection of NIH 3T3 or pre-B cells with P120/R273K revealed a temperature-dependent transformation phenotype. At 34 degrees C, P120/R273K transformed about 10-fold fewer cells than wild-type virus of equivalent titer; at 39.5 degrees C, 300-fold fewer NIH 3T3 cells were transformed and pre-B cells were refractory to transformation. Temperature-dependent transformation was accompanied by decreased phosphorylation of Shc, a protein that interacts with the v-Abl SH2 and links the protein to Ras, and decreased induction of c-Myc expression. These data suggest that alteration of the FLVRES pocket affects the ability of v-Abl to interact with at least some of its substrates in a temperature-dependent fashion and identify a novel type of temperature-sensitive Abelson virus.  相似文献   

2.
The v-Abl protein encoded by Abelson murine leukemia virus (Ab-MLV) induces transformation of pre-B cells via a two-stage process. An initial proliferative phase during which cells with limited tumorigenic potential expand is followed by a crisis period marked by high levels of apoptosis and erratic growth. Transformants that survive this phase emerge as fully malignant cells and usually contain mutations that disable the p53 tumor suppressor pathway. Consistent with the importance of p53 in this process, pre-B cells from p53 null animals bypass crisis. Thus, the transformation process reflects a balance between signals from the v-Abl protein that drive transformation and those coming from the cellular response to inappropriate growth. One prediction of this hypothesis is that Ab-MLV mutants that are compromised in their ability to transform cells may be less equipped to overcome the effects of p53. To test this idea, we examined the ability of the P120/R273K mutant to transform pre-B cells from wild-type, p53 null, and Ink4a/Arf null mice. The SH2 domain of the v-Abl protein encoded by this mutant contains a substitution that affects the phosphotyrosine-binding pocket, and this mutant is compromised in its ability to transform NIH 3T3 and pre-B cells, especially at 39.5 degrees C. Our data reveal that loss of p53 or Ink4a/Arf locus products complements the transforming defect of the P120/R273K mutant, but it does not completely restore wild-type function. These results indicate that one important transforming function of v-Abl proteins is overcoming the effects of a functional p53 pathway.  相似文献   

3.
v-Abl protein tyrosine kinase encoded by Abelson murine leukemia virus (Ab-MLV) transforms pre-B cells. Transformation requires the phosphatidylinositol 3-kinase (PI3K) pathway. This pathway is antagonized by SH2-containing inositol 5'-phosphatase (SHIP), raising the possibility that v-Abl modulates PI3K signaling through SHIP. Consistent with this, we show that v-Abl expression reduces levels of full-length p145 SHIP in a v-Abl kinase activity-dependent fashion. This event requires signals from the Abl SH2 domain but not the carboxyl terminus. Forced expression of full-length SHIP significantly reduces Ab-MLV pre-B-cell transformation. Therefore, reduction of SHIP protein by v-Abl is a critical component in Ab-MLV transformation.  相似文献   

4.
Abelson murine leukemia virus (Ab-MLV) transforms NIH 3T3 and pre-B cells via expression of the v-Abl tyrosine kinase. Although the enzymatic activity of this molecule is absolutely required for transformation, other regions of the protein are also important for this response. Among these are the SH2 domain, involved in phosphotyrosine-dependent protein-protein interactions, and the long carboxyl terminus, which plays an important role in transformation of hematopoietic cells. Important signals are sent from each of these regions, and transformation is most likely orchestrated by the concerted action of these different parts of the protein. To explore this idea, we compared the ability of the v-Src SH2 domain to substitute for that of v-Abl in the full-length P120 v-Abl protein and in P70 v-Abl, a protein that lacks the carboxyl terminus characteristic of Abl family members. Ab-MLV strains expressing P70/S2 failed to transform NIH 3T3 cells and demonstrated a greatly reduced capacity to mediate signaling events associated with the Ras-dependent mitogen-activated protein (MAP) kinase pathway. In contrast, Ab-MLV strains expressing P120/S2 were indistinguishable from P120 with respect to these features. Analyses of additional mutants demonstrated that the last 162 amino acids of the carboxyl terminus were sufficient to restore transformation. These data demonstrate that an SH2 domain with v-Abl substrate specificity is required for NIH 3T3 transformation in the absence of the carboxyl terminus and suggest that cooperativity between the extreme carboxyl terminus and the SH2 domain facilitates the transmission of transforming signals via the MAP kinase pathway.  相似文献   

