首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Background

Tau protein is implicated in the pathogenesis of neurodegenerative disorders such as tauopathies including Alzheimer disease, and Tau fibrillization is thought to be related to neuronal toxicity. Physiological inhibitors of Tau fibrillization hold promise for developing new strategies for treatment of Alzheimer disease. Because protein disulfide isomerase (PDI) is both an enzyme and a chaperone, and implicated in neuroprotection against Alzheimer disease, we want to know whether PDI can prevent Tau fibrillization. In this study, we have investigated the interaction between PDI and Tau protein and the effect of PDI on Tau fibrillization.

Methodology/Principal Findings

As evidenced by co-immunoprecipitation and confocal laser scanning microscopy, human PDI interacts and co-locates with some endogenous human Tau on the endoplasmic reticulum of undifferentiated SH-SY5Y neuroblastoma cells. The results from isothermal titration calorimetry show that one full-length human PDI binds to one full-length human Tau (or human Tau fragment Tau244–372) monomer with moderate, micromolar affinity at physiological pH and near physiological ionic strength. As revealed by thioflavin T binding assays, Sarkosyl-insoluble SDS-PAGE, and transmission electron microscopy, full-length human PDI remarkably inhibits both steps of nucleation and elongation of Tau244–372 fibrillization in a concentration-dependent manner. Furthermore, we find that two molecules of the a-domain of human PDI interact with one Tau244–372 molecule with sub-micromolar affinity, and inhibit both steps of nucleation and elongation of Tau244–372 fibrillization more strongly than full-length human PDI.

Conclusions/Significance

We demonstrate for the first time that human PDI binds to Tau protein mainly through its thioredoxin-like catalytic domain a, forming a 1∶1 complex and preventing Tau misfolding. Our findings suggest that PDI could act as a physiological inhibitor of Tau fibrillization, and have applications for developing novel strategies for treatment and early diagnosis of Alzheimer disease.  相似文献   

4.
E1B 19K, the adenovirus Bcl-2 homologue, is a potent inhibitor of apoptosis induced by various stimuli including Fas and tumor necrosis factor-α. Fas and TNFR-1 belong to a family of cytokine-activated receptors that share key components in their signaling pathways, Fas-associating protein with death domain (FADD) and FADD-like interleukin-1β–converting enzyme (FLICE), to induce an apoptotic response. We demonstrate here that E1B 19K and Bcl-xL are able to inhibit apoptosis induced by FADD, but not FLICE. Surprisingly, apoptosis was abrogated by E1B 19K and Bcl-xL when FADD and FLICE were coexpressed. Immunofluorescence studies demonstrated that FADD expression produced large insoluble death effector filaments that may represent oligomerized FADD. E1B 19K expression disrupted FADD filament formation causing FADD and FLICE to relocalize to membrane and cytoskeletal structures where E1B 19K is normally localized. E1B 19K, however, does not detectably bind to FADD, nor does it inhibit FADD and FLICE from being recruited to the death-inducing signaling complex (DISC) when Fas is stimulated. Thus, E1B 19K may inhibit Fas-mediated cell death downstream of FADD recruitment of FLICE but upstream of FLICE activation by disrupting FADD oligomerization and sequestering an essential component of the DISC.  相似文献   

5.
6.
Extracellular adenine nucleotide hydrolysis in the circulation is mediated by the action of an NTPDase (CD39, apyrase) and of a 5′-nucleotidase (CD73), presenting as a final product, adenosine. Among other properties described for adenine nucleotides, an anti-cancer activity is suggested, since ATP is considered a cytotoxic molecule in several tumour cell systems. Conversely, some studies demonstrate that adenosine presents a tumour-promoting activity. In this study, we evaluated the pattern of adenine nucleotide hydrolysis by serum and platelets from rats submitted to the Walker 256 tumour model. Extracellular adenine nucleotide hydrolysis by blood serum and platelets obtained from rats at, 6, 10 and 15 days after the subcutaneous Walker 256 tumour inoculation, was evaluated. Our results demonstrate a significant reduction in ATP, ADP and AMP hydrolysis in blood serum at 6, 10 and 15 days after tumour induction. In platelets, a significant reduction in ATP and AMP hydrolysis was observed at 10 and 15 days after tumour induction, while an inhibition of ADP hydrolysis was observed at all times studied. Based on these results, it is possible to suggest a physiologic protection mechanism against the tumoral process in circulation. The inhibition in nucleotide hydrolysis observed probably maintains ATP levels elevated (cytotoxic compound) and, at the same time, reduces the adenosine production (tumoor-promoting molecule) in the circulation.  相似文献   

7.
Calcineurin homologous protein 1 (CHP1) is a widely expressed, 22-kDa myristoylated EF-hand Ca2+-binding protein that shares a high degree of similarity with the regulatory B subunit of calcineurin (65%) and with calmodulin (59%). CHP1 localizes to the plasma membrane, the Golgi apparatus, and the nucleus and functions to regulate trafficking of early secretory vesicles, activation of T cells, and expression and transport of the Na-H exchanger NHE1. Although CHP1 contains nuclear export signals, whether its nuclear and cytoplasmic localization is regulated and has distinct functions remain unknown. We show that CHP1 is predominantly in the nucleus in quiescent fibrobasts, is translocated to cytoplasmic compartments with growth medium, and that translocation is inhibited by mutations in the nuclear export motifs. In a screen for proteins co-precipitating with CHP1 in quiescent cells we identified the upstream binding factor UBF, a DNA-binding protein and component of the RNA polymerase I complex regulating RNA synthesis. The CHP1-UBF interaction is restricted to the nucleus and inhibited by Ca2+. Nuclear retention of CHP1 attenuates the abundance of UBF in the nucleolus and inhibits RNA synthesis when quiescent cells are transferred to growth medium. These data show UBF as a newly identified CHP1-binding protein and regulation of RNA synthesis as a newly identified function for nuclear-localized CHP1, which is distinct from CHP1 functions in the cytosol.  相似文献   

8.

