首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的探讨肺炎克雷伯菌对环丙沙星和左氧氟沙星的药物敏感性,及对喹诺酮敏感和耐药菌株中gyrA与parC基因的突变情况。方法收集肺炎克雷伯菌临床分离株231株,采用K-B纸片法测定肺炎克雷伯菌对环丙沙星和左氧氟沙星的敏感性,随机选取对环丙沙星和左氧氟沙星均耐药菌株4株和均敏感的菌株3株,分别PCR扩增gyrA基因和parC基因的耐药决定区,扩增片段长度分别为625、319bp,PCR扩增产物经纯化后测序并做序列分析。结果肺炎克雷伯菌对环丙沙星和左氧氟沙星的耐药率分别为51.1%(118/231)和45.9%(106/231);gyrA和parC基因经序列分析显示,耐药株均有gyrA基因的突变,其中1株出现第83、87和27位氨基酸的改变,2株出现第83位氨基酸的改变,1株出现第47位点的改变;环丙沙星敏感株中未出现gyrA基因的突变。4株耐药株均有parC基因的突变,引起相应氨基酸Ser80→Arg的改变,2株环丙沙星敏感株也发生了同样的改变。结论哈尔滨地区肺炎克雷伯菌对环丙沙星和左氧氟沙星的耐药性显著,在喹诺酮耐药株中有gyrA和parC基因的同时突变,在敏感株中也发现了parC基因的突变。  相似文献   

2.
AIMS: The aims of this study were to characterize the molecular variations in the quinolone resistance-determining region (QRDR) of gyrA among quinolone-resistant and -susceptible Campylobacter jejuni isolates originating from foods of animal origin and human infections and to evaluate the suitability of the single-strand conformation polymorphism (SSCP) method as a screening method for molecular characterization of fluoroquinolone resistance. METHODS AND RESULTS: Alterations in QRDR of gyrA from 182 C. jejuni isolates were determined by nonradioisotopic SSCP analysis and direct sequencing. A total of 13 types of nucleic acid sequence combinations within the QRDR of the gyrA gene resulted in 11 different SSCP patterns. All nalidixic acid resistant strains possessed nucleotide substitution at either codon Thr-86 or Asp-90. Silent mutations were detected additionally. Thr-86 to Ile mutation was detected in all 139 ciprofloxacin resistant strains, which showed cross-resistance to nalidixic acid. CONCLUSIONS: The SSCP method is suitable for a molecular screening of quinolone resistant C. jejuni isolates and in combination with DNA sequencing suitable to detect genetic variations of the QRDR of gyrA. SIGNIFICANCE AND IMPACT OF STUDY: This study provides data of the genetic variations of the QRDR of gyrA from C. jejuni isolates of foods and human beings.  相似文献   

3.
Escherichia coli is a common inhabitant of the intestinal tracts of animals and humans. The intestines of animals also represent an ideal environment for the selection and transfer of antimicrobial resistance genes. The aim of this study was to investigate the resistance of E. coli isolated from chicken fecal samples to fluoroquinolones and to analyze the characterization of mutations in its gyrA and parC gene related resistance. One hundred and twenty-eight E. coil isolates showed a high resistance to ciprofloxacin (CIP; 60.2%), enrofloxacin (ENO; 73.4%) and norfloxacin (NOR; 60.2%). Missense mutation in gyrA was only found in the amino acid codons of Ser-83 or Asp-87. A high percentage of isolates (60.2%) showed mutations at both amino acid codons. Missense mutation in parC was found in the amino acid codon of Ser-80 or Glu-84, and seven isolates showed mutations at both amino acid codons. Isolates with a single mutation in gyrA showed minimal inhibitory concentrations (MIC) for CIP (相似文献   

4.
Mutation with Ser-83-->Leu in gyrA gene was associated with the principal mutation for ciprofloxacin resistance in clinical isolates of Acinetobacter baumannii. Double mutation, Ser-83-->Leu in gyrA gene and Ser-80-->Leu in parC gene, was the most frequently detected among ciprofloxacin-resistant isolates. A novel mutation with Ser-80-->Trp in parC gene, in addition to mutation in gyrA gene, was associated with a high-level ciprofloxacin resistance. These results suggested that the presence of an additional mutation in the parC gene contributed to a higher-level of ciprofloxacin resistance than a single mutation in the gyrA gene (geometric mean MICs of ciprofloxacin, 44.1 versus 16 microg/ml, P < 0.05).  相似文献   

