首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
DNA条形码技术是利用基因组中一段短的标准序列进行物种的鉴定并探索其亲缘进化关系。本研究对采自海南不同地区降香黄檀五个居群24份样品的psbA-trnH,rbcL,核ITS及ITS2序列进行PCR扩增和测序,比较各序列扩增和测序效率。种间和种内变异,采用BLAST1和邻接 (NJ) 法构建系统聚类树方法评价不同序列的鉴定能力。结果表明ITS2在所研究的材料中具有最高的扩增和测序效率,而ITS扩增效率较低。ITS2完整序列在区分黄檀属不同种间差异具有较大优势。因此可利用ITS2从分子水平区分降香黄檀与其他混伪种。  相似文献   

2.
根据形态特征难以准确地辨别金合欢属植物,DNA条形码技术提供了一种准确地鉴定物种的方法。本文利用条形码技术对中国金合欢属物种的序列(psbA trnH、matK、rbcL和ITS)及其不同组合进行比较,通过计算种内和种间变异进行barcoding gap分析,运用Wilcoxon秩和检验比较不同序列的变异性,构建系统树。结果表明:4个片段均存在barcoding gap,ITS序列种间变异率较psbA trnH、rbcL和matK序列有明显优势,单片段ITS正确鉴定率最高,ITS+rbcL片段联合条码的正确鉴定率最高,因此我们认为ITS片段或条形码组合ITS+rbcL是金合欢属的快速鉴别最理想的条码。  相似文献   

3.
锦葵科植物DNA条形码通用序列的筛选   总被引:1,自引:0,他引:1  
王柯  陈科力  刘震  陈士林 《植物学报》2011,46(3):276-284
对锦葵科植物样品的ITS、ITS2、rbcL、matK和psbA-trnH序列进行PCR扩增和测序, 比较各序列的扩增效率、测序成功率、种内和种间变异的差异以及barcoding gap图, 使用BLAST1和Nearest Distance方法评价不同序列的鉴定能力, 进而从这些候选序列中筛选出较适合锦葵科植物鉴别的DNA条形码序列。结果表明, ITS序列在采集的锦葵科植物11个种26个样品中的扩增成功率较高, 其种内、种间变异差异和barcoding gap较ITS2、psbA-trnH及rbcL序列具有更明显的优势, 且纳入60个属316个种共1 228个样品的网上数据后, 其鉴定成功率可达89.9%。psbA-trnH序列的扩增和测序成功率最高, 其鉴定成功率为63.2%, 并能鉴别一些ITS序列无法鉴别的种。实验结果表明, ITS和psbA-trnH是较适合鉴别锦葵科植物的DNA条形码序列组合。  相似文献   

4.
对锦葵科植物样品的ITS、ITS2、rbcL、matK和psbA-trnH序列进行PCR扩增和测序,比较各序列的扩增效率、测序成功率、种内和种间变异的差异以及barcoding gap图,使用BLAST1和Nearest Distance方法评价不同序列的鉴定能力,进而从这些候选序列中筛选出较适合锦葵科植物鉴别的DNA条形码序列。结果表明,ITS序列在采集的锦葵科植物11个种26个样品中的扩增成功率较高,其种内、种间变异差异和barcoding gap较ITS2、psbA-trnH及rbcL序列具有更明显的优势,且纳入60个属316个种共1228个样品的网上数据后,其鉴定成功率可达89.9%。psbA-trnH序列的扩增和测序成功率最高,其鉴定成功率为63.2%,并能鉴别一些ITS序列无法鉴别的种。实验结果表明,ITS和psbA-trnH是较适合鉴别锦葵科植物的DNA条形码序列组合。  相似文献   

