共查询到20条相似文献,搜索用时 12 毫秒
1.
Voltage-Dependent Conductance Induced in Thin Lipid Membranes by Monazomycin 总被引:7,自引:4,他引:3 下载免费PDF全文
When present in micromolar amounts on one side of phospholipid bilayer membranes, monazomycin (a positively charged, polyene-like antibiotic) induces dramatic voltage-dependent conductance effects. Voltage clamp records are very similar in shape to those obtained from the potassium conductance system of the squid axon. The steady-state conductance is proportional to the 5th power of the monazomycin concentration and increases exponentially with positive voltage (monazomycin side positive); there is an e-fold change in conductance per 4–6 mv. The major current-carrying ions are univalent cations. For a lipid having no net charge, steady-state conductance increases linearly with KCl (or NaCl) concentration and is unaffected by Ca++ or Mg++. The current-voltage characteristic which is normally monotonic in symmetrical salt solutions is converted by a salt gradient to one with a negative slope-conductance region, although the conductance-voltage characteristic is unaffected. A membrane treated with both monazomycin and the polyene antibiotic nystatin (which alone creates anion-selective channels) displays bistability in the presence of a salt gradient. Thus monazomycin and nystatin channels can exist in parallel. We believe that many monazomycin monomers (within the membrane) cooperate to form a multimolecular conductance channel; the voltage control of conductance arises from the electric field driving monazomycin molecules at the membrane surface into the membrane and thus affecting the number of channels that are formed. 相似文献
2.
The Effect of Valinomycin on the Ionic Permeability of Thin Lipid Membranes 总被引:13,自引:8,他引:5 下载免费PDF全文
Thomas E. Andreoli M. Tieffenberg Daniel C. Tosteson 《The Journal of general physiology》1967,50(11):2527-2545
3.
The Ion Permeability Induced in Thin Lipid Membranes by the Polyene Antibiotics Nystatin and Amphotericin B 总被引:19,自引:4,他引:19
Characteristics of nystatin and amphotericin B action on thin (<100 A) lipid membranes are: (a) micromolar amounts increase membrane conductance from 10-8 to over 10-2 Ω-1 cm-2; (b) such membranes are (non-ideally) anion selective and discriminate among anions on the basis of size; (c) membrane sterol is required for action; (d) antibiotic presence on both sides of membrane strongly favors action; (e) conductance is proportional to a large power of antibiotic concentration; (f) conductance decreases ~104 times for a 10°C temperature rise; (g) kinetics of antibiotic action are also very temperature sensitive; (h) ion selectivity is pH independent between 3 and 10, but (i) activity is reversibly lost at high pH; (j) methyl ester derivatives are fully active; N-acetyl and N-succinyl derivatives are inactive; (k) current-voltage characteristic is nonlinear when membrane separates nonidentical salt solutions. These characteristics are contrasted with those of valinomycin. Observations (a)–(g) suggest that aggregates of polyene and sterol from opposite sides of the membrane interact to create aqueous pores; these pores are not static, but break up (melt) and reform continuously. Mechanism of anion selectivity is obscure. Observations (h)–(j) suggest—NH3+ is important for activity; it is probably not responsible for selectivity, particularly since four polyene antibiotics, each containing two—NH3+ groups, induce ideal cation selectivity. Possibly the many hydroxyl groups in nystatin and amphotericin B are responsible for anion selectivity. The effects of polyene antibiotics on thin lipid membranes are consistent with their action on biological membranes. 相似文献
4.
The Water and Nonelectrolyte Permeability Induced in Thin Lipid Membranes by the Polyene Antibiotics Nystatin and Amphotericin B 总被引:9,自引:22,他引:9
Nystatin and amphotericin B increase the permeability of thin (<100 A) lipid membranes to ions, water, and nonelectrolytes. Water and nonelectrolyte permeability increase linearly with membrane conductance (i.e., ion permeability). In the unmodified membrane, the osmotic permeability coefficient, Pf, is equal to the tagged water permeability coefficient, (Pd)w; in the nystatin- or amphotericin B-treated membrane, Pf/(Pd)w ≈ 3. The unmodified membrane is virtually impermeable to small hydrophilic solutes, such as urea, ethylene glycol, and glycerol; the nystatin- or amphotericin B-treated membrane displays a graded permeability to these solutes on the basis of size. This graded permeability is manifest both in the tracer permeabilities, Pd, and in the reflection coefficients, σ (Table I). The "cutoff" in permeability occurs with molecules about the size of glucose (Stokes-Einstein radius 4 A). We conclude that nystatin and amphotericin B create aqueous pores in thin lipid membranes; the effective radius of these pores is approximately 4 A. There is a marked similarity between the permeability of a nystatin- or amphotericin B-treated membrane to water and small hydrophilic solutes and the permeability of the human red cell membrane to these same molecules. 相似文献
5.