5.
The v-Abl protein tyrosine kinase encoded by Abelson murine leukemia virus (Ab-MLV) induces pre-B-cell transformation. Signals emanating from the SH2 domain of the protein are required for transformation, and several proteins bind this region of v-Abl. One such protein is the adaptor molecule Shc, a protein that complexes with Grb2/Sos and facilitates Ras activation, an event associated with Ab-MLV transformation. To test the role this interaction plays in growth and survival of infected pre-B cells, dominant-negative (DN) Shc proteins were coexpressed with v-Abl and transformation was examined. Expression of DN Shc reduced Ab-MLV pre-B-cell transformation and decreased the ability of v-Abl to stimulate Ras activation and Erk phosphorylation in a Raf-dependent but Rac-independent fashion. Further analysis revealed that Shc is required for v-Abl-mediated Raf tyrosine 340 and 341 phosphorylation, an event associated with Erk phosphorylation. In contrast to effects on proliferation, survival of the cells and activation of Akt were not affected by expression of DN Shc. Together, these data reveal that v-Abl-Shc interactions are a critical part of the growth stimulatory signals delivered during transformation but that they do not affect antiapoptotic pathways. Furthermore, these data highlight a novel role for Shc in signaling from v-Abl to Raf.  相似文献   

6.
Abelson murine leukemia virus (Ab-MLV) mutants expressing v-Abl proteins lacking the carboxyl terminus are compromised in the ability to transform lymphoid but not NIH 3T3 cells. This feature correlates with the presence of low levels of phosphotyrosine in lymphoid cells infected with carboxyl-terminal truncation mutants. In contrast, high levels of phosphotyrosine are observed in NIH 3T3 cells infected with wild-type and mutant Ab-MLV. Two downstream targets affected in lymphoid transformants are the GTPase-activating protein and GTPase-activating protein-associated protein p62, molecules which are heavily tyrosine phosphorylated in lymphoid cells transformed by wild-type Ab-MLV but not carboxyl-terminal truncation mutants of Ab-MLV. This difference suggested that signaling mediated via the Ras pathway may be compromised in lymphoid cells expressing the carboxyl-terminal truncation mutants. Consistent with this idea, expression of v-Ha-ras complemented these mutants in primary bone marrow transformation assays and increased transformation frequencies obtained with the Ab-MLV mutants 8- to 20-fold. These data suggest that a biologically important link exists between the carboxyl terminus of v-Abl protein and the Ras pathway. Signals transmitted via this connection may enhance those mediated via other regions of the v-Abl protein and facilitate transformation of primary, nonimmortalized cells such as pre-B lymphocytes.  相似文献   

7.
Transformation of pre-B cells by Abelson murine leukemia virus (Ab-MLV) involves a balance between positive, growth-stimulatory signals from the v-Abl oncoprotein and negative regulatory cues from cellular genes. This phenomenon is reflected by the clonal selection that occurs during Ab-MLV-mediated transformation in vivo and in vitro. About 50% of all Ab-MLV-transformed pre-B cells express mutant forms of p53 as they emerge from this process, suggesting that this protein may play an important role in the transformation process. Consistent with this idea, expression of p19(Arf), a protein whose function depends on the presence of a functional p53, is required for the apoptotic crisis that characterizes primary Ab-MLV transformants. To test the role of p53 in pre-B-cell transformation directly, we examined the response of Trp53(-/-) mice to Ab-MLV. The absence of p53 shortens the latency of Abelson disease induction but does not affect the frequency of cells susceptible to Ab-MLV-induced transformation. However, primary transformants derived from the null animals bypass the apoptotic crisis that characterizes the transition from primary transformant to fully malignant cell line. These effects do not require p21(Cip-1), a major downstream target of p53; however, consistent with a role of p19(Arf), transformants expressing mutant p53 and abundant p19 retain wild-type p19 sequences.  相似文献   

