首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The present work aims to block 2,3-butanediol synthesis in acetoin fermentation of Bacillus subtilis. First, we constructed a recombinant strain BS168D by deleting the 2,3-butanediol dehydrogenase gene bdhA of the B. subtilis168, and there was almost no 2,3-butanediol production in 20?g/L of glucose media. The acetoin yield of BS168D reached 6.61?g/L, which was about 1.5 times higher than that of the control B. subtilis168 (4.47?g/L). Then, when the glucose concentration was increased to 100?g/L, the acetoin yield reached 24.6?g/L, but 2.4?g/L of 2,3-butanediol was detected at the end of fermentation. The analysis of 2,3-butanediol chiral structure indicated that the main 2,3-butanediol production of BS168D was meso-2,3-butanediol, and the bdhA gene was only responsible for (2R,3R)-2,3-butanediol synthesis. Therefore, we speculated that there may exit another pathway relating to the meso-2,3-butanediol synthesis in the B. subtilis. In addition, the results of low oxygen condition fermentation showed that deletion of bdhA gene successfully blocked the reversible transformation between acetoin and 2,3-butanediol and eliminated the effect of dissolved oxygen on the transformation.  相似文献   

2.
Acetoin (3-hydroxy-2-butanone), a very popular food spice is now used in many industries (pharmaceuticals, chemicals, paint, etc.). In this study, an acetoin high producing strain, numbered as JNA-310, was newly isolated and identified as Bacillus subtilis which is safe on food industry, based on its physiological, biological tests and 16S rDNA sequence analysis. When glucose was used as carbon source in fermentation, the fermentation characterizations of this strain were analyzed, and a new phenomenon of reverse transforming 2,3-butanediol which was synthesized from glucose in the fermentation broth to acetoin was detected. Before 96 h, glucose which was mainly transformed to 2,3-butanediol and acetoin was totally consumed, and the yield of the two products were 41.7 and 21.0 g/l respectively. Acetoin was only a by product in the fermentation broth at prophase of fermentation. At the end of fermentation, the yield of acetoin was greatly improved and the yield of 2,3-butanediol was declined and the yield of them were about 42.2 and 15.8 g/l, respectively. The results indicated that 2,3-butanediol was reversely transformed to acetoin.  相似文献   

3.
Conversion of xylose to (R,R)-2,3-butanediol by Paenibacillus polymyxa in anaerobic batch and continuous cultures was increased by 39% and 52%, respectively, by increasing the growth temperatures from 30 to 39 °C. There was no effect of temperature when glucose was used as substrate. 39 mM (R,R)-2,3-butanediol, 65 mM ethanol, and 47 mM acetate were obtained from 100 mM xylose after 24 h batch culture at 39 °C. With 100 mM glucose and 100 mM xylose used together in a batch culture at 39 °C, all xylose was consumed after 24 h and 82 mM (R,R)-2,3-butanediol, 124 mM ethanol and 33 mM acetate were produced.  相似文献   

4.
Production of 2,3-butanediol by Bacillus subtilis takes place in late-log or stationary phase, depending on the expression of bdhA gene encoding acetoin reductase, which converts acetoin to 2,3-butanediol. The present work focuses on the development of a strain of B. subtilis for enhanced production of 2,3-butanediol in early log phase of growth cycle. For this, the bdhA gene was expressed under the control of P alsSD promoter of AlsSD operon for acetoin fermentation which served the substrate for 2,3-butanediol production. Addition of acetic acid in the medium induced the production of 2,3-butanediol by 2-fold. Two-step aerobic–anaerobic fermentation further enhanced 2,3-butanediol production by 4-fold in comparison to the control parental strain. Thus, addition of acetic acid and low dissolved oxygen in the medium are involved in activation of bdhA gene expression from P alsSD promoter in early log phase. Under the conditions tested in this work, the maximum production of 2,3-butanediol, 2.1 g/l from 10 g/l glucose, was obtained at 24 h. Furthermore, under the optimized microaerophilic condition, the production of 2,3-butanediol improved up to 6.1 g/l and overall productivity increased by 6.7-fold to 0.4 g/l h in the engineered strain compared to that in the parental control.  相似文献   

