首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The circadian rhythms in activity, core temperature (Tc), O2 consumption, CO2 production, and respiratory quotient (RQ) were monitored in four captive Chinese pangolins (Manis pentadactyla). The pangolins were strictly nocturnal, never emerging from their nest before 1600 h, and their intermittent activity continued no later than 0230. As is usual in nocturnal mammals, the highest values observed in Tc, O2 consumption, and CO2 production occurred during the night; the lowest values occurred during the day. The magnitude of the variation in Tc, O2 consumption, CO2 production, and RQ averaged 1.2°C, 1.3 ml O2 kg?1 min?1, 1.2 ml CO2 kg?1 min?1, and 0.24, respectively. The circadian pattern in RQ was independent of activity, Tc, and the metabolic parameters and was of a different character than the patterns exhibited in the other variables. RQ remained constant at either a high or low level for long periods (8–10 h) and then increased or decreased relatively rapidly (1–2h) to the other level as in a square wave, whereas the rhythms in the other variables are similar to sine waves. The sharp increase in RQ was followed by a slow decline in Tc, and the sharp decline in RQ was followed by a slow increase in Tc.  相似文献   

2.
Kind of substrate utilized by the respiration of mustard seedlings (Sinapis alba L.) was determined on the basis of found RQ values of control plants. This led to the study of the effect of 4-phenethylpyridine on relationships between lipase, lipoxidase, glycerolkinase and O2 consumption: Enzyme activities and O2 consumption rose from the second to the fifth day. According to these results, 4-phenethylpyridine increases degradation of storage fats in the beginning phase of fat catabolism, bringing about advantageous conditions for their metabolic utilization in plant, like in the case of saccharide metabolism.  相似文献   

3.
In view of the known tolerance of rice (Oryza sativa) to wet soils, in contrast to maize (Zea mays), a comparison of the respiratory responses of the two plants to different O2 concen trations was made. It was found that if the O2 concentration was raised to 100%, an increase was observed of the O2 input and the CO2 output in maize root-tip segments and in germinating grains of rice and also in buckwheat (Fagopyrum sp.). In marked contrast rice root-tip segments, when treated with 100% O2, exhibited no such increase over the air controls. Increased O2 concentrations decreased RQ values ranging from 2.0 (with 5% O2) to 0.86 (with 100% O2). Air-control RQ values were lowest with maize roots (0.9) and highest with germinating rice grains (1.0). Rice grains also exhibited the highest F/R ratio (0.85), and buckwheat grains the lowest (0.45). The addition of sucrose to maize root tips tended to promote fermentation (CO2 output) rather than aerobic respiration (O2 input).  相似文献   

4.
Planktonic community respiration is an important carbon cycling process, typically quantified by converting measured values of dissolved O2 consumption rates into CO2 production rates assuming a respiratory quotient of 1 (RQ = CO2 per O2 by moles). However, the true variability in planktonic RQs between different aquatic ecosystems is poorly understood. We conducted in situ RQ measurements in a eutrophic lake dominated by algal-derived substances and found that RQs were significantly below 1. In fact, many RQ values were extremely low (0.2–0.6), below theoretical RQs for oxidation of algal organic matter substrates (0.7–0.8), suggesting that other factors than substrate control need to be considered to understand the RQ. This view was further supported by lack of correlations between RQ and microbial variables known to be strongly substrate dependent, including bacterial growth efficiency and the functional capacity of the bacterioplankton community to degrade different compounds. Based on the measured dynamics in methane and nutrient pools, we discuss that methane oxidation and nitrification likely occurred in the lake, contributing to the unusually low RQs. Our findings demonstrate that planktonic RQs in productive lakes can systematically be below 1, suggesting that CO2 emissions from these lakes may currently be overestimated.  相似文献   