5.
CIP耐药的铜绿假单胞菌两种分子耐药机制关系的研究   总被引:1,自引:0,他引:1  
目的探讨环丙沙星(CIP)耐药的铜绿假单胞菌临床分离株主动外排药物与gyrA、parC基因突变的关系。方法联合碳酰氰基-对-氯苯腙(CCCP)和CIP对CIP耐药的铜绿假单胞菌株进行主动外排阳性株和阴性株的筛选,并对这些菌株的gyrA,parC基因进行聚合酶链式反应-限制性片段长度多态性分析(PCR—RFLP)。结果57%(55/97)的CIP耐药菌株最小抑菌浓度(MIC)可被逆转,gyrA单基因突变率为65%,gyrA和pa-C双基因突变率为35%,未发现parC单基因突变的菌株。主动外排阳性组与阴性组gyrA、parC基因突变情况差异无显著性。结论在本地区铜绿假单胞菌对CIP的耐药机制中,主动外排系统表达上调与抗菌药物作用靶位的改变均占有重要的地位,两者可能是并存的两种相对独立的机制。  相似文献   

6.
Fluoroquinolones are broad-spectrum antimicrobials highly effective in the treatment of a wide variety of clinical infections. Salmonella gastroenteritis is usually only treated with fluoroquinolones when the patient is elderly or immunocompromised. Fluoroquinolones are also used for the treatment of systemic Salmonella infection or for long-term salmonella carriage. Resistance to quinolones is commonly mediated by point mutations within the topoisomerase genes gyrA and parC. Pyrosequencing technology is a DNA sequencing method using 'sequencing by synthesis' and is suitable for the rapid detection of single nucleotide polymorphisms (SNPs). One hundred and ten Salmonella enterica isolates, representing 18 different serotypes, were used in this study. One hundred and four isolates had ciprofloxacin MICs of 0.25-32 microg/mL; the remaining six were ciprofloxacin-sensitive (ciprofloxacin MIC相似文献   

7.
In this study, we investigated the presence of plasmid-mediated quinolone resistance (PMQR) genes among 101 ciprofloxacin-resistant urinary Escherichia coli isolates and searched for mutations in the quinolone-resistance-determining regions (QRDRs) of the DNA gyrase and topoisomerase IV genes in PMQR-carrying isolates. Eight isolates harboured the qnr and aac(6')-Ib-cr genes (3 qnrS1, 1 qnrB19 and 4 aac(6')-Ib-cr). A mutational analysis of the QRDRs in qnr and aac(6')-Ib-cr-positive isolates revealed mutations in gyrA, parC and parE that might be associated with high levels of resistance to quinolones. No mutation was detected in gyrB. Rare gyrA, parC and parE mutations were detected outside of the QRDRs. This is the first report of qnrB19, qnrS1 and aac(6')-Ib-cr -carrying E. coli isolates in Brazil.  相似文献   

8.
The aim of this study was to investigate the mutations in gyrA gene at Thr-86 position in fluoroquinolone resistant C. jejuni clinical isolates (2003-2005). The change of Thr to Ile at 86 position is associated with high-level resistance to fluoroquinolone in C. jejuni. Thirty five (58%) of 65 C. jejuni strains were found to be resistant to ciprofloxacin using E-test method. PCR-RFLP technique with the RsaI enzyme was used for the identification of mutation in gyrA gene. The primers spanning a part of the fluoroquinolone resistance determining region (QRDR) were designed based on the article of Alonso et al. and the gyrA sequence of C. jejuni (Gen Bank accession number LO4566). One of this primer had mismatch introduced at the second nucleotide from 3' end of the primer what gives an artificial RsaI cleavage site. All of the ciprofloxacin-resistant isolates contained a single)point mutation in the gyrA gene: the replacement of Thr 86 by Ile. The results showed that PCR-RFLP is a rapid and simple method for the detection of the high-level fluoroquinolone resistance in C. jejuni.  相似文献   

9.
Resistance of 14 clinical isolates of C. trachomatis to fluoroquinolones, i.e. of ciprofloxacin, pefloxaxin and ofloxacin, was assayed. Three isolates with a high resistance degree to all 3 drugs (MIC equal or above 64 microg/ml) were detected. MIC was found to be equal to or below 4 microg/ml for 3 isolates. The remaining isolates had an intermediate resistance level. The nucleotide sequence was established for the Quinolone-Resistance Determining Region (QRDR) genes coding the DNA-gyrase subunit A (gyrA) and DNA-topoisomerase IV subunit C (parC) as well as for the 3'-region of ygeD coding, presumably, the efflux protein. In none of the isolates, the gyrA and gyrC QRDR differed from the corresponding regions in the published C. trachomatis genome sequence. Several silent mutations and mutations resulting in amino acid substitutions were observed in the ygeD 3' region of 2 isolates resistant to high FQ concentrations and in 1 isolate with the intermediate resistance level.  相似文献   