5.
A nonpathogenic bacterial strain Bacillus amyloliquefaciens TUL 308 synthesized minor 2,3-butanediol (2,3-BD) amounts from glucose, fructose, sucrose, and glycerol, and efficiently produced the diol from molasses and hydrolysates of food processing residues. Batch fermentations yielded 16.53, 10.72, and 5?g/L 2,3-BD from enzymatic hydrolysates of apple pomace, dried sugar beet pulp, and potato pulp (at initial concentrations equivalent to 45, 20, and 30?g/L glucose, respectively), and 25.3?g/L 2,3-BD from molasses (at its initial concentration equivalent to 60?g/L saccharose). Fed-batch fermentations in the molasses-based medium with four feedings with either glucose or sucrose (in doses increasing their concentration by 25?g/L) resulted in around twice higher maximum 2,3-BD concentration (of about 60 and 50?g/L, respectively). The GRAS Bacillus strain is an efficient 2,3-BD producer from food industry byproducts.  相似文献   

6.
2,3-Butanediol is a promising valuable chemical that can be used in various areas as a liquid fuel and a platform chemical. Here, 2,3-butanediol production in Saccharomyces cerevisiae was improved stepwise by eliminating byproduct formation and redox rebalancing. By introducing heterologous 2,3-butanediol biosynthetic pathway and deleting competing pathways producing ethanol and glycerol, metabolic flux was successfully redirected to 2,3-butanediol. In addition, the resulting redox cofactor imbalance was restored by overexpressing water-forming NADH oxidase (NoxE) from Lactococcus lactis. In a flask fed-batch fermentation with optimized conditions, the engineered adh1Δadh2Δadh3Δadh4Δadh5Δgpd1Δgpd2Δ strain overexpressing Bacillus subtilis α-acetolactate synthase (AlsS) and α-acetolactate decarboxylase (AlsD), S. cerevisiae 2,3-butanediol dehydrogenase (Bdh1), and L. lactis NoxE from a single multigene-expression vector produced 72.9 g/L 2,3-butanediol with the highest yield (0.41 g/g glucose) and productivity (1.43 g/(L·h)) ever reported in S. cerevisiae.  相似文献   

7.

Biotechnologically produced 2,3-butanediol (2,3-BDO) is a potential starting material for industrial bulk chemicals such as butadiene or methyl ethyl ketone which are currently produced from fossil feedstocks. So far, the highest 2,3-BDO concentrations have been obtained with risk group 2 microorganisms. In this study, three risk group 1 microorganisms are presented that are so far unknown for an efficient production of 2,3-BDO. The strains Bacillus atrophaeus NRS-213, Bacillus mojavensis B-14698, and Bacillus vallismortis B-14891 were evaluated regarding their ability to produce high 2,3-BDO concentrations with a broad range of different carbon sources. A maximum 2,3-BDO concentration of 60.4 g/L was reached with the strain B. vallismortis B-14891 with an initial glucose concentration of 200 g/L within 55 h in a batch cultivation. Besides glucose, B. vallismortis B-14891 converts 14 different substrates that can be obtained from residual biomass sources to 2,3-BDO. Therefore B. vallismortis B-14891 is a promising candidate for the large-scale production of 2,3-BDO with low-cost substrates.

  相似文献   

8.
Fan  Xiaoguang  Wu  Heyun  Jia  Zifan  Li  Guoliang  Li  Qiang  Chen  Ning  Xie  Xixian 《Applied microbiology and biotechnology》2018,102(20):8753-8762

In this study, a uridine and acetoin co-production pathway was designed and engineered in Bacillus subtilis for the first time. A positive correlation between acetoin and uridine production was observed and investigated. By disrupting acetoin reductase/2,3-butanediol dehydrogenasegenebdhA, the acetoin and uridine yield was increased while 2,3-butanediol formation was markedly reduced. Subsequent overexpression of the alsSD operon further improved acetoin yield and abolished acetate formation. After optimization of fermentation medium, key supplementation strategies of yeast extract and soybean meal hydrolysate were identified and applied to improve the co-production of uridine and acetoin. With a consumption of 290.33 g/L glycerol, the recombinant strain can accumulate 40.62 g/L uridine and 60.48 g/L acetoin during 48 h of fed-batch fermentation. The results indicate that simultaneous production of uridine and acetoin is an efficient strategy for balancing the carbon metabolism in engineered Bacillus subtilis. More importantly, co-production of value-added products is a possible way to improve the economics of uridine fermentation.