5.
The yield changes in cell mass and metabolites with changes in the oxygen supply rate were investigated in continuous ethanol fermentation. With increases in oxygen concentration in the purging gas from 5.3 to 39.3 %, the specific oxygen uptake rate (qO2) increased from 0.158 to 1.24 mmol/g/h. With this change, cell mass increased from 13.2 to 14.9 g/l and glycerol decreased from 4.8 to 0.99 g/l, although little change in ethanol yield was observed. At a higher oxygen concentration and/or at a lower respiratory quotient (RQ), glycerol disappeared, acetaldehyde, acetoin and 2,3-butanediol increased, and ethanol started to decrease. The yields of iso-butylalcohol and iso-amylalcohol also increased with increases in the oxygen supply rate when RQ was lower than approximately 10. Reduction in the redox balance (NADH/NAD) in the cells by qO2, appeared to reduce initially the rate of glycerol-3-phosphate formation and next the rate of ethanol formation, resulting in the accumulation of acetaldehyde and formation of 2,3-butanediol through acetoin. Fatty acid composition changed with changes in the oxygen supply rate. The value for unsaturation, Δ mol−1, increased from 0.745 to 0.836 with the increase in qO2 from 0.158 to 1.79 mmol/g/h. Increases in oleic acid (C18:1) and decreases in palmitic acid (C16:0) were the major changes with the increases in Δ mol−1.  相似文献   

6.
Ventilatory accommodation of changing oxygen demand in sciurid rodents   总被引:2,自引:2,他引:0  
Summary Ventilation was measured across a range of O2 consumption rates in four sciurid rodents: Tamias minimus (47 g), Spermophilus lateralis (189 g), S. beecheyi (531 g), and Marmota flaviventris juveniles (1054 g) and adults (2989 g). Maximum thermogenic oxygen consumption was measured for all but adult M. flaviventris. Aerobic scopes (maximum/minimum O2 consumption rates) were 4.6, 3.8, 5.4, and 4.8 in T. minimus, S. lateralis, S. beecheyi, and juvenile M. flaviventris, respectively. Aerobic scope was at least 4.1 in adult M. flaviventris. Ventilatory accommodation of changing O2 consumption rate was qualitatively similar in the four species, with the bulk of accommodation resulting from changes in minute volume. Nevertheless, there were significant differences in the relative importance of frequency, tidal volume, and O2 extraction in accommodation. In all species, frequency and minute volume were strongly correlated to O2 consumption rate. Tidal volume was significantly correlated to O2 consumption rate in T. minimus and S. beecheyi, but not in the other species. Oxygen extraction was not significantly correlated to O2 consumption rate in any species. Analysis of factorial ventilation changes across a standardized 3.8-fold change in O2 consumption rate revealed significant differences among species in frequency and O2 extraction, but not in tidal or minute volume. When compared to a generalized allometry for mammalian resting ventilation, the four sciurid species had consistently lower respiration frequency and higher O2 extraction than predicted, perhaps because the sciurid measurements were made on unrestrained animals. There was no indication that ventilation constrained maximum O2 consumption rate.Abbreviations BMR basal metabolic rate - BTPS body temperature and pressure saturated - EO2 oxygen extraction - f respiration frequency - MMR minimal metabolic rate - RH relative humidity - STPD standard pressure and temperature, dry - T a ambient temperature - T b body temperature - minute volume - tidal volume - maximum rate of oxygen consumption  相似文献   

7.
The time course of O2 consumption after acute salinity exposure (1, 3, 6, 12, and 24 h to 0, 7, 14, 21, 28, and 35 S) was examined in isolated supraesophageal ganglia, gills, and intact Macrobrachium olfersii (Wiegmann), a hyperosmoregulating freshwater palaemonid shrimp, to establish patterns of metabolic adjustment during salinity adaptation. In whole shrimps, O2 uptake rates decline with salinity increase to 21 S, subsequently increasing with further salinity increase. The rates increase to maxima after 6–12-h exposure in low salinities, decreasing steadily with time in high salinities. In gill preparations, O2 consumption rates increase to a maximum in 14 S, then decline; they are maximal after 3–6-h exposure to low salinities and diminish with time in high salinities. In the supraesophageal ganglion, rates of O2 uptake, always measured in seawater of 18 S, are also maximal when shrimps are exposed to 14 S, subsequently declining or levelling off. Rates decrease with time in shrimps exposed to very low salinities, and are stable in 21 S, reaching maxima after 3–6-h exposure of shrimps to all other media. Both tissues thus exhibit characteristic response patterns of O2 consumption rate which appear to depend on their functional significance within the context of the whole organism. Such data are interpreted to indicate an interrelationship between O2 consumption and osmoregulatory capability.  相似文献   

