首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N E Reist  M J Werle  U J McMahan 《Neuron》1992,8(5):865-868
To test the hypothesis that agrin mediates motor neuron-induced aggregation of acetylcholine receptors (AChRs) in skeletal muscle fibers and to determine whether the agrin active in this process is released by motor neurons, we raised polyclonal antibodies to purified ray agrin that blocked its receptor aggregating activity. When the antibodies were applied to chick motor neuron--chick myotube cocultures, they inhibited the formation of AChR aggregates at and near neuromuscular contacts, demonstrating that agrin plays a role in the induction of the aggregates. Rat motor neurons, like chick motor neurons, induce AChR aggregates on chick myotubes. This effect was not inhibited by our antibodies, indicating that, although the antibodies inhibited the activity of chick agrin, they did not have a similar effect on rat agrin. We conclude that agrin released by rat motor neurons induced the chick myotubes to aggregate AChRs.  相似文献   

2.
Agrin is a heparan sulfate proteoglycan that is required for the formation and maintenance of neuromuscular junctions. During development, agrin is secreted from motor neurons to trigger the local aggregation of acetylcholine receptors (AChRs) and other proteins in the muscle fiber, which together compose the postsynaptic apparatus. After release from the motor neuron, agrin binds to the developing muscle basal lamina and remains associated with the synaptic portion throughout adulthood. We have recently shown that full-length chick agrin binds to a basement membrane-like preparation called Matrigel™. The first 130 amino acids from the NH2 terminus are necessary for the binding, and they are the reason why, on cultured chick myotubes, AChR clusters induced by full-length agrin are small. In the current report we show that an NH2-terminal fragment of agrin containing these 130 amino acids is sufficient to bind to Matrigel™ and that the binding to this preparation is mediated by laminin-1. The fragment also binds to laminin-2 and -4, the predominant laminin isoforms of the muscle fiber basal lamina. On cultured myotubes, it colocalizes with laminin and is enriched in AChR aggregates. In addition, we show that the effect of full-length agrin on the size of AChR clusters is reversed in the presence of the NH2-terminal agrin fragment. These data strongly suggest that binding of agrin to laminin provides the basis of its localization to synaptic basal lamina and other basement membranes.  相似文献   

3.
B G Wallace  Z Qu  R L Huganir 《Neuron》1991,6(6):869-878
Agrin causes acetylcholine receptors (AChRs) on chick myotubes in culture to aggregate, forming specializations that resemble the postsynaptic apparatus at the vertebrate skeletal neuromuscular junction. Here we report that treating chick myotubes with agrin caused an increase in phosphorylation of the AChR beta, gamma, and delta subunits. H-7, a potent inhibitor of several protein serine kinases, blocked agrin-induced phosphorylation of the gamma and delta subunits, but did not prevent either agrin-induced AChR aggregation or phosphorylation of the beta subunit. Experiments with anti-phosphotyrosine antibodies demonstrated that agrin caused an increase in tyrosine phosphorylation of the beta subunit that began within 30 min of adding agrin to the myotube cultures, reached a plateau by 3 hr, and was blocked by treatments known to block agrin-induced AChR aggregation. Anti-phosphotyrosine antibodies labeled agrin-induced specializations as they do the postsynaptic apparatus. These results suggest that agrin-induced tyrosine phosphorylation of the beta subunit may play a role in regulating AChR distribution.  相似文献   