10.
Knowing the entire sequence of the gene encoding the DNA gyrase Subunit A (gyrA) of Edwardsiella tarda could be very useful for confirming the role of gyrA in quinolone resistance. Degenerate primers for the amplification of gyrA were designed from consensus nucleotide sequences of gyrA from 9 different Gram-negative bacteria, including Escherichia coli. With these primers, DNA segments of the predicted size were amplified from the genomic DNA of E. tarda and then the flanking sequences were determined by cassette ligation-mediated polymerase chain reaction. The nucleotide sequence of gyrA was highly homologous to those of other bacterial species, in both the whole open-reading frame and the quinolone-resistance-determining region (QRDR). The 2637-bp gyrA gene encodes a protein of 878 amino acids, preceded by a putative promoter, ribosome binding site and inverted repeated sequences for cruciform structures of DNA. However, the nucleotide sequence of the flanking region did not show any homologies with those of other bacterial DNA gyrase Subunit B genes (gyrB) and suggested the gyrase genes, gyrA and gyrB, are non-continuous on the chromosome of E. tarda. All of the 12 quinolone-resistant isolates examined have an alteration within the QRDR, Ser83 --> Arg, suggesting that, in E. tarda, resistance to quinolones is primarily related to alterations in gyrA. Transformation with the full sequence of E. tarda gyrA bearing the Ser83 --> Arg mutation was able to complement the sequence of the gyrA temperature-sensitive mutation in the E. coli KNK453 strain and to induce increased resistance to quinolone antibiotics at 42 degrees C.  相似文献   

11.

Background

The detection of mutations in the gyrA and gyrB genes in the Mycobacterium tuberculosis genome that have been demonstrated to confer phenotypic resistance to fluoroquinolones is the most promising technology for rapid diagnosis of fluoroquinolone resistance.

Methods

In order to characterize the diversity and frequency of gyrA and gyrB mutations and to describe the global distribution of these mutations, we conducted a systematic review, from May 1996 to April 2013, of all published studies evaluating Mycobacterium tuberculosis mutations associated with resistance to fluoroquinolones. The overall goal of the study was to determine the potential utility and reliability of these mutations as diagnostic markers to detect phenotypic fluoroquinolone resistance in Mycobacterium tuberculosis and to describe their geographic distribution.

Results

Forty-six studies, covering four continents and 18 countries, provided mutation data for 3,846 unique clinical isolates with phenotypic resistance profiles to fluoroquinolones. The gyrA mutations occurring most frequently in fluoroquinolone-resistant isolates, ranged from 21–32% for D94G and 13–20% for A90V, by drug. Eighty seven percent of all strains that were phenotypically resistant to moxifloxacin and 83% of ofloxacin resistant isolates contained mutations in gyrA. Additionally we found that 83% and 80% of moxifloxacin and ofloxacin resistant strains respectively, were observed to have mutations in the gyrA codons interrogated by the existing MTBDRsl line probe assay. In China and Russia, 83% and 84% of fluoroquinolone resistant strains respectively, were observed to have gyrA mutations in the gene regions covered by the MTBDRsl assay.

Conclusions

Molecular diagnostics, specifically the Genotype MTBDRsl assay, focusing on codons 88–94 should have moderate to high sensitivity in most countries. While we did observe geographic differences in the frequencies of single gyrA mutations across countries, molecular diagnostics based on detection of all gyrA mutations demonstrated to confer resistance should have broad and global utility.  相似文献   

12.
Real-time quantification of Pseudomonas aeruginosa was performed in various wastewater systems including clinical, municipal wastewaters and inflow from a wastewater treatment plant. The highest concentrations of P. aeruginosa-specific targets were detected in clinical wastewaters. Limitations of the detection system resulting from inhibition or cross-reaction were identified. Ciprofloxacin-resistant P. aeruginosa strains were isolated after specific enrichment from clinical and municipal wastewaters. In some cases they were also cultivated from effluent of a wastewater treatment plant, and from its downstream river water. A total of 119 isolates were phenotypically characterized as ciprofloxacin-resistant via antibiogram testing. Subsequently, the fluoroquinolone-resistance-mediating mutations in the genes gyrA codon positions 83 and 87, gyrB codon position 466 and parC codon positions 87 and 91 were determined by mini-sequencing. Ciprofloxacin resistance was mainly associated with mutations in gyrA codon position 83 and parC mutation in codon positions 87 or 91 of the bacterial gyrase and topoisomerase II genes. All ciprofloxacin-resistant P. aeruginosa strains were compared with genotypes from clinical data of fluoroquinolone-resistant P. aeruginosa infections. The results were in agreement with data from clinical analyses, with the exception that no gyrA 87 and no gyrB mutations were found in ciprofloxacin-resistant P. aeruginosa wastewater isolates.  相似文献   