8.
Abelson murine leukemia virus (A-MuLV) is an acute transforming retrovirus that preferentially transforms early B-lineage cells both in vivo and in vitro. Its transforming protein, v-Abl, is a tyrosine kinase related to v-Src but containing an extended C-terminal domain. Many mutations affecting the C-terminal portion of the molecule block the pre-B-transforming activity of v-Abl without affecting the fibroblast-transforming ability. In this study we have determined the abilities of both wild-type and C-terminally truncated (p90) forms of v-Abl to transform cells from p53(-/-) mice. Lack of p53 increases the susceptibility of bone marrow cells to transformation by v-Abl by a factor of more than 7 but does not alter v-Abl's preference for B220(+) IgM(-) pre-B cells. p53-deficient mice have earlier tumor onset, more rapid tumor progression, and decreased survival time following A-MuLV infection, but all of the tumors are pre-B lymphomas. Thus, p53-dependent pathways inhibit v-Abl transformation but play no role in conferring preferential transformation of pre-B cells. Surprisingly, the C-terminally truncated form of v-Abl (p90) transforms pre-B cells very efficiently in mice lacking p53, thus demonstrating that the C terminus of v-Abl does not determine preB tropism but is necessary to overcome p53-dependent inhibition of transformation.  相似文献   

9.
Pre-B-cell transformation by Abelson virus (Ab-MLV) is a multistep process in which primary transformants are stimulated to proliferate but subsequently undergo crisis, a period of erratic growth marked by high levels of apoptosis. Inactivation of the p53 tumor suppressor pathway is an important step in this process and can be accomplished by mutation of p53 or down-modulation of p19(Arf), a p53 regulatory protein. Consistent with these data, pre-B cells from either p53 or Ink4a/Arf null mice bypass crisis. However, the Ink4a/Arf locus encodes both p19(Arf) and a second tumor suppressor, p16(Ink4a), that blocks cell cycle progression by inhibiting Cdk4/6. To determine if p16(Ink4a) plays a role in Ab-MLV transformation, primary transformants derived from Arf(-/-) and p16(Ink4a(-/-)) mice were compared. A fraction of those derived from Arf(-/-) animals underwent crisis, and even though all p16(Ink4a(-/-)) primary transformants experienced crisis, these cells became established more readily than cells derived from +/+ mice. Analyses of Ink4a/Arf(-/-) cells infected with a virus that expresses both v-Abl and p16(Ink4a) revealed that p16(Ink4a) expression does not alter cell cycle profiles but does increase the level of apoptosis in primary transformants. These results indicate that both products of the Ink4a/Arf locus influence Ab-MLV transformation and reveal that in addition to its well-recognized effects on the cell cycle, p16(Ink4a) can suppress transformation by inducing apoptosis.  相似文献   

10.
The v-Abl tyrosine kinase activates several signaling pathways during transformation of bonemarrow cells in mice. Because the SH2-containing inositol 5’-phosphatase (SHIP) andDownstream of tyrosine kinase 1 (Dok1) have been shown interact with Abl, the effect ofSHIP and Dok1 deficiency on v-Abl transformation was investigated. Bone marrow cellsfrom either Dok1- or SHIP-deficient mice are more susceptible to transformation by v-Abl.v-Abl-transformed pre-B cells from these knockout mice show Abl kinase-dependenthyperproliferation and moderate resistance to apoptosis. Elevated activation of Ras, Raf-1,and Erk, but not of Akt, was observed in either SHIP (-/-) or Dok1 (-/-) v-Abl-transformedcells. This activation is sensitive to treatment with STI571. Furthermore, treatment of thesecells with either a farnesyltransferase inhibitor or a MEK1/2 inhibitor abrogates the increasedproliferation of SHIP (-/-) or Dok1 (-/-) cells in a dose-dependent manner. Complementationof SHIP (-/-) or Dok1 (-/-) cells abrogates their hyperproliferation and intracellular Erkactivation. These data indicate that both SHIP and Dok1 functionally regulate the activationof Ras-Erk pathway by v-Abl and affect the mitogenic activity of v-Abl transformed bonemarrow cells.  相似文献   