4.
cDNA that encodes active agrin.   总被引:30,自引:0,他引:30  
  相似文献   

5.
During neuromuscular junction formation, agrin secreted from motor neurons causes muscle cell surface acetylcholine receptors (AChRs) to cluster at synaptic sites by mechanisms that are insufficiently understood. The Rho family of small guanosine triphosphatases (GTPases), including Rac and Cdc42, can mediate focal reorganization of the cell periphery in response to extracellular signals. Here, we investigated the role of Rac and Cdc42 in coupling agrin signaling to AChR clustering. We found that agrin causes marked muscle-specific activation of Rac and Cdc42 in differentiated myotubes, as detected by biochemical measurements. Moreover, this activation is crucial for AChR clustering, since the expression of dominant interfering mutants of either Rac or Cdc42 in myotubes blocks agrin-induced AChR clustering. In contrast, constitutively active Rac and Cdc42 mutants cause AChR to aggregate in the absence of agrin. By indicating that agrin-dependent activation of Rac and Cdc42 constitutes a critical step in the signaling pathway leading to AChR clustering, these findings suggest a novel role for these Rho-GTPases: the coupling of neuronal signaling to a key step in neuromuscular synaptogenesis.  相似文献   

6.
《The Journal of cell biology》1995,130(6):1423-1434
ARIA is a member of a family of polypeptide growth and differentiation factors that also includes glial growth factor (GGF), neu differentiation factor, and heregulin. ARIA mRNA is expressed in all cholinergic neurons of the central nervous systems of rats and chicks, including spinal cord motor neurons. In vitro, ARIA elevates the rate of acetylcholine receptor incorporation into the plasma membrane of primary cultures of chick myotubes. To study whether ARIA may regulate the synthesis of junctional synaptic acetylcholine receptors in chick embryos, we have developed riboprobes and polyclonal antibody reagents that recognize isoforms of ARIA that include an amino-terminal immunoglobulin C2 domain and examined the expression and distribution of ARIA in motor neurons and at the neuromuscular junction. We detected significant ARIA mRNA expression in motor neurons as early as embryonic day 5, around the time that motor axons are making initial synaptic contacts with their target muscle cells. In older embryos and postnatal animals, we found ARIA protein concentrated in the synaptic cleft at neuromuscular junctions, consistent with transport down motor axons and release at nerve terminals. At high resolution using immunoelectron microscopy, we detected ARIA immunoreactivity exclusively in the synaptic basal lamina in a pattern consistent with binding to synapse specific components on the presynaptic side of the basal lamina. These results support a role for ARIA as a trophic factor released by motor neuron terminals that may regulate the formation of mature neuromuscular synapses.  相似文献   

7.
《The Journal of cell biology》1995,128(6):1121-1129
Agrin induces the accumulation of nicotinic acetylcholine receptors (AChRs) in the myofiber membrane at synaptic sites in vertebrate skeletal muscle and causes an increase in tyrosine phosphorylation of the AChR beta subunit. To examine further the mechanism of agrin- induced AChR phosphorylation and the relationship between changes in protein phosphorylation and AChR aggregation, the effect of the protein tyrosine phosphatase inhibitor sodium pervanadate was tested on chick myotubes in culture. Pervanadate caused an increase in the phosphotyrosine content of a variety of proteins, including the AChR. Pervanadate also prevented agrin-induced AChR aggregation and slowed the rate at which AChRs were extracted from intact myotubes by mild detergent treatment. The rate at which phosphorylation of the AChR beta subunit and receptor detergent extractability changed following pervanadate-induced phosphatase inhibition was increased by agrin, indicating that agrin activates a protein tyrosine kinase rather than inhibiting a protein tyrosine phosphatase. The present results, taken together with previous findings on the inhibition of agrin-induced AChR aggregation by protein kinase inhibitors, demonstrate that protein tyrosine phosphorylation regulates the formation and stability of AChR aggregates, apparently by strengthening the interaction between AChRs and the cytoskelton.  相似文献   