8.
Urea hydrogen peroxide (UHP) at a concentration of 30 to 32 mmol/liter reduced the numbers of five Lactobacillus spp. (Lactobacillus plantarum, L. paracasei, Lactobacillus sp. strain 3, L. rhamnosus, and L. fermentum) from ~107 to ~102 CFU/ml in a 2-h preincubation at 30°C of normal-gravity wheat mash at ~21 g of dissolved solids per ml containing normal levels of suspended grain particles. Fermentation was completed 36 h after inoculation of Saccharomyces cerevisiae in the presence of UHP, even when wheat mash was deliberately contaminated (infected) with L. paracasei at ~107 CFU/ml. There were no significant differences in the maximum ethanol produced between treatments when urea hydrogen peroxide was used to kill the bacteria and controls (in which no bacteria were added). However, the presence of L. paracasei at ~107 CFU/ml without added agent resulted in a 5.84% reduction in the maximum ethanol produced compared to the control. The bactericidal activity of UHP is greatly affected by the presence of particulate matter. In fact, only 2 mmol of urea hydrogen peroxide per liter was required for disinfection when mashes had little or no particulate matter present. No significant differences were observed in the decomposition of hydrogen peroxide in normal-gravity wheat mash at 30°C whether the bactericidal agent was added as H2O2 or as urea hydrogen peroxide. NADH peroxidase activity (involved in degrading H2O2) increased significantly (P = 0.05) in the presence of 0.75 mM hydrogen peroxide (sublethal level) in all five strains of lactobacilli tested but did not persist in cells regrown in the absence of H2O2. H2O2-resistant mutants were not expected or found when lethal levels of H2O2 or UHP were used. Contaminating lactobacilli can be effectively managed by UHP, a compound which when used at ca. 30 mmol/liter happens to provide near-optimum levels of assimilable nitrogen and oxygen that aid in vigorous fermentation performance by yeast.  相似文献   

9.
The effect of zaprinast, a cyclic guanosine monophosphate inhibitor, on the level of cyclic GMP and cerebral O2 consumption was determined. Anesthetized male Long-Evans rats were divided into a control group (n=15) and a zaprinast treated group (n=15). Vehicle was applied topically to the left cortex and 3·10−3 M zaprinast was applied to the right cortex. A saline treated control group was also studied. Regional cerebral blood flow was determined by [14C]-iodoantipyrine and regional O2 extraction was determined by microspectrophotometry. The level of cyclic GMP was measured by radioimmunoassay. There were no hemodynamic or blood gas differences between groups. The level of cyclic GMP was not significantly different between the right and left cerebral cortex of the control group (17.0±4.3 and 17.7±4.6 pmol/g). In the zaprinast treated group, there was a significant (46%) increase in the level of cyclic GMP in the zaprinast treated cortex (20.5±8.1) in comparison to the vehicle treated cortex (14.0±5.7). Zaprinast did not significantly alter cerebral blood flow. There were no significant differences in regional O2 extraction. The O2 consumption of the zaprinast treated cortex (8.0±3.3 ml O2·min−1·100 g−1) was not different from that of the vehicle treated cortex (7.0±2.9) or those of the control group. Thus, our data indicated that the increased level of cyclic GMP had no significant effect on cerebral oxygen consumption.  相似文献   

10.
1. The effects of O2, CO2, and pressure were studied in two very different species of protozoa, a flagellate, Chilomonas paramecium, grown in acetate-ammonium solution and a ciliate, Tetrahymena geleii, grown in 2 per cent proteose-peptone solution. 2. Chilomonas and Tetrahymena live and reproduce in solutions exposed to a wide range of O2 concentrations, but Chilomonas is killed at high O2 tensions in which Tetrahymena grows best. The optimum O2 concentration for Chilomonas is about 75 mm. pressure but it lives and reproduces in O2 tensions as low as 0.5 mm. while Tetrahymena fails to grow in concentrations below 10 mm. O2 pressure. 3. With a constant O2 tension of 50 mm. pressure, it was found that there is no significant variation in growth in Chilomonas between 50 mm. and 740 mm. total pressure. In Tetrahymena, however, under the same conditions, an optimum total pressure was found at about 500 mm. and growth is comparatively poor at 50 mm. total pressure. 4. Tetrahymena does not live very long in CO2 tensions over 122 mm., although Chilomonas grows as well at 400 mm. CO2 as in air at atmospheric pressure (0.2 mm. CO2). Tetrahymena grows best in an environment minus CO2, but the optimum for Chilomonas is 100 mm. CO2 at which pressure an average of 668,600 ± 30,000 organisms per ml. was produced (temperature, 25 ± 1° C.). 5. Chilomonads grown in high CO2 concentrations (e.g., 122 mm.) produce larger starch granules and more starch than those grown in ordinary air at atmospheric pressure. 6. In solutions exposed to 75 mm. O2 tension (optimum) and 122 mm. CO2 plus 540 mm. N2 pressure, chilomonads contain very little, if any, fat. This phenomenon seems to be due to the action of CO2 on the mechanisms concerned with fat production. 7. In Tetrahymena exposed to pure O2, there is very little fat compared to those grown in atmospheric air. This may be due to the greater oxidation of fat in the higher O2 concentrations. 8. Further evidence is presented in support of the contention that Chilomonas utilizes CO2 in the production of starch.  相似文献   