  相似文献   

9.

2,3-Butanediol (2,3-BDO) is of considerable importance in the chemical, plastic, pharmaceutical, cosmetic, and food industries. The main bacterial species producing this compound are considered pathogenic, hindering large-scale productivity. The species Paenibacillus brasilensis is generally recognized as safe (GRAS) and is phylogenetically similar to P. polymyxa, a species widely used for 2,3-BDO production. Here, we demonstrate, for the first time, that P. brasilensis strains produce 2,3-BDO. Total 2,3-BDO concentrations for 15 P. brasilensis strains varied from 5.5 to 7.6 g/l after 8 h incubation at 32 °C in modified YEPD medium containing 20 g/l glucose. Strain PB24 produced 8.2 g/l of 2,3-BDO within a 12-h growth period, representing a yield of 0.43 g/g and a productivity of 0.68 g/l/h. An increase in 2,3-BDO production by strain PB24 was observed using higher concentrations of glucose, reaching 27 g/l of total 2,3-BDO in YEPD containing about 80 g/l glucose within a 72-h growth period. We sequenced the genome of P. brasilensis PB24 and uncovered at least six genes related to the 2,3-BDO pathway at four distinct loci. We also compared gene sequences related to the 2,3-BDO pathway in P. brasilensis PB24 with those of other spore-forming bacteria, and found strong similarity to P. polymyxa, P. terrae, and P. peoriae 2,3-BDO-related genes. Regulatory regions upstream of these genes indicated that they are probably co-regulated. Finally, we propose a production pathway from glucose to 2,3-BDO in P. brasilensis PB24. Although the gene encoding S-2,3-butanediol dehydrogenase (butA) was found in the genome of P. brasilensis PB24, only R,R-2,3- and meso-2,3-butanediol were detected by gas chromatography under the growth conditions tested here. Our findings can serve as a basis for further improvements to the metabolic capabilities of this little-studied Paenibacillus species in relation to production of the high-value chemical 2,3-butanediol.

  相似文献   

10.
A NAD-dependent (R)-2,3-butanediol dehydrogenase (EC 1.1.1.4), selectively catalyzing the oxidation at the (R)-center of 2,3-butanediol irrespective of the absolute configuration of the other carbinol center, was isolated from cell extracts of the yeast Saccharomyces cerevisiae. Purification was achieved by means of streptomycin sulfate treatment, Sephadex G-25 filtration, DEAE-Sepharose CL-6B chromatography, affinity chromatography on Matrex Gel Blue A and Superose 6 prep grade chromatography leading to a 70-fold enrichment of the specific activity with 44% yield. Analysis of chiral products was carried out by gas chromatographic methods via pre-chromatographic derivatization and resolution of corresponding diasteromeric derivatives. The enzyme was capable to reduce irreversibly diacetyl (2,3-butanediol) to (R)-acetoin (3-hydroxy-2-butanone) and in a subsequent reaction reversibly to (R,R)-2,3-butanediol using NADH as coenzyme. 1-Hydroxy-2-ketones and C5-acyloins were also accepted as substrates, whereas the enzyme was inactive towards the reduction of acetone and dihydroxyacetone. The relative molecular mass (M r) of the enzyme was estimated as 140 000 by means of gel filtration. On SDS-polyacrylamide gel the protein decomposed into 4 (identical) subunits of M r 35 000. Optimum pH was 6.7 for the reduction of acetoin to 2,3-butanediol and 7.2 for the reverse reaction.Abbreviations GC-MS gas chromatography-mass spectrometry - i.d. internal diameter - M r relative molecular mass - MTPA-Cl -methoxy--trifluoromethylphenyl acetic acid chloride - PEIC 1-phenylethylisocyanate  相似文献   