Optically black, thin lipid membranes prepared from sheep erythrocyte lipids have a high dc resistance (Rm ≅ 108 ohm-cm2) when the bathing solutions contain NaCl or KCl. The ionic transference numbers (Ti) indicate that these membranes are cation-selective (T
Na ≅ 0.85; T
Cl ≅ 0.15). These electrical properties are independent of the cholesterol content of the lipid solutions from which the membranes are formed. Nystatin, and probably amphotericin B, are cyclic polyene antibiotics containing ≈36 ring atoms and a free amino and carboxyl group. When the lipid solutions used to form membranes contained equimolar amounts of cholesterol and phospholipid, these antibiotics reduced Rm to ≈102 ohm-cm2; concomitantly, T
Cl became ≅0.92. The slope of the line relating log Rm and log antibiotic concentration was ≅4.5. Neither nystatin (2 x 10-5
M) nor amphotericin B (2 x 10-7
M) had any effect on membrane stability. The antibiotics had no effect on Rm or membrane permselectivity when the lipids used to form membranes were cholesterol-depleted. Filipin (10-5
M), an uncharged polyene with 28 ring atoms, produced striking membrane instability, but did not affect Rm or membrane ionic selectivity. These data suggest that amphotericin B or nystatin may interact with membrane-bound sterols to produce multimolecular complexes which greatly enhance the permeability of such membranes for anions (Cl-, acetate), and, to a lesser degree, cations (Na+, K+, Li+). 相似文献
6.
Barbara Windschiegl Alexander Orth Winfried R?mer Ludwig Berland Bahne Stechmann Patricia Bassereau Ludger Johannes Claudia Steinem 《PloS one》2009,4(7)
The homopentameric B-subunit of bacterial protein Shiga toxin (STxB) binds to the glycolipid Gb3 in plasma membranes, which is the initial step for entering cells by a clathrin-independent mechanism. It has been suggested that protein clustering and lipid reorganization determine toxin uptake into cells. Here, we elucidated the molecular requirements for STxB induced Gb3 clustering and for the proposed lipid reorganization in planar membranes. The influence of binding site III of the B-subunit as well as the Gb3 lipid structure was investigated by means of high resolution methods such as fluorescence and scanning force microscopy. STxB was found to form protein clusters on homogenous 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/cholesterol/Gb3 (65∶30∶5) bilayers. In contrast, membranes composed of DOPC/cholesterol/sphingomyelin/Gb3 (40∶35∶20∶5) phase separate into a liquid ordered and liquid disordered phase. Dependent on the fatty acid composition of Gb3, STxB-Gb3 complexes organize within the liquid ordered phase upon protein binding. Our findings suggest that STxB is capable of forming a new membrane phase that is characterized by lipid compaction. The significance of this finding is discussed in the context of Shiga toxin-induced formation of endocytic membrane invaginations. 相似文献
7.
The cellular energy machinery depends on the presence and properties of protons at or in the vicinity of lipid membranes. To asses the energetics and mobility of a proton near a membrane, we simulated an excess proton near a solvated DMPC bilayer at 323 K, using a recently developed method to include the Grotthuss proton shuttling mechanism in classical molecular dynamics simulations. We obtained a proton surface affinity of −13.0 ± 0.5 kJ mol−1. The proton interacted strongly with both lipid headgroup and linker carbonyl oxygens. Furthermore, the surface diffusion of the proton was anomalous, with a subdiffusive regime over the first few nanoseconds, followed by a superdiffusive regime. The time- and distance dependence of the proton surface diffusion coefficient within these regimes may also resolve discrepancies between previously reported diffusion coefficients. Our simulations show that the proton anomalous surface diffusion originates from restricted diffusion in two different surface-bound states, interrupted by the occasional bulk-mediated long-range surface diffusion. Although only a DMPC membrane was considered in this work, we speculate that the restrictive character of the on-surface diffusion is highly sensitive to the specific membrane conditions, which can alter the relative contributions of the surface and bulk pathways to the overall diffusion process. Finally, we discuss the implications of our findings for the energy machinery. 相似文献
8.