11.
In an earlier study, we proposed that thyroid hormone stimulation of energy utilization by the Na+ pump mediates the calorigenic response. In this study, the effects of triiodothyronine (T3) on total oxygen consumption (QOO2), the ouabain-sensitive oxygen consumption [QOO2(t)], and NaK-ATPase in liver, kidney, and cerebrum were measured. In liver, ~90% of the increase in QOO2 produced by T3 in either thyroidectomized or euthyroid rats was attributable to the increase in QOO2(t). In kidney, the increase in QOO2(t) accounted for 29% of the increase in QOO2 in thyroidectomized and 46% of the increase in QOO2 in euthyroid rats. There was no demonstrable effect of T3 in euthyroid rats on QOO2 or QOO2(t) of cerebral slices. The effects of T3 on NaK-ATPase activity in homogenates were as follows: In liver +81% from euthyroid rats and +54% from hypothyroid rats. In kidney, +21% from euthyroid rats and +69% from hypothyroid rats. T3 in euthyroid rats produced no significant changes in NaK-ATPase or Mg-ATPase activity of cerebral homogenates. Liver plasma membrane fractions showed a 69% increase in NaK-ATPase and no significant changes in either Mg-ATPase or 5'-nucleotidase activities after T3 injection. These results indicate that thyroid hormones stimulate NaK-ATPase activity differentially. This effect may account, at least in part, for the calorigenic effects of these hormones.  相似文献   

12.
13.
 Oxygen and CO2 fluxes were measured in hydroponically grown mycorrhizal and non-mycorrhizal Triticum aestivum L. cv. Hano roots. The NO3 uptake of the plants was used to estimate the amount of root respiration attributable to ion uptake. Plants were grown at 4 mM N and 10 μM P, where a total and viable mycorrhizal root colonisation of 48% and 18%, respectively, by Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe (BEG 107) was observed. The O2 consumption and NO3 uptake rates were similar and the CO2 release was higher in mycorrhizal than in non-mycorrhizal wheat. This resulted in a significantly higher respiratory quotient (RQ, mol CO2 mol–1 O2) in mycorrhizal (1.27±0.13) than in non-mycorrhizal (0.79±0.05) wheat. As the biomass and N and P concentrations in mycorrhizal and non-mycorrhizal wheat were the same, the higher RQ resulted from the mycorrhizal colonisation and not differences in nutrition per se. Accepted: 26 March 1999  相似文献   

14.
Respiratory metabolism in mangrove seedlings   总被引:4,自引:0,他引:4       下载免费PDF全文
The respiratory gaseous exchanges of detached whole mangrove seedlings (Avicennia, Bruguiera, Rhizophora) in a range of O2 concentrations from 0 to 21% (air) were markedly reduced by the presence of external CO2. Aerobic respiration decreased steadily for 16 days but the RQ remained at unity.  相似文献   

15.
The benthic O2 consumption and CO2 production of sieved sediment cores containing a varied biomass of two polychaete species, Notomastus sp. (deep deposit-feeder) and Neanthes japonica (Izuka) (surface deposit-feeder), were measured simultaneously. Each species increased the benthic O2 consumption and CO2 production in proportion to its biomass. This increase was not explained by the respiration of the animals alone. The residual O2 and CO2 fluxes increased markedly in the presence of polychaetes. In the presence of Notomastus (the deeper burrowing species with low irrigation activity), the enhanced CO2 flux was much higher than that in the presence of Neanthes, whereas the enhanced O2 flux was lower in the presence of Notomastus.  相似文献   