8.
Acetylcholine receptors (AChRs) accumulate at the junctional region during early development. In an attempt to characterize this process of AChR accumulation, we combined embryonic Xenopus neurons with myotubes formed from a rat skeletal muscle cell line. Xenopus neurons in culture are known to induce AChR accumulation in Xenopus muscles [Anderson, M. J., Cohen, M. W., and Zorychta, E. (1977). J. (London), 268, 731–756]. Rat myotubes, however, do not exhibit AChR accumulation in culture even when they are functionally innervated by the fetal rat spinal cord explant [Kidokoro, Y. (1980) Develop. Biol., 78, 231–241]. Establishment of synaptic transmission was examined electrophysiologically by recording synaptic potentials, while the distribution of AChR clusters was visualized using fluorescent α-bungarotoxin. Our results indicate that embryonic Xenopus neurons formed functional synaptic contacts but did not cause AChR accumulation in L6-myotubes. It seems that the ability of a nerve to cause AChR accumulation is separate from that to form the functional synapse. We also found that the mean amplitude of synaptic potentials in L6-myotubes interacted with Xenopus neurons was about half of that in L6-myotubes innervated by fetal rat spinal cord explants. Possible explanations for this finding are discussed.  相似文献   

9.
Agrin is a synapse-organizing protein that is concentrated in embryonic motor neurons and the synaptic basal lamina of the neuromuscular junction. Agrin or closely related proteins are also associated with most other basal laminae. Here I report that the major agrin-like proteins from the nervous system and other tissues of the chicken are immunochemically and biochemically similar. Four major agrin-like proteins of approximately 60, 72, 80, and 90 kDa were identified on immunoblots of agrin preparations from both neural and non-neural tissues. Agrin-like proteins from embryonic chicken brain and adult kidney were similar in amino acid composition. Rabbit antisera against each of the kidney proteins labeled basement membranes of several tissues, as well as spinal cord motor neurons. These antibodies specifically precipitated and inhibited acetylcholine receptor (AChR)-aggregating activity from the chicken nervous system and Torpedo electric organ. Thus, the agrin-like proteins of non-neural tissues in the chicken are closely related to agrin from the nervous system. However, the AChR-aggregating activity of chicken agrin preparations differed depending on the tissue of origin. Agrin enriched by immunoaffinity chromatography from the central nervous system induced large numbers of AChR aggregates on cultured myotubes. In contrast, agrin preparations from other chicken tissues induced dramatically fewer and smaller AChR aggregates. The difference in biological activity between these agrin preparations may reflect differential inactivation or the existence of tissue- or cell-specific isoforms of agrin.  相似文献   

10.
Agrin is a basal lamina protein that induces aggregation of acetylcholine receptors (AChRs) and other molecules at the developing neuromuscular junction. Alternative splicing of chick agrin mRNA at two sites, A and B, gives rise to eight possible isoforms of which five are expressed in vivo. Motor neurons express high levels of isoforms with inserts at sites A and B, muscle cells synthesize isoforms that lack amino acids at the B-site. To obtain further insights into the mechanism of agrin-induced AChR aggregation, we have determined the EC50 (effective concentration to induce half-maximal AChR clustering) of each agrin isoform and of truncation mutants. On chick myotubes, EC50 of the COOH-terminal, 95-kD fragment of agrinA4B8 was approximately 35 pM, of agrinA4B19 approximately 110 pM and of agrinA4B11 approximately 5 nM. While some AChR clusters were observed with 64 nM of agrinA4B0, no activity was detected for agrinA0B0. Recombinant full-length chick agrin and a 100-kD fragment of ray agrin showed similar EC50 values. A 45-kD, COOH-terminal fragment of agrinA4B8 retained high activity (EC50 approximately equal to 130 pM) and a 21-kD fragment was still active, but required higher concentrations (EC50 approximately equal to 13 nM). Unlike the 45-kD fragment, the 21-kD fragment neither bound to heparin nor did heparin inhibit its capability to induce AChR aggregation. These data show quantitatively that agrinA4B8 and agrinA4B19, expressed in motor neurons, are most active, while no activity is detected in agrinA0B0, the dominant isoform synthesized by muscle cells. Furthermore, our results show that a fragment comprising site B8 and the most COOH- terminal G-like domain is sufficient for this activity, and that agrin domains required for binding to heparin and those for AChR aggregation are distinct from each other.  相似文献   