5.
悬钩子属DNA条形码通用序列的初步筛选   总被引:1,自引:0,他引:1  
为了建立悬钩子属(Rubus)植物的DNA条形码分子鉴定技术,筛选获得适用于悬钩子属植物的通用条形码序列。该研究基于GenBank数据对ITS、ITS2、matK、rbcL、trnH-psbA、trnL-trnF 6个DNA条形码序列进行了遗传变异、barcoding gap、建树等评估分析。结果显示,trnH-psbA、matK、rbcL、rtnL-trnF的种内变异与种间变异差异较大,变异分辨率分别为97.32%、83.33%、79.07%、64.95%,存在较大的barcoding gap;NJ一致树分析显示,matK的单系性比例最高(67%),其次为trnH-psbA(64%),rtnL-trnF(43%),rbcL(30%)。结果表明,悬钩子属植物的matKtrnH-psbA序列种内变异与种间变异差异较大,能较好地区分不同物种,具有较大的鉴定潜力。建议将matKtrnH-psbA作为悬钩子属植物鉴定的核心条形码序列,rtnL-trnF、rbcL作为辅助条形码序列。  相似文献   

6.
为寻找适用于中药材莪术基原植物鉴定的DNA条形码序列,探索快速高效的莪术基原植物鉴定的新方法,该文首先利用扩增成功率和测序成功率对中药材莪术三种基原植物,9个样本的7种DNA条形码序列(ITS、ITS2、matK、psbA-trnH、trnL-trnF、rpoB和atpB-rbcL)进行评估,然后利用MEGA6.0软件对获得的高质量的序列通过变异位点分析、遗传距离计算和系统树分析等进一步进行评估,最后将筛选到的DNA条形码序列对未知基原的待测样品进行基原鉴定。结果表明:(1) ITS、ITS2和matK等条形码序列在莪术基原植物中的扩增或测序成功率较低,难以应用于实际鉴定;而psbA-trnH、trnL-trnF和rpoB条形码序列变异位点信息过少,不足于区分莪术的三种不同基原植物;只有atpB-rbcL条形码序列的扩增和测序成功率较高,容易获得高质量的序列,同时序列长度(642~645 bp)理想,变异位点多(11个),可实现莪术的三种不同基原的区分鉴别。(2)待测样品经基于atpB-rbcL序列构建的系统发育树鉴别为温郁金。综上所述,叶绿体atpB-rbcL序列能够准确鉴定莪术不同基原植物,可以作为中药材莪术基原植物鉴定的条形码序列。  相似文献   

7.
[目的]评价ITS2与psbA-trnH条形码候选序列对含有小檗碱的药用植物的鉴定作用。[方法]对含有小檗碱与不含有小檗碱的药用植物的ITS2与psbA-trnH序列进行PCR扩增和测序,进行种内和种间变异分析,构建NJ进化树评价不同序列的鉴定能力。[结果]ITS2与psbA-trnH序列均能够成功地区分含有小檗碱与不含有小檗碱的药用植物。然而,ITS2在区分含有小檗碱的不同科药用植物的效率优于psbA-trnH序列。[结论]建立了以ITS2序列为主,psbA-trnH序列为辅的鉴定含有小檗碱的药用植物的方法,这为含有小檗碱的药用植物种质资源的整理与标准化,甚至育种都提供了有效的基础数据。  相似文献   

8.
秋海棠属植物种类繁多,形态变异多样,导致种类的系统放置混乱,近缘种类鉴定困难。利用DNA条形码实现物种快速准确的鉴定技术具有不受形态特征约束的优势,为秋海棠属植物的分类鉴定提供了新的方法。本研究选择4个DNA条形码候选片段(rbcL,matK,trnH-psbA,ITS)对中国秋海棠属26种136个个体进行了分析。结果显示:叶绿体基因rbcL,matK和trnH-psbA种内和种间变异小,对秋海棠属植物的鉴别能力有限:ITS/ITS2种内和种间变异大,在本研究中物种正确鉴定率达到100%/96%,可考虑作为秋海棠属DNA条形码鉴定的候选片段。研究结果支持中国植物条形码研究组建议将核基因ITS/ITS2纳人种子植物DNA条形码核心片段中的观点。  相似文献   