11.
12.
The nonreceptor tyrosine kinase, encoded by the v-Abl oncogene of Abelson murine leukemia virus induces transformation of progenitor B cells. The v-Abl oncogene promotes cell cycle progression and inhibits pre-B cell differentiation. The temperature-sensitive form of Abelson murine leukemia virus offers a reversible model to study the role of v-Abl in regulating growth and differentiation. Inactivation of v-Abl elevates p27 and Foxo3a levels and activates NF-kappaB/Rel, which leads to G1 arrest and induction of Ig L chain gene rearrangement, respectively. In turn, v-Abl reactivation reduces p27 and Foxo3a levels, thus permitting G1-arrested cells to reenter the cell cycle. However, the cell lines derived from SCID mice that are defective in the catalytic subunit of DNA-dependent protein kinase retain elevated levels of p27 and Foxo3a proteins despite reactivation of v-Abl. Consequently, these cells are locked in the G1 phase for an extended period of time. The few cells that manage to bypass the G1 arrest become tumorigenic and fail to undergo pre-B cell differentiation induced by v-Abl inactivation. Deregulation of p27, Foxo3a, c-myc, and NF-kappaB/Rel was found to be associated with the malignant transformation of SCID temperature-sensitive form of Abelson murine leukemia virus pre-B cells.  相似文献   

13.
The v-Abl protein tyrosine kinase encoded by Abelson murine leukemia virus (Ab-MLV) induces transformation of pre-B cells in vivo and in vitro and can transform immortalized fibroblast cell lines in vitro. Although the kinase activity of the protein is required for these events, most previously studied mutants encoding truncated v-Abl proteins that lack the extreme carboxyl terminus retain high transforming capacity in NIH 3T3 cells but transform lymphocytes poorly. To understand the mechanisms responsible for poor lymphoid transformation, mutants expressing a v-Abl protein lacking portions of the COOH terminus were compared for their ability to transform pre-B cells. Although all mutants lacking sequences within the COOH terminus were compromised for lymphoid transformation, loss of amino acids in the central region of the COOH terminus, including those implicated in JAK interaction and DNA binding, decreased transformation twofold or less. In contrast, loss of the extreme COOH terminus rendered the protein unstable and led to rapid proteosome-mediated degradation, a feature that was more prominent when the protein was expressed in Ab-MLV-transformed lymphoid cells. These data indicate that the central portion of the COOH terminus is not essential for lymphoid transformation and reveal that one important function of the COOH terminus is to stabilize the v-Abl protein in lymphoid cells.  相似文献   

14.
In many tumor systems, analysis of cells for loss of heterozygosity (LOH) has helped to clarify the role of tumor suppressor genes in oncogenesis. Two important tumor suppressor genes, p53 and the Ink4a/Arf locus, play central roles in the multistep process of Abelson murine leukemia virus (Ab-MLV) transformation. p53 and the p53 regulatory protein, p19Arf, are required for the apoptotic crisis that characterizes the progression of primary transformed pre-B cells to fully malignant cell lines. To search for other tumor suppressor genes which may be involved in the Ab-MLV transformation process, we used endogenous proviral markers and simple-sequence length polymorphism analysis to screen Abelson virus-transformed pre-B cells for evidence of LOH. Our survey reinforces the role of the p53-p19 regulatory pathway in transformation; 6 of 58 cell lines tested had lost sequences on mouse chromosome 4, including the Ink4a/Arf locus. Consistent with this pattern, a high frequency of primary pre-B-cell transformants derived from Ink4a/Arf +/- mice became established cell lines. In addition, half of them retained the single copy of the locus when the transformation process was complete. These data demonstrate that a single copy of the Ink4a/Arf locus is not sufficient to fully mediate the effects of these genes on transformation.  相似文献   