11.
During the development of the neuromuscular junction, motor axons induce the clustering of acetylcholine receptors (AChRs) and increase their metabolic stability in the muscle membrane. Here, we asked whether the synaptic organizer agrin might regulate the metabolic stability and density of AChRs by promoting the recycling of internalized AChRs, which would otherwise be destined for degradation, into synaptic sites. We show that at nerve-free AChR clusters induced by agrin in extrasynaptic membrane, internalized AChRs are driven back into the ectopic synaptic clusters where they intermingle with pre-existing and new receptors. The extent of AChR recycling depended on the strength of the agrin stimulus, but not on the development of junctional folds, another hallmark of mature postsynaptic membranes. In chronically denervated muscles, in which both AChR stability and recycling are significantly decreased by muscle inactivity, agrin maintained the amount of recycled AChRs at agrin-induced clusters at a level similar to that at denervated original endplates. In contrast, AChRs did not recycle at agrin-induced clusters in C2C12 or primary myotubes. Thus, in muscles in vivo, but not in cultured myotubes, neural agrin promotes the recycling of AChRs and thereby increases their metabolic stability.  相似文献   

12.
Agrin, a protein extracted from the electric organ of Torpedo californica, induces the formation of specializations on cultured chick myotubes that resemble the postsynaptic apparatus at the neuromuscular junction. The aim of the studies reported here was to characterize the effects of agrin on the distribution of acetylcholine receptors (AChRs) and cholinesterase as a step toward determining agrin's mechanism of action. When agrin was added to the medium bathing chick myotubes small (less than 4 micron 2) aggregates of AChRs began to appear within 2 h and increased rapidly in number until 4 h. Over the next 12-20 h the number of aggregates per myotube decreased as the mean size of each aggregate increased to approximately 15 micron 2. The accumulation of AChRs into agrin-induced aggregates occurred primarily by lateral migration of AChRs already in the myotube plasma membrane at the time agrin was added to the cultures. Aggregates of AChRs and cholinesterase remained as long as agrin was present in the medium; if agrin was removed the number of aggregates declined slowly. The formation and maintenance of agrin-induced AChR aggregates required Ca++, Co++ and Mn++ inhibited agrin-induced AChR aggregation and increased the rate of aggregate dispersal. Mg++ and Sr++ could not substitute for Ca++. Agrin-induced receptor aggregation also was inhibited by phorbol 12-myristate 13-acetate, an activator of protein kinase C, and by inhibitors of energy metabolism. The similarities between agrin's effects on cultured myotubes and events that occur during formation of neuromuscular junctions support the hypothesis that axon terminals release molecules similar to agrin that induce the differentiation of the postsynaptic apparatus.  相似文献   

13.
Agrin is a proteoglycan secreted by the motor neuron's growing axon terminal upon contact with the muscle during embryonic development. It was long thought that agrin's role was to trigger the clustering of acetylcholine receptors (AChRs) to nascent synapse sites. However, agrin-predating, protosynaptic AChR clusters are present well before innervation in the embryo and in myotube cultures, yet no role has been conclusively ascribed to agrin. We used a microfluidic device to focally deliver agrin to protosynaptic AChR clusters in micropatterned myotube cultures. The distribution of AChRs labeled with fluorescent bungarotoxin was imaged at various time points over >24 h. We find that a 4-h focal application of agrin (100 nM) preferentially reduces AChR loss at agrin-exposed clusters by 17% relative to the agrin-deprived clusters on the same myotube. In addition, the focal application increases the addition of AChRs preferentially at the clusters by 10% relative to the agrin-exposed, noncluster areas. Taken together, these findings suggest that a focal agrin stimulus can play a key stabilizing role in the aggregation of AChRs at the early stages of synapse formation. This methodology is generally applicable to various developmental processes and cell types, including neurons and stem cells.  相似文献   