Background

Eukaryotic translation initiation factor 4E (eIF4E) plays an important role in plant virus infection as well as the regulation of gene translation.

Methodology/Principal Findings

Here, we describe the isolation of a cDNA encoding CmeIF(iso)4E (GenBank accession no. JQ904592), an isoform of eIF4E from chrysanthemum, using RACE PCR. We used the CmeIF(iso)4E cDNA for expression profiling and to analyze the interaction between CmeIF(iso)4E and the Chrysanthemum virus B coat protein (CVBCP). Multiple sequence alignment and phylogenetic tree analysis showed that the sequence similarity of CmeIF(iso)4E with other reported plant eIF(iso)4E sequences varied between 69.12% and 89.18%, indicating that CmeIF(iso)4E belongs to the eIF(iso)4E subfamily of the eIF4E family. CmeIF(iso)4E was present in all chrysanthemum organs, but was particularly abundant in the roots and flowers. Confocal microscopy showed that a transiently transfected CmeIF(iso)4E-GFP fusion protein distributed throughout the whole cell in onion epidermis cells. A yeast two hybrid assay showed CVBCP interacted with CmeIF(iso)4E but not with CmeIF4E. BiFC assay further demonstrated the interaction between CmeIF(iso)4E and CVBCP. Luminescence assay showed that CVBCP increased the RLU of Luc-CVB, suggesting CVBCP might participate in the translation of viral proteins.

Conclusions/Significance

These results inferred that CmeIF(iso)4E as the cap-binding subunit eIF(iso)4F may be involved in Chrysanthemum Virus B infection in chrysanthemum through its interaction with CVBCP in spatial.  相似文献   

9.
10.
目的:研究SOX4和p53蛋白之间的相互作用。方法:应用GSTpull-down、免疫共沉淀实验验证相互作用。结果:GSTpulldown实验证实SOX4能结合GST-p53融合蛋白,但不能结合GST蛋白;免疫共沉淀实验也证明,SOX4与p53能在细胞内发生相互作用。结论:SOX4能与p53发生相互作用,为p53信号通路的研究提供了新的线索。  相似文献   

11.
12.
13.
14.
Xue  Qiao  Liu  Huisheng  Zeng  Qiaoying  Zheng  Haixue  Xue  Qinghong  Cai  Xuepeng 《中国病毒学》2019,34(6):610-617
Foot-and-mouth disease virus(FMDV) can infect domestic and wild cloven-hoofed animals. The non-structural protein 3 D plays an important role in FMDV replication and pathogenesis. However, the interaction partners of 3 D, and the effects of those interactions on FMDV replication, remain incompletely elucidated. In the present study, using the yeast two-hybrid system, we identified a porcine cell protein, DEAD-box RNA helicase 1(DDX1), which interacted with FMDV 3 D. The DDX1-3 D interaction was further confirmed by co-immunoprecipitation experiments and an indirect immunofluorescence assay(IFA) in porcine kidney 15(PK-15) cells. DDX1 was reported to either inhibit or facilitate viral replication and regulate host innate immune responses. However, the roles of DDX1 during FMDV infection remain unclear. Our results revealed that DDX1 inhibited FMDV replication in an ATPase/helicase activity-dependent manner. In addition, DDX1 stimulated IFN-b activation in FMDV-infected cells. Together, our results expand the body of knowledge regarding the role of DDX1 in FMDV infection.  相似文献   

15.
16.
17.
The protein Snm1B plays a key role in interstrand crosslink (ICL) repair. In a yeast two-hybrid screen we identified the protein PSF2 to bind Snm1B. PSF2 is a member of the GINS complex involved in replication initiation and elongation, and is known to play a role in ICL repair. Snm1B was shown to bind PSF2 in human cells through two regions, strongly to a 144 amino acid N-terminal region and weakly to a second smaller 37 amino acid C-terminal region. Ectopic expression of PSF2 increased the amount of Mus81, a protein component of the endonucleolytic complex involved in ICL repair, co-immunoprecipitating with Snm1B. Moreover, deleting the N-terminal, but not C-terminal region of Snm1B reduced the amount of co-immunoprecipitated Mus81. Conversely, the telomere-binding protein TRF2 competed with PSF2 for binding to the C-terminus of Snm1B, and deletion of this region, but not the N-terminal region, reduced Snm1B chromatin association. We speculate that the N-terminal region of Snm1B forms a complex containing PSF2 and Mus81, while the C-terminal region is important for PSF2-mediated chromatin association.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号