9.
DNA条形码是一项利用短的、标准的DNA片段对物种进行快速、有效识别和鉴定的新技术。菊科橐吾属约140种,是典型的高山植物,种间杂交频繁,形态变异复杂,从形态学方面鉴定近缘种较为困难。本研究选取4个DNA核心条形码片段(ITS,matK,psb A-trnH和rbcL),对橐吾属35种144个个体进行条形码研究。研究结果显示叶绿体基因matK,psbA-trnH和rbcL在种内和种间变异都很小,对橐吾属的物种鉴定率极低;ITS在种间变异率相对较大,物种鉴定率为60%。而各片段联合后的物种鉴定率并未提高。  相似文献   

10.
利用DNA条形码技术对半夏属及其伪品进行分子鉴定, 研究半夏属药用植物鉴定的新方法。该实验使用matK序列对半夏(Pinellia ternata)及其伪品进行扩增测序, 结合GenBank数据库数据, 分析ITS、ITS2、psbA-trnH、rbcL和matK各序列的种内与种间变异及barcoding gap, 并采用最近距离法(nearest distance)和相似性搜索算法(BLAST1)评价不同序列的鉴定能力。结果显示, matK序列的种间变异最大, rbcL序列的种内变异最小; rbcL序列的种内和种间遗传变异重叠比例最小, 其次为matK序列; 各序列的Neighbor Joining树均可明显地将不同种分开。实验结果表明, 利用DNA条形码能够准确地鉴别半夏属药用植物及其伪品, matK和rbcL序列为鉴别半夏属及其伪品的较理想条形码组合。该研究为半夏属植物的分子鉴别提供了科学依据与新的思路。  相似文献   

11.
DNA barcoding, an increasingly popular mean of species identification, has been widely used for global species identification despite a consensus not being reached regarding which DNA sequences can be used as the best plant barcodes. In this study, we tested the feasibility of five candidate DNA barcodes (nrITS, nrITS2, matk, rbcL and trnH-psbA) for identifying Uncaria species. We collected a total of 54 specimens of 10 Uncaria species across its distributional range. BLAST, barcoding gaps, tree-based methods and TAXONDNA analysis were used to investigate the molecular identification capability of the candidate DNA barcodes. The results showed that the ITS2 is most suitable as a candidate DNA barcode for identification of medicinal plants of the genus Uncaria.  相似文献   

12.
DNA barcoding is a biological technique that uses short and standardized genes or DNA regions to facilitate species identification. DNA barcoding has been used successfully in several animal and plant groups. Ligustrum (Oleaceae) species occur widely throughout the world and are used as medicinal plants in China. Therefore, the accurate identification of species in this genus is necessary. Four potential DNA barcodes, namely the nuclear ribosomal internal transcribed spacer (ITS) and three chloroplast (cp) DNA regions (rbcL, matK, and trnH–psbA), were used to differentiate species within Ligustrum. BLAST, character-based method, tree-based methods and TAXONDNA analysis were used to investigate the molecular identification capabilities of the chosen markers for discriminating 92 samples representing 20 species of this genus. The results showed that the ITS sequences have the most variable information, followed by trnH–psbA, matK, and rbcL. All sequences of the four regions correctly identified the species at the genus level using BLAST alignment. At the species level, the discriminating power of rbcL, matK, trnH–psbA, and ITS based on neighbor-joining (NJ) trees was 36.8%, 38.9%, 77.8%, and 80%, respectively. Using character-based and maximum parsimony (MP) tree methods together, the discriminating ability of trnH–psbA increased to 88.9%. All species could be differentiated using ITS when combining the NJ tree method with character-based or MP tree methods. Overall, the results indicate that DNA barcoding is an effective molecular identification method for Ligustrum species. We propose the nuclear ribosomal ITS as a plant barcode for plant identification and trnH–psbA as a candidate barcode sequence.  相似文献   