16.
J J Spitzer 《Life sciences》1975,17(12):1855-1860
Hemodynamic and metabolic parameters were studied in conscious dogs during anaphylactic shock. Mean arterial blood pressure and cardiac output decreased and heart rate increased during shock. FFA flux and O2 consumption decreased significantly shortly after the challenging injection. RQ was elevated indicating a shift in metabolite utilization towards carbohydrates.  相似文献   

17.
In this investigation, normal and Fanconi's anemia fibroblasts were exposed to high concentrations of oxygen and the effects of this treatment on DNA were analyzed by alkaline elution. No DNA single-strand breaks were detected in either cell type with up to 20 h incubation in high (50–95%) concentrations of O2. No evidence of DNA damage by O2 could be detected with an endonuclease preparation from Micrococcus luteus. Cells which have been treated with various DNA-damaging agents in the presence of the polymerase inhibitor cytosine arabinoside have been shown to accumulate DNA single-strand breaks during DNA excision repair. When cells were treated with the polymerase inhibitor in 50 or 95% O2, a low level of DNA single-strand breaks accumulated in both cell types. However, no significant differences in the frequency of DNA single-strand breaks were detected between normal and Fanconi's anemia cells after exposure to high O2.  相似文献   

18.
Coral metabolism reflects the physiological condition of a coral colony. We studied coral metabolism using a continuous-flow, complete mixing (CFCM) experimental system. Small-size Goniastrea aspera coral colonies were incubated in the CFCM system with and without hydrogen peroxide (H2O2) added to the supplied seawater (0 µM H2O2 for 12 days; 0, 0.3, 3.0, and 30 µM H2O2 for 3 days, for each treatment) Without addition of H2O2, coral metabolism, including photosynthesis (gross primary productivity) and calcification, was relatively stable and there were no significant metabolic changes, suggesting that, without H2O2 added to the CFCM system, the corals did not suffer significant stress from the experimental system over a 12-day incubation period. When H2O2 was added, large decreases in photosynthesis and calcification were observed. The non-parametric Mann–Whitney U-test showed that there were statistically significant differences in photosynthesis after addition of 3.0 µM and 30 µM H2O2, compared with the control. We also found statistically significant differences in net calcification after addition of 30 µM H2O2. Thus, the incubation experiments suggest that higher H2O2 concentrations in seawater clearly influence coral metabolism. However, the results also suggest that the current seawater H2O2 level in Okinawa is not likely to pose significant acute effects on the metabolic activities of corals.  相似文献   

19.
20.
The gross primary productivity of two seagrasses, Zostera marina and Ruppia maritima, and one green macroalga, Ulva intestinalis, was assessed in laboratory and field experiments to determine whether the photorespiratory pathway operates at a substantial level in these macrophytes and to what extent it is enhanced by naturally occurring shifts in dissolved inorganic carbon (DIC) and O2 in dense vegetation. To achieve these conditions in laboratory experiments, seawater was incubated with U. intestinalis in light to obtain a range of higher pH and O2 levels and lower DIC levels. Gross photosynthetic O2 evolution was then measured in this pretreated seawater (pH, 7.8–9.8; high to low DIC:O2 ratio) at both natural and low O2 concentrations (adjusted by N2 bubbling). The presence of photorespiration was indicated by a lower gross O2 evolution rate under natural O2 conditions than when O2 was reduced. In all three macrophytes, gross photosynthetic rates were negatively affected by higher pH and lower DIC. However, while both seagrasses exhibited significant photorespiratory activity at increasing pH values, the macroalga U. intestinalis exhibited no such activity. Rates of seagrass photosynthesis were then assessed in seawater collected from the natural habitats (i.e., shallow bays characterized by high macrophyte cover and by low DIC and high pH during daytime) and compared with open baymouth water conditions (where seawater DIC is in equilibrium with air, normal DIC, and pH). The gross photosynthetic rates of both seagrasses were significantly higher when incubated in the baymouth water, indicating that these grasses can be significantly carbon limited in shallow bays. Photorespiration was also detected in both seagrasses under shallow bay water conditions. Our findings indicate that natural carbon limitations caused by high community photosynthesis can enhance photorespiration and cause a significant decline in seagrass primary production in shallow waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号