14.
Although recent studies have extended our understanding of agrin's function during development, its function in the central nervous system (CNS) is not clearly understood. To address this question, zebrafish agrin was identified and characterized. Zebrafish agrin is expressed in the developing CNS and in nonneural structures such as somites and notochord. In agrin morphant embryos, acetylcholine receptor (AChR) cluster number and size on muscle fibers at the choice point were unaffected, whereas AChR clusters on muscle fibers in the dorsal and ventral regions of the myotome were reduced or absent. Defects in the axon outgrowth by primary motor neurons, subpopulations of branchiomotor neurons, and Rohon-Beard sensory neurons were also observed, which included truncation of axons and increased branching of motor axons. Moreover, agrin morphants exhibit significantly inhibited tail development in a dose-dependent manner, as well as defects in the formation of the midbrain-hindbrain boundary and reduced size of eyes and otic vesicles. Together these results show that agrin plays an important role in both peripheral and CNS development and also modulates posterior development in zebrafish.  相似文献   

15.
Agrin induces the formation of specializations on chick myotubes in culture at which several components of the postsynaptic apparatus accumulate, including acetylcholine receptors (AChRs). Agrin also induces AChR phosphorylation. Several lines of evidence suggest that agrin-induced phosphorylation of tyrosine residues in the beta subunit of the AChR is an early step in receptor aggregation: agrin-induced phosphorylation and aggregation have the same dose dependence; treatments that prevent aggregation block phosphorylation; phosphorylation begins before any detectable change in receptor distribution, reaches a maximum hours before aggregation is complete, and declines slowly together with the disappearance of aggregates after agrin is withdrawn; agrin slows the rate at which receptors are solubilized from intact myotubes by detergent extraction; and the change in receptor extractability parallels the change in phosphorylation. A model for agrin-induced AChR aggregation is presented in which phosphorylation of AChRs by an agrin-activated protein tyrosine kinase causes receptors to become attached to the cytoskeleton, which reduces their mobility and detergent extractability, and leads to the accumulation of receptors in the vicinity of the activated kinase, forming an aggregate.  相似文献   

16.
Muscular dysgenesis (mdg) in the mouse is an autosomal recessive mutation expressed in the homozygous mutant as lack of skeletal muscle contraction. To test the ability of normal neurons to form neuromuscular contacts with, and/or possibly induce contractions in mdgmdg muscle, dispersed cell cultures of normal and dysgenic muscle from newborn mice were cocultured with normal embryonic rat, mouse, and chick dissociated spinal cord cells. Contraction was induced in mdgmdg muscle 1 to 10 days (depending upon the species of the neuronal source) following establishment of the cocultures. Control experiments indicated that the dispersed spinal cord preparations were free of myoblasts capable of fusing with mdgmdg muscle. The establishment of neuromuscular contacts in the rat neuron cocultures was monitored by cytochemical staining of acetylcholinesterase (AChE), autoradiography of 125I-α-bungarotoxin-bound acetylcholine receptors (AChR), and electrophysiological study of muscle membrane activity. Patches of high AChE activity were similar in size and distribution to high-density clusters of AChR on both control and mdgmdg myotubes cocultured with rat neurons. The resting membrane potentials of normal myotubes and those of mdgmdg myotubes in the presence of neurons were similar (? ?52 mV). The mepp frequency and the mepp amplitude distribution were the same for both control and mutant cocultured muscle. Thus, normal rat spinal cord neurons were capable of forming normal, functional neuromuscular junctions with mdgmdg myotubes, and contractions were induced under coculture conditions, in otherwise noncontracting mutant muscle.  相似文献   