We present and discuss the permeability and electrical properties of thin lipid membranes, and the changes induced in these properties by several agents added to the aqueous phases after the membranes have formed. The unmodified membrane is virtually impermeable to ions and small "hydrophilic" solutes, but relatively permeable to water and "lipophilic" molecules. These properties are consistent with those predicted for a thin film of hydrocarbon through which matter is transported by dissolving in the membrane phase and then diffusing through it. The effect of cholesterol in reducing the water and "lipophilic" solute permeability is attributed to an increase of the "viscosity" of the hydrocarbon region, thus reducing the diffusion coefficient of molecules within this phase. The selective permeability of the membrane to iodide (I-) in the presence of iodine (I2) is attributed to the formation of polyiodides (perhaps I5
-), which are presumed to be relatively soluble in the membrane because of their large size, and hence lower surface charge density. Thus, I2 acts as a carrier for I-. The effects of "excitability-inducing material" and the depsipeptides (particularly valinomycin) on ion permeability are reviewed. The effects of the polyene antibiotics (nystatin and amphotericin B) on ion permeability, discussed in greater detail, are the following: (a) membrane conductance increases with the 10th power of nystatin concentration; (b) the membrane is anion-selective but does not discriminate completely between anions and cations; (c) the membrane discriminates among anions on the basis of size; (d) membrane conductance decreases extraordinarily with increasing temperatures. Valinomycin and nystatin form independent conductance pathways in the same membrane, and, in the presence of both, the membrane can be reversibly shifted between a cation and anion permeable state by changes in temperature. It is suggested that nystatin produces pores in the membrane and valinomycin acts as a carrier. 相似文献
9.
The cellular energy machinery depends on the presence and properties of protons at or in the vicinity of lipid membranes. To asses the energetics and mobility of a proton near a membrane, we simulated an excess proton near a solvated DMPC bilayer at 323 K, using a recently developed method to include the Grotthuss proton shuttling mechanism in classical molecular dynamics simulations. We obtained a proton surface affinity of −13.0 ± 0.5 kJ mol−1. The proton interacted strongly with both lipid headgroup and linker carbonyl oxygens. Furthermore, the surface diffusion of the proton was anomalous, with a subdiffusive regime over the first few nanoseconds, followed by a superdiffusive regime. The time- and distance dependence of the proton surface diffusion coefficient within these regimes may also resolve discrepancies between previously reported diffusion coefficients. Our simulations show that the proton anomalous surface diffusion originates from restricted diffusion in two different surface-bound states, interrupted by the occasional bulk-mediated long-range surface diffusion. Although only a DMPC membrane was considered in this work, we speculate that the restrictive character of the on-surface diffusion is highly sensitive to the specific membrane conditions, which can alter the relative contributions of the surface and bulk pathways to the overall diffusion process. Finally, we discuss the implications of our findings for the energy machinery. 相似文献
10.
Effect of Divalent Cations on Potassium Conductance of Squid Axons: Determination of Surface Charge 总被引:29,自引:4,他引:29 下载免费PDF全文
Potassium conductance-voltage curves have been determined for a squid axon in high external potassium solution for a wide range of divalent cation concentrations. A decrease in divalent ion concentration shifts the conductance-voltage curve along the voltage axis in the direction of more hyperpolarized voltages by as much as 9 mv for an e-fold change in concentration. When the divalent ion concentration is less than about 5 mM, a further decrease does not cause a significant shift of the conductance-voltage curve. These results can be explained by assuming that on the outer surface of the membrane there is a negative fixed charge which can bind calcium ions, and that the axon is sensitive to the resulting double-layer potential. From our data, the best value for charge density was found to be one electronic charge per 120 square angstroms, and a lower limit to be one electronic charge per 280 square angstroms. 相似文献
11.
The Rate Constants of Valinomycin-Mediated Ion Transport through Thin Lipid Membranes 总被引:3,自引:3,他引:3 下载免费PDF全文
Electrical relaxation experiments have been performed with phosphatidylinositol bilayer membranes in the presence of the ion carrier valinomycin. After a sudden change of the voltage a relaxation of the membrane current with a time constant of about 20 μsec is observed. Together with previous stationary conductance data, the relaxation amplitude and the relaxation time are used to evaluate the rate constants of valinomycin-mediated potassium transport across the lipid membrane. It is found that the rate constants of translocation of the free carrier S and the carrier-ion complex MS+ are nearly equal (2·104 sec-1) and are of the same order as the dissociation rate constant of MS+ in the membrane-solution interface (5·104 sec-1). The equilibrium constant of the heterogeneous association reaction M+ (solution) + S (membrane) → MS+ (membrane) is found to be ~ 1 M-1, about 106 times smaller than the association constant in ethanolic solution. 相似文献
12.