11.
The ability of Klebsiella oxytoca NRRL-B199 to use either lactose or the mixture of glucose and galactose as substrate for the production of 2,3-butanediol was studied in batch fermentations with different conditions of aeration and pH. 2,3-butanediol was undetected, or present in minute concentration in the fermentation broths with lactose, while it was the main product from glucose+galactose with final concentrations of up to 18.8 g/l in media at pH 6.0. Under conditions optimal for 2,3-butanediol synthesis, when aeration limited growth, the rate of biomass growth was more tightly related to the aeration rate in lactose medium than in glucose+galactose medium. These relations suggest that the growth rate is very low on lactose but still considerable on glucose+galactose when aeration rate tends toward zero. Correspondingly, the metabolism is more oxidative in the former medium, yielding mainly acetate as product.Abbreviations CDW cell dry weight  相似文献   

12.
Summary Production of 2,3-butanediol byKlebsiella oxytoca was enhanced in the presence of low levels (<8 g/l) of added sodium lactate. Cell growth was inhibited, however, and essentially stopped above 15 g/l added lactate. Levels of by-products (acetic acid and ethanol) were also higher. With 3 g/l lactate and an initial glucose level of 98 g/l, butanediol concentration and productivity increased 164% with 98% utilization of glucose. With high glucose concentration (219 g/l), addition of 2.64 g/l lactate after the growth phase resulted in 81 g/l butanediol, with a productivity of 0.65 g/l/h and 71% glucose utilization.  相似文献   

13.
We investigated the production of 2,3-butanediol by two enterobacteria isolated from an environmental consortium, Klebsiella pneumoniae BLh-1 and Pantoea agglomerans BL1, in a bioprocess using acid and enzymatic hydrolysates of soybean hull as substrates. Cultivations were carried out in orbital shaker under microaerophilic conditions, at 30°C and 37°C, for both bacteria. Both hydrolysates presented high osmotic pressures, around 2,000 mOsm/kg, with varying concentrations of glucose, xylose, and arabinose. Both bacteria were able to grow in the hydrolysates, at both temperatures, and they efficiently converted sugars into 2,3-butanediol, showing yields varying from 0.25 to 0.51 g/g of sugars and maximum 2,3-butanediol concentrations varying from 6.4 to 21.9 g/L. Other metabolic products were also obtained in lower amounts, notably ethanol, which peaked at 3.6 g/L in cultures using the enzymatic hydrolysate at 30°C. These results suggest the potential use of these recently isolated bacteria to convert lignocellulosic biomass hydrolysates into value-added products.  相似文献   

14.
Summary High glucose concentrations result in high levels of 2,3-butanediol, improved yield and productivity, and a decrease in cell growth in batch cultures of Klebsiella oxytoca. A maximum of 84.2 g butanediol/l and a yield of 0.5 was obtained with an initial glucose concentration of 262.6g/l. Adding the substrate in two steps in a modified fed-batch operation resulted in 85.5 g butanediol/l, 6.4 g acetoin/l and 3.4 g ethanol/l with a net yield of 0.5. Increasing the cell density to 60g/l resulted in productivities as high as 3.22 g/l.h.  相似文献   

15.
Ethanol was a major byproduct of 2,3-butanediol (2,3-BD) fermentation by Klebsiella oxytoca ME-UD-3. In order to achieve a high efficiency of 2,3-BD production, K. oxytoca mutants deficient in ethanol formation were successfully constructed by replace the aldA gene coding for aldehyde dehydrogenase with a tetracycline resistance cassette. The results suggested that inactivation of aldA led to a significantly improved 2,3-BD production. The carbon flux to 2,3-BD was enhanced by eliminating the byproducing ethanol and at the same time reducing the accumulation of another byproduct acetoin. At last, by fed-batch culturing of the mutant, the final 2,3-BD titer up to 130 g/l with the productivity of 1.63 g/l.h and the 2,3-BD yield relative to glucose of 0.48 g/g was obtained.  相似文献   

16.
Kinetics of 2,3-butanediol production by Klebsiella pneumoniae (NRRL B199) from glucose have been studied in a continuous bioreactor. The effect of oxygen supply rate and dilution rate on the product output rate and yield of 2,3-butanediol were investigated. For a feed glucose concentration of 100 g l−1, the optimum oxygen transfer rate is between 25.0–35.0 mmol l−1 h−1. Under these conditions, maximum product concentration obtained was 35 g l−1 at a dilution rate of 0.1 h−1 and the maximum product output rate obtained was 4.25 g l−1 h−1. The product yield based on the substrate utilized approached the theoretical value (50%) at low values of oxygen transfer rate but decreased with increasing oxygen transfer rate.  相似文献   