13.
Salmonella enterica serovar Typhi and serovar Paratyphi A with reduced susceptibility to fluoroquinolones (MICs of ciprofloxacin, 0.25 to 2 microg/ml) have a mutation at codon either Ser-83 or Asp-87 of gyrA gene. A screening method by PCR-restriction fragment length polymorphism (PCR-RFLP) was designed to screen the mutations at codon Ser-83 and Asp-87 of the gyrA gene of S. enterica serovar Typhi and serovar Paratyphi A clinical isolates. This method successfully screened the gyrA mutations of S. enterica serovar Typhi and serovar Paratyphi A with reduced susceptibility to fluoroquinolones.  相似文献   

14.
The activity of ciprofloxacin, sparfloxacin and moxifloxacin was determined for 205 Enterococcus faecalis isolates from patients of five hospitals (Warsaw, Poland; collected from 2000 to 2002). Ciprofloxacin resistant and intermediate isolates were numerous (53.7%). Among them, highly resistant (MIC > or = 16 mg/l) isolates predominated (98%). Isolates resistant to ciprofloxacin were also resistant to sparfloxacin and moxifloxacin. The parC and gyrA QRDRs (quinolone-resistance-determining region) of 11 isolates with ciprofloxacin MICs from 1 to 256 mg/l were analysed by DNA sequencing. In ParC one kind of amino acid substitution (of Ser-85 to Ile) in 9 E. faecalis strains with MICs from 16 to 256 mg/l was observed. In GyrA Ser-84 was changed to one of four different amino acids: Arg, Ile, Cys or Tyr, however no association between the amino acid type and MIC value was found. The last two substitutions have not been reported to date for E. faecalis. Moreover, our results may suggest that mutations within parC and gyrA are associated with development of a high-level of ciprofloxacin resistance.  相似文献   

15.
A panel of 150 clinical isolates of methicillin resistant and susceptible Staphylococci were investigated using a rapid and simple PCR-RFLPs technique to detect DNA nucleotide changes at the site of the most frequently reported mutations in grlA (codons 79, 80) and gyrA (codons 83, 84) genes which confer fluorquinolone resistance in Staphylococci. Convergent dual mutations in and gyrA and grlA were found in all strains exhibiting resistance to ciprofloxacin (MIC, 8 to > or =128 mg/l) and levofloxacin (MIC, 8 to > or =64 mg/l). Mutations in grlA and gyrA were also found in strains susceptible to levofloxacin and resistant to ciprofloxacin. In our sample no strains with only grlA mutations were found. Our data indicate that methicillin-resistant fluorquinolone-resistant strains are likely to have mutations in both grlA and gyrA. In contrast, methicillin-susceptible strains do not show any mutation. The genetic relatedness of a sample of representative epidemiologically unrelated MRSA strains, tested by PFGE and rep-PCR, are in agreement with the hypothesis of a clonal selection of these resistant strains.  相似文献   

16.
A real-time PCR assay with the cycling probe method was used to detect mutations at codons 83 and 87 in the DNA gyrase A subunit encoded by gyrA in Salmonella enterica serovar Typhi and Paratyphi A clinical isolates. The susceptibility estimated from the results of the gyrA mutation assay was consistent with that identified by the culture method using an E-test. This assay allows rapid screening of S. enterica serovar Typhi and Paratyphi A with reduced susceptibility to ciprofloxacin.  相似文献   

17.
Antimicrobial susceptibility of seven clinical strains of Yersinia ruckeri representative of those isolated between 1994 and 2002 from a fish farm with endemic enteric redmouth disease was studied. All isolates displayed indistinguishable pulsed-field gel electrophoresis restriction patterns, indicating that they represented a single strain. However, considering both inhibition zone diameters (IZD) and MICs, the isolates recovered in 2001-2002 formed a separate cluster with lower levels of susceptibility to all the quinolones tested, especially nalidixic acid (NA) and oxolinic acid (OA), compared with the isolates recovered between 1994 and 1998. Analysis of the PCR product of the quinolone resistance-determining region of the gyrA gene from clinical isolates of Y. ruckeri with reduced susceptibility to OA and NA revealed a single amino acid substitution, Ser-83 to Arg-83 (Escherichia coli numbering). Identical substitution was observed in induced OA-resistant mutant strains, which displayed IZD and MICs of quinolones similar to those of the clinical isolates of Y. ruckeri with reduced susceptibility to these antimicrobial agents. These data indicate in that for Y. ruckeri, the substitution of Ser by Arg at position 83 of the gyrA gene is associated with reduced susceptibility to quinolones.  相似文献   