13.
14.
Ras GTPases play a crucial role in signal transduction cascades involved in cell differentiation and proliferation, and membrane binding is essential for their proper function. To determine the influence of the nature of the lipid anchor motif and the difference between the active (GTP) and inactive (GDP) forms of N-Ras on partitioning and localization in the lipid membrane, five different N-Ras constructs with different lipid anchors and nucleotide loading (Far/Far (GDP), HD/Far (GDP), HD/HD (GDP), Far (GDP), and HD/Far (GppNHp)) were synthesized. Using the surface plasmon resonance technique, we were able to follow the insertion and dissociation process of the lipidated proteins into and out of model membranes consisting of pure liquid-ordered (lo) or liquid-disordered (ld) phase and a heterogeneous two-phase mixture, i.e., a raft mixture with lo + ld phase coexistence. In addition, we examined the influence of negatively charged headgroups and stored curvature elastic stress on the binding properties of the lipidated N-Ras proteins. In most cases, significant differences were found for the various anchor motifs. In general, N-Ras proteins insert preferentially into a fluidlike, rather than a rigid, ordered lipid bilayer environment. Electrostatic interactions with lipid headgroups or stored curvature elastic stress of the membrane seem to have no drastic effect on the binding and dissociation processes of the lipidated proteins. The monofarnesylated N-Ras exhibits generally the highest association rate and fastest dissociation process in fluidlike membranes. Double lipidation, especially including farnesylation, of the protein leads to drastically reduced initial binding rates but strong final association. The change in the nucleotide loading of the natural N-Ras HD/Far induces a slightly different binding and dissociation kinetics, as well as stability of association, and seems to influence the tendency to segregate laterally in the membrane plane. The GDP-bound inactive form of N-Ras with an HD/Far anchor shows stronger membrane association, which might be due to a more pronounced tendency to self-assemble in the membrane matrix than is seen with the active GTP-bound form. 相似文献
15.
《Biophysical journal》2020,118(8):1830-1837
Laurdan fluorescence, novel spectral fitting, and dynamic light scattering were combined to determine lateral lipid organization in mixed lipid membranes of the oxidized lipid, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC), and each of the three bilayer lipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC). Second harmonic spectra were computed to determine the number of elementary emissions present. All mixtures indicated two emissions. Accordingly, spectra were fit to two log-normal distributions. Changes with PGPC mole fraction, XPGPC, of the area of the shorter wavelength line and of dynamic light scattering-derived aggregate sizes show that: DPPC and PGPC form component-separated mixed vesicles for XPGPC ≤ 0.2 and coexisting vesicles and micelles for XPGPC > 0.2 in gel and liquid-ordered phases and for all XPGPC in the liquid-disordered phase; POPC and PGPC form randomly mixed vesicles for XPGPC ≤ 0.2 and component-separated mixed vesicles for XPGPC > 0.2. DOPC and PGPC separate into vesicles and micelles. Component segregation is due to unstable inhomogeneous membrane curvature stemming from lipid-specific intrinsic curvature differences between mixing molecules. PGPC is inverse cone-shaped because its truncated tail with a terminal polar group points into the interface. It is similar to and mixes with POPC, also an inverse cone because of mobility of its unsaturated tail. PGPC is least similar to DOPC because mobilities of both unsaturated tails confer a cone shape to DOPC, and PGPC separates form DOPC. DPPC and PGPC do not mix in the liquid-disordered phase because mobility of both tails in this phase renders DPPC a cone. DPPC is a cylinder in the gel phase and of moderate similarity to PGPC and mixes moderately with PGPC. 相似文献
16.