17.
Paenibacillus polymyxa ATCC 12321 produced more acetic acid and less butanediol from xylose than from glucose. The product yields from xylose were ethanol (0.72 mol/mol sugar), (R,R)-2,3-butanediol (0.31 mol/mol sugar), and acetate (0.38 mol/mol sugar) while those from glucose were ethanol (0.74 mol/mol sugar), (R,R)-2,3-butanediol (0.46 mol/mol sugar), and acetate (0.05 mol/mol sugar). Higher acetate kinase activity and lower acetate uptake ability were found in xylose-grown cells than in glucose-grown cells. Furthermore, phosphoketolase activity was higher in xylose-grown cells than in glucose-grown cells. In fed-batch culture on xylose, glucose feeding raised the butanediol yield to 0.56 mol/mol sugar and reduced acetate accumulation to 0.04 mol/mol sugar.  相似文献   

18.
Bacterial 2,3-butanediol dehydrogenases   总被引:3,自引:0,他引:3  
Enterobacter aerogenes, Aeromonas hydrophila, Serratia marcescens and Staphylococcus aureus possessing L(+)-butanediol dehydrogenase produced mainly meso-butanediol and small amounts of optically active butanediol; Acetobacter suboxydans, Bacillus polymyxa and Erwinia carotovora containing D(-)-butanediol dehydrogenase produced more optically active butanediol than meso-butanediol. Resting and growing cells of these organisms oxidized only one enantiomer of racemic butanediol. The D(-)-butanediol dehydrogenase from Bacillus polymyxa was partially purified (30-fold) with a specific activity of 24.5. Except NAD and NADH no other cofactors were required. Optimum pH-values for oxidation and reduction were pH 9 and pH 7, respectively. The optimum temperature was about 60°C. The molecular weight was 100000 to 107000. The K m-values were 3.3 mM for D(-)-butanediol, 6.25 mM for meso-butanediol, 0.53 mM for acetoin, 0.2 mM for NAD, 0.1 mM for NADH, 87 mM for diacetyl, 38 mM for 1,2-propanediol; 2,3-pentanedion was not a substrate for this enzyme. The L(+)-butanediol dehydrogenase from Serratia marcescens was purified 57-fold (specific activity 22.3). Besides NAD or NADH no cofactors were required. The optimum value for oxidation was about pH 9 and for reduction pH 4.5. The optimum temperature was 32–36°C. The molecular weight was 100000 to 107000. The K m-values were 5 mM for meso-butanediol, 10 mM for racemic butanediol, 6.45 for acetoin, 1 mM for NAD, 0.25 mM for NADH, 2.08 mM for diacetyl, 16.7 mM for 2,3-pentanedion and 11.8 mM for 1,2-propanediol.Abbreviations Bud 2,3-butanediol - DH dehydrogenase  相似文献   

19.
The production of 2,3-butanediol from glucose by Bacillus polymyxa in batch was sensitive to both protein concentration and aeration rate. Two fed-batch experiments which were resupplied from a reservoir containing urea as the sole source of nitrogen, and incorporated total biomass recycle resulted in yields of 65.84 mM and 69.66 mM of 2,3-butanediol per 100 mM of glucose utilized. No massive sporulation events were detected. In addition, fed-batch with recycle yielded more butanediol and less acetate than any batch run.  相似文献   

20.
Summary Organic extraction of 2,3-butanediol produced by Klebsiella oxytoca fermentation was studied to determine if the use of an external column offered advantages over in situ extractive fermentation. Dodecanol was chosen from 24 tested solvents, 11 of which were non-toxic to K. oxytoca. Although growth occurred in all shakeflask experiments containing dodecanol, growth was never observed when dodecanol was used in an in situ arrangement in a fermentor. Using dodecanol in an external column, however, resulted in a cell yield of 0.10 g/g d-xylose, and a 2,3-butanediol yield of 0.32 g/g d-xylose, similar to results obtained in control (solventless) experiments. Although the partitioning of 2,3-butanediol in the organic phase was low, this study suggests that external columns, with recycling to the fermentor, can offer substantial advantages over in situ extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号