13.
DNA barcoding is a biological technique that uses short and standardized genes or DNA regions to facilitate species identification. DNA barcoding has been used successfully in several animal and plant groups. Ligustrum (Oleaceae) species occur widely throughout the world and are used as medicinal plants in China. Therefore, the accurate identification of species in this genus is necessary. Four potential DNA barcodes, namely the nuclear ribosomal internal transcribed spacer (ITS) and three chloroplast (cp) DNA regions (rbcL, marK, and trnH-psbA),were used to differentiate species within Ligustrum. BLAST, character-based method, tree-based methods and TAXONDNA analysis were used to investigate the molecular identification capabilities of the chosen markers for discriminating 92 samples representing 20 species of this genus. The results showed that the ITS sequences have the most variable information, followed by trnH-psbA, matK, and rbcL. All sequences of the four regions correctly identified the species at the genus level using BLAST alignment. At the species level, the discriminating power of rbcL, matK, trnH-psbA and ITS based on neighbor-joining (NJ) trees was 36.8%, 38.9%, 77.8%, and 80%,respectively. Using character-based and maximum parsimony (MP) tree methods together, the discriminating ability of trnH-psbA increased to 88.9%. All species could be differentiated using ITS when combining the NJ tree method with character-based or MP tree methods. Overall, the results indicate that DNA barcoding is an effective molecular identification method for Ligustrum species. We propose the nuclear ribosomal ITS as a plant barcode for plant identification and trnH-psbA as a candidate barcode sequence.  相似文献   

14.
DNA barcoding is a method of identifying species by analyzing one or a few short standardized DNA sequences. There are particular challenges in barcoding plants, especially for distinguishing closely related species. Hence, there is an urgent need to evaluate the performance of candidate loci for distinguishing between species, especially closely related species, to complement the rbcL + matK combination suggested as the core barcode for land plants. We sampled 48 individuals representing 12 species in Primula sect. Proliferae Pax in China to evaluate the performance of eight leading candidate barcode loci (matK, rbcL, rpoB, rpoC1, trnH-psbA, psbK-psbI, atpF-atpH, and internal transcribed spacer (ITS)). The core combination rbcL+matK gave only 50% species resolution in sect. Proliferae. In terms of intraspecies and interspecies divergence, degree of monophyly, and sequence similarity, ITS, trnH-psbA, and psbK-psbI showed good performance as single-locus barcodes. Internal transcribed spacer displayed the highest genetic divergence and best discriminatory power, both alone and in combination with rbcL+matK (83.3% species resolution). We recommend evaluating the use of ITS for barcoding in other species. Low or single copy nuclear regions would provide more sophisticated barcoding tools in the long term, even though further research is required to find suitable loci.  相似文献   

15.
Medicinal plants cover a broad range of taxa, which may be phylogenetically less related but morphologically very similar. Such morphological similarity between species may lead to misidentification and inappropriate use. Also the substitution of a medicinal plant by a cheaper alternative (e.g. other non-medicinal plant species), either due to misidentification, or deliberately to cheat consumers, is an issue of growing concern. In this study, we used DNA barcoding to identify commonly used medicinal plants in South Africa. Using the core plant barcodes, matK and rbcLa, obtained from processed and poorly conserved materials sold at the muthi traditional medicine market, we tested efficacy of the barcodes in species discrimination. Based on genetic divergence, PCR amplification efficiency and BLAST algorithm, we revealed varied discriminatory potentials for the DNA barcodes. In general, the barcodes exhibited high discriminatory power, indicating their effectiveness in verifying the identity of the most common plant species traded in South African medicinal markets. BLAST algorithm successfully matched 61% of the queries against a reference database, suggesting that most of the information supplied by sellers at traditional medicinal markets in South Africa is correct. Our findings reinforce the utility of DNA barcoding technique in limiting false identification that can harm public health.  相似文献   