Michał Szeremeta Aneta D. Petelska Joanna Kotyńska Anna Niemcunowicz-Janica Zbigniew A. Figaszewski 《The Journal of membrane biology》2013,246(9):717-722
The objective of this investigation was to evaluate postmortem changes of electric charge of human erythrocytes and thrombocytes after fatal carbon monoxide (CO) poisoning. The surface charge density values were determined on the basis of the electrophoretic mobility measurements of the cells carried out at various pH values of electrolyte solution. The surface charge of erythrocyte membranes after fatal CO poisoning as well as after sudden unexpected death increased compared to the control group in the whole range of experimental pH values. Also, a slight shift of the isoelectric point of erythrocyte membranes to high pH values was observed. The surface charge of thrombocyte membranes after fatal CO poisoning decreased at low pH compared to the control group. However, at high pH, the values increased compared to the control group. The isoelectric point of thrombocyte membranes after fatal CO poisoning was considerably shifted toward low pH values compared to the control group. The observed changes are probably connected with the destruction of blood cell structure. 相似文献
17.
The Effect of Reduced Hydraulic Conductance on Stomatal Conductance and Xylem Cavitation 总被引:21,自引:5,他引:21
The vulnerability of xylem conduits to cavitation theoreticallydetermines the maximum flow rate of water through plants, andhence maximum transpiration (E), stomatal conductance (gs),and leaf area (A1. Field-grown Betula occidentalis with a favourablewater supply exhibit midday xylem pressures ( 相似文献
18.
Purification and Characterization of the Voltage-Dependent Anion-Selective Channel Protein from Wheat Mitochondrial Membranes 下载免费PDF全文
An approximately 29-kD protein was purified from the membrane fraction of wheat (Triticum aestivum cv Dganit) mitochondria by the utilization of standard liquid chromatography techniques. The protein, designated MmP29 for mitochondrial membrane protein having a molecular mass of approximately 29 kD, exhibited cationic properties in a buffering solution, adjusted to pH 7.5. This positive charge enabled its passage through a diethylaminoethyl column, without interaction with the positively charged matrix. Subsequently, this protein was separated from the remaining polypeptides by a preferential elution from a hydroxylapatite/celite mixed column. Reconstituted liposomes containing this protein were characterized as being permeable to 8-amino-naphthalene 1,3,6-trisulfonic acid disodium salt (Mr 445) but non-permeable to dextran fluorescein (Mr 40,000). Additionally, MmP29 was inserted into planar phospholipid membranes, and anion-selective, voltage-dependent channels were demonstrated. All of the MmP29 properties mentioned highly resemble voltagedependent, anion-selective channel (VDAC) proteins, suggesting that MmP29 is the mitochondrial outer membrane VDAC protein of wheat. 相似文献
19.
Changes in Alfalfa Stem Conductance Induced by Corynebacterium insidiosum Toxin 总被引:3,自引:2,他引:1 下载免费PDF全文
A toxin involved in bacterial wilt of alfalfa (Medicago sativa L.) has been isolated from cultures of the pathogen, Corynebacterium insidiosum, as well as from diseased plants (S. M. Ries and G. A. Strobel. 1972. Physiological Plant Pathology 2: 133-142). The influence of this toxin, a glycopeptide with a molecular weight of 5 × 106, on the water relations of alfalfa was examined. It was found that very small amounts of the toxin (2 μg) significantly reduced stem conductance through 15-cm long stems. This decrease in stem conductance caused by the toxin best explains the rapid decrease in transpiration and stomatal conductance and the resultant wilting after alfalfa cuttings have been in 200 μg ml−1 toxin for 2 hours. Membrane damage resulting in water leakage was ruled out as a factor in the wilting during the 2-hour period. It is postulated that the toxin acts by interfering with water movement through pit membranes. 相似文献
20.
Nonlinear Electrical Effects in Lipid Bilayer Membranes: III. The Dissociation Field Effect 下载免费PDF全文
In the course of an analysis of nonlinear electrical effects in lipid bilayer membranes, the influence of the dissociation field (or Wien) effect on the membrane conductivity is investigated. It is shown that the theory of Onsager for the Wien effect in a macroscopic phase can be applied to a thin membrane when the proper boundary conditions at the membrane-solution interface are introduced. It is assumed that an activation energy is associated with the passage of the ion across the interface. The mathematical treatment of the model is restricted to the case for which cations and anions have identical properties except for the charge sign. The resulting differential equations for the ion concentration within the membrane are integrated numerically. The analysis shows that the influence of the Wien effect on the membrane conductivity is appreciable only if the energy barrier at the interface is sufficiently high, i.e. if the rate limiting step for the ion transport is the passage of the ion across the interface. 相似文献