18.
Oxolinic acid (OA), a quinolone, inhibits the activity of DNA gyrase composed of GyrA and GyrB and shows antibacterial activity against Burkholderia glumae. Since B. glumae causes bacterial seedling rot and grain rot of rice, both of which are devastating diseases, the emergence of OA-resistant bacteria has important implications on rice cultivation in Japan. Based on the MIC of OA, 35 B. glumae field isolates isolated from rice seedlings grown from OA-treated seeds in Japan were divided into sensitive isolates (OSs; 0.5 microg/ml), moderately resistant isolates (MRs; 50 microg/ml), and highly resistant isolates (HRs; > or =100 microg/ml). Recombination with gyrA of an OS, Pg-10, led MRs and HRs to become OA susceptible, suggesting that gyrA mutations are involved in the OA resistance of field isolates. The amino acid at position 83 in the GyrA of all OSs was Ser, but in all MRs and HRs it was Arg and Ile, respectively. Ser83Arg and Ser83Ile substitutions in the GyrA of an OS, Pg-10, resulted in moderate and high OA resistance, respectively. Moreover, Arg83Ser and Ile83Ser substitutions in the GyrA of MRs and HRs, respectively, resulted in susceptibility to OA. These results suggest that Ser83Arg and Ser83Ile substitutions in GyrA are commonly responsible for resistance to OA in B. glumae field isolates.  相似文献   

19.
E Garí  L Bossi  N Figueroa-Bossi 《Genetics》2001,159(4):1405-1414
A class of gyrase mutants of Salmonella enterica mimics the properties of bacteria exposed to quinolones. These mutants suffer spontaneous DNA breakage during normal growth and depend on recombinational repair for viability. Unlike quinolone-treated bacteria, however, they do not show accumulation of cleavable gyrase-DNA complexes. In recA or recB mutant backgrounds, the temperature-sensitive (ts) allele gyrA208 causes rapid cell death at 43 degrees. Here, we isolated "suppressor-of-death" mutations, that is, secondary changes that allow a gyrA208 recB double mutant to survive a prolonged exposure to 43 degrees and subsequently to form colonies at 28 degrees. In most isolates, the secondary change was itself a ts mutation. Three ts alleles were mapped in genes coding for amino acyl tRNA synthetases (alaS, glnS, and lysS). Allele alaS216 completely abolished DNA breakage in a gyrA208 recA double mutant. Likewise, treating this mutant with chloramphenicol prevented death and DNA damage at 43 degrees. Additional suppressors of gyrA208 lethality include rpoB mutations and, surprisingly, icd mutations inactivating isocitrate dehydrogenase. We postulate that the primary effect of the gyrase alteration is to hamper replication fork movement. Inhibiting DNA replication under conditions of continuing macromolecular synthesis ("unbalanced growth") activates a mechanism that causes DNA breakage and cell death, reminiscent of "thymineless" lethality.  相似文献   

20.
AIMS: The aim of this study was to identify point mutations in the gyrA quinolone resistance determining region (QRDR) of Campylobacter coli (n = 27) and Campylobacter jejuni (n = 26) that confer nalidixic acid (NAL) resistance without conferring resistance to ciprofloxacin (CIP). METHODS AND RESULTS: Point mutations in the QRDR of gyrA from C. coli and C. jejuni isolates were identified by direct sequencing. All isolates (n = 14) with minimum inhibitory concentrations (MICs) >or=4 microg ml(-1) for CIP and >or=32 microg ml(-1) for NAL possessed a missense mutation leading to substitution of Ile for Thr at codon 86. Three isolates with a missense mutation leading to a Thr86Ala substitution had MICs <4 mug ml(-1) for CIP and >or=32 microg ml(-1) for NAL. CONCLUSIONS: These data confirm previous findings that Thr86Ile mutations confer resistance to both CIP and NAL. However, resistance to NAL alone was conferred by a single Thr86Ala mutation. SIGNIFICANCE AND IMPACT OF THE STUDY: Resistance to NAL alone arises independently from CIP resistance. In addition, the role of other previously described point mutations in quinolone resistance is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号