15.
Yi CR  Rosenberg N 《Journal of virology》2008,82(11):5307-5315
Abelson murine leukemia virus (Ab-MLV) arose from a recombination between gag sequences in Moloney MLV (Mo-MLV) and the c-abl proto-oncogene. The v-Abl oncoprotein encoded by Ab-MLV contains MA, p12, and a portion of CA sequences derived from the gag gene of Mo-MLV. Previous studies indicated that alteration of MA sequences affects the biology of Mo-MLV and Ab-MLV. To understand the role of these sequences in Ab-MLV transformation more fully, alanine substitution mutants that affect Mo-MLV replication were examined in the context of Ab-MLV. Mutations affecting Mo-MLV replication decreased transformation, while alanine mutations in residues dispensable for Mo-MLV replication did not. The altered v-Abl proteins displayed aberrant subcellular localization that correlated to transformation defects. Immunofluorescent analyses suggested that aberrant trafficking of the altered proteins and improper interaction with components of the cytoskeleton were involved in the phenotype. Similar defects in localization were observed when the Gag moiety containing these mutations was expressed in the absence of abl-derived sequences. These results indicate that MA sequences within the Gag moiety of the v-Abl protein contribute to proper localization by playing a dominant role in trafficking of the v-Abl molecule.  相似文献   

16.
The effect of ERK, p38, and JNK signaling on p53-dependent apoptosis and cell cycle arrest was investigated using a Friend murine erythroleukemia virus (FVP)-transformed cell line that expresses a temperature-sensitive p53 allele, DP16.1/p53ts. In response to p53 activation at 32 degrees C, DP16.1/p53ts cells undergo p53-dependent G(1) cell cycle arrest and apoptosis. As a result of viral transformation, these cells express the spleen focus forming env-related glycoprotein gp55, which can bind to the erythropoietin receptor (EPO-R) and mimics many aspects of EPO-induced EPO-R signaling. We demonstrate that ERK, p38 and JNK mitogen-activated protein kinases (MAPKs) are constitutively active in DP16.1/p53ts cells. Constitutive MEK activity contributes to p53-dependent apoptosis and phosphorylation of p53 on serine residue 15. The pro-apoptotic effect of this MAPK kinase signal likely reflects an aberrant Ras proliferative signal arising from FVP-induced viral transformation. Inhibition of MEK alters the p53-dependent cellular response of DP16.1/p53ts from apoptosis to G(1) cell cycle arrest, with a concomitant increase in p21(WAF1), suggesting that the Ras/MEK pathway may influence the cellular response to p53 activation. p38 and JNK activity in DP16.1/p53ts cells is anti-apoptotic and capable of limiting p53-dependent apoptosis at 32 degrees C. Moreover, JNK facilitates p53 protein turnover, which could account for the enhanced apoptotic effects of inhibiting this MAPK pathway in DP16.1/p53ts cells. Overall, these data show that intrinsic MAPK signaling pathways, active in transformed cells, can both positively and negatively influence p53-dependent apoptosis, and illustrate their potential to affect cancer therapies aimed at reconstituting or activating p53 function.  相似文献   