16.
DNA barcoding is a method of identifying species by analyzing one or a few short standardized DNA sequences. There are particular challenges in barcoding plants, especially for distinguishing closely related species. Hence, there is an urgent need to evaluate the performance of candidate loci for distinguishing between species, especially closely related species, to complement the rbcL + matK combination suggested as the core barcode for land plants. We sampled 48 individuals representing 12 species in Primula sect. Proliferae Pax in China to evaluate the performance of eight leading candidate barcode loci (matK, rbcL, rpoB, rpoCl, trnH-psbA, psbK-psbI, atpFatpH, and internal transcribed spacer (ITS)). The core combination rbcL + matK gave only 50% species resolution in sect. Proliferae. In terms of intraspecies and interspecies divergence, degree of monophyly, and sequence similarity, ITS, trnH-psbA, and psbK-psbI showed good performance as single-locus barcodes. Internal transcribed spacer displayed the highest genetic divergence and best discriminatory power, both alone and in combination with rbcL +matK (83.3% species resolution). We recommend evaluating the use of ITS for barcoding in other species. Low or single copy nuclear regions would provide more sophisticated barcoding tools in the long term, even though further research is required to find suitable loci.  相似文献   

17.
The genus Corydalis is recognized as one of the most taxonomically challenging plant taxa. It is mainly distributed in the Himalaya–Hengduan Mountains, a global biodiversity hotspot. To date, no effective solution for species discrimination and taxonomic assignment in Corydalis has been developed. In this study, five nuclear and chloroplast DNA regions, ITS, ITS2, matK, rbcL, and psbA‐trnH, were preliminarily assessed based on their ability to discriminate Corydalis to eliminate inefficient regions, and the three regions showing good performance (ITS, ITS2 and matK) were then evaluated in 131 samples representing 28 species of 11 sections of four subgenera in Corydalis using three analytical methods (NJ, ML, MP tree; K2P‐distance and BLAST). The results showed that the various approaches exhibit different species identification power and that BLAST shows the best performance among the tested approaches. A comparison of different barcodes indicated that among the single barcodes, ITS (65.2%) exhibited the highest identification success rate and that the combination of ITS + matK (69.6%) provided the highest species resolution among all single barcodes and their combinations. Three Pharmacopoeia‐recorded medicinal plants and their materia medica were identified successfully based on the ITS and ITS2 regions. In the phylogenetic analysis, the sections Thalictrifoliae, Sophorocapnos, Racemosae, Aulacostigma, and Corydalis formed well‐supported separate lineages. We thus hypothesize that the five sections should be classified as an independent subgenus and that the genus should be divided into three subgenera. In this study, DNA barcoding provided relatively high species discrimination power, indicating that it can be used for species discrimination in this taxonomically complicated genus and as a potential tool for the authentication of materia medica belonging to Corydalis.  相似文献   

18.
One application ofDNA barcoding is species identification based on sequences of a short and standardized DNA region.In plants,various DNA regions,alone or in combination,have been proposed and investigated,but consensus on a universal plant barcode remains elusive.In this study,we tested the utility of four candidate barcoding regions (rbcL,matK,trnH-psbA,and internal transcribed spacer (ITS)) as DNA barcodes for discriminating species in a large and hemiparasitic genus Pedicularis (Orobanchaceae).Amplification and sequencing was successful using single primer pairs for rbcL,trnH-psbA,and ITS,whereas two primer pairs were required for matK.Patterns of sequence divergence commonly showed a “barcoding gap”,that is,a bimodal frequency distribution of pairwise distances representing genetic diversity within and between species,respectively Considering primer universality,ease of amplification and sequencing,and performance in discriminating species,we found the most effective single-region barcode for Pedicularis to be ITS,and the most effective two-region barcode to be rbcL +ITS.Both discriminated at least 78% of the 88 species and correctly identified at least 89% of the sequences in our sample,and were effective in placing unidentified samples in known species groups.Our results suggest that DNA barcoding has the potential to aid taxonomic research in Pedicularis,a species-rich cosmopolitan clade much in need of revision,as well as ecological studies in its center of diversity,the Hengduan Mountains region of China.  相似文献   

19.

Background

The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL + matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over.

Methodology/Principal Findings

Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level.

Conclusions

The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号