17.
We have analyzed two functionally significant amino acid alterations encoded by the temperature-sensitive (ts) v-src mutant of Rous sarcoma virus, LA32. The G-to-V change at residue 300 in the catalytic domain nonconditionally impairs morphological transformation, in vitro kinase activity, in vivo tyrosine phosphorylation, and the cytoskeletal association of v-Src while rendering anchorage- and serum-independent growth ts. The R-to-P mutation in the SH3 domain subtly enhances morphological transformation but has no phenotype if the catalytic domain is inactivated. In the presence of the G-300-to-V mutation, this SH3 domain lesion does not affect v-Src in vitro kinase activity and cytoskeletal association, but it nonconditionally enhances cellular tyrosine phosphorylation and restores morphological transformation at the permissive temperature only. This ability to induce a ts transformed morphology, in concert with nonconditional elevations of cellular phosphotyrosine, suggest that a subset of v-Src targets that are crucial to transformation may be affected in ts fashion by the SH3 mutation. Consistent with this, we find that the R-107-to-P mutation confers ts activity and tyrosine phosphorylation on the SH3-binding enzyme phosphatidylinositol 3'-kinase. Thus, both the SH3 and catalytic domain mutations in LA32 have some ts attributes and they cooperate in determining the mutant's behavior. The ts SH3 mutation is unique and offers the potential for deeper understanding of the function of this domain.  相似文献   

18.
Yi CR  Rosenberg N 《Journal of virology》2007,81(17):9461-9468
Like the v-Onc proteins encoded by many transforming retroviruses, the v-Abl protein is expressed as a Gag-Onc fusion. Although the Gag-derived myristoylation signal targets the v-Abl protein to the plasma membrane, the protein contains the entire MA and p12 sequences and a small number of CA-derived residues. To understand the role of Gag sequences in transformation, mutants lacking portions of these sequences were examined for the effects of these deletions on v-Abl function and localization. Deletion of the N-terminal third of p12 or all of p12 enhanced the transformation of both pre-B cells and NIH 3T3 cells. In contrast, deletions in MA or a deletion removing all of Gag except the first 34 amino acids important for myristoylation highly compromised the ability to transform either cell type. Although all of the mutant proteins retained kinase activity, those defective in transformation were reduced in their ability to activate Erk, suggesting a role for Gag sequences in v-Abl signaling. Immunofluorescence analysis revealed that a v-Abl protein retaining only the first 34 amino acids of Gag localized to the nucleus. These data indicate that Gag sequences are important for normal v-Abl signaling and that they suppress nuclear localization of the molecule.  相似文献   

19.
Bcl-2 blocks p53-dependent apoptosis.   总被引:36,自引:5,他引:31       下载免费PDF全文
Adenovirus E1A expression recruits primary rodent cells into proliferation but fails to transform them because of the induction of programmed cell death (apoptosis). The adenovirus E1B 19,000-molecular-weight protein (19K protein), the E1B 55K protein, and the human Bcl-2 protein each cause high-frequency transformation when coexpressed with E1A by inhibiting apoptosis. Thus, transformation of primary rodent cells by E1A requires deregulation of cell growth to be coupled to suppression of apoptosis. The product of the p53 tumor suppressor gene induces apoptosis in transformed cells and is required for induction of apoptosis by E1A. The ability of Bcl-2 to suppress apoptosis induced by E1A suggested that Bcl-2 may function by inhibition of p53. Rodent cells transformed with E1A plus the p53(Val-135) temperature-sensitive mutant are transformed at the restrictive temperature and undergo rapid and complete apoptosis at the permissive temperature when p53 adopts the wild-type conformation. Human Bcl-2 expression completely prevented p53-mediated apoptosis at the permissive temperature and caused cells to remain in a predominantly growth-arrested state. Growth arrest was leaky, occurred at multiple points in the cell cycle, and was reversible. Bcl-2 did not affect the ability of p53 to localize to the nucleus, nor were the levels of the p53 protein altered. Thus, Bcl-2 diverts the activity of p53 from induction of apoptosis to induction of growth arrest, and it is thereby identified as a modifier of p53 function. The ability of Bcl-2 to bypass induction of apoptosis by p53 may contribute to its oncogenic and antiapoptotic activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号