17.
The distribution of neurofilament (NF) and synaptic vesicle (SV) proteins in neurites cultured in vitro was visualized with immunocytochemical methods. NF and SV proteins were detected in neurites from both embryonic mouse spinal cord and chick ciliary ganglion neurons. NF proteins generally occupied more proximal, unbranched neurite segments while SV proteins were most often found in highly branched terminal segments. Neurites from mouse spinal cord cells showed a striking segregation of the NF and SV proteins into distinct domains; neurites from chick ciliary ganglion cells exhibited a similar, though less pronounced segregation. In cocultures of neurons and muscle cells, the neurite segments in contact with myotubes more often stained for SV than for NF while the opposite was true for neurites not in contact with myotubes. The preferential association of SV neurites with myotubes was also observed when the myotubes were previously fixed with paraformaldehyde. This association was absent in neurites growing over Chinese hamster ovary cells, suggesting that the effect is specific for muscle cells. Coculture of neurons with variant strains of C2 myotubes that are deficient in AChR (1R-) or proteoglycans (S27) revealed a preferential association of SV neurites with 1R- myotubes but not with S27 myotubes. Thus, proteoglycans on the surface of C2 myotubes may influence the growth and/or differentiation of presynaptic neurons.  相似文献   

18.
We have examined the distribution of microtubule-associated protein 2 (MAP2) in the lumbar segment of spinal cord, ventral and dorsal roots, and dorsal root ganglia of control and beta,beta'-iminodipropionitrile- treated rats. The peroxidase-antiperoxidase technique was used for light and electron microscopic immunohistochemical studies with two monoclonal antibodies directed against different epitopes of Chinese hamster brain MAP2, designated AP9 and AP13. MAP2 immunoreactivity was present in axons of spinal motor neurons, but was not detected in axons of white matter tracts of spinal cord and in the majority of axons of the dorsal root. A gradient of staining intensity among dendrites, cell bodies, and axons of spinal motor neurons was present, with dendrites staining most intensely and axons the least. While dendrites and cell bodies of all neurons in the spinal cord were intensely positive, neurons of the dorsal root ganglia were variably stained. The axons of labeled dorsal root ganglion cells were intensely labeled up to their bifurcation; beyond this point, while only occasional central processes in dorsal roots were weakly stained, the majority of peripheral processes in spinal nerves were positive. beta,beta'- Iminodipropionitrile produced segregation of microtubules and membranous organelles from neurofilaments in the peripheral nervous system portion and accumulation of neurofilaments in the central nervous system portion of spinal motor axons. While both anti-MAP2 hybridoma antibodies co-localized with microtubules in the central nervous system portion, only one co-localized with microtubules in the peripheral nervous system portion of spinal motor axons, while the other antibody co-localized with neurofilaments and did not stain the central region of the axon which contained microtubules. These findings suggest that (a) MAP2 is present in axons of spinal motor neurons, albeit in a lower concentration or in a different form than is present in dendrites, and (b) the MAP2 in axons interacts with both microtubules and neurofilaments.  相似文献   

19.
Agrin, a protein that mediates nerve-induced acetylcholine receptor (AChR) aggregation at developing neuromuscular junctions, has been shown to cause an increase in phosphorylation of the beta, gamma, and delta subunits of AChRs in cultured myotubes. As a step toward understanding the mechanism of agrin-induced AChR aggregation, we examined the effects of inhibitors of protein kinases on AChR aggregation and phosphorylation in chick myotubes in culture. Staurosporine, an antagonist of both protein serine and tyrosine kinases, blocked agrin-induced AChR aggregation in a dose-dependent manner; 50% inhibition occurred at approximately 2 nM. The extent of inhibition was independent of agrin concentration, suggesting an effect downstream of the interaction of agrin with its receptor. Staurosporine blocked agrin-induced phosphorylation of the AChR beta subunit, which occurs at least in part on tyrosine residues, but did not reduce phosphorylation of the gamma and delta subunits, which occurs on serine/threonine residues. Staurosporine also prevented the agrin- induced decrease in the rate at which AChRs are extracted from intact myotubes by mild detergents. H-7, an antagonist of protein serine kinases, inhibited agrin-induced phosphorylation of the gamma and delta subunits but did not block agrin-induced phosphorylation of the AChR beta subunit, AChR aggregation, or the decrease in AChR extractability. The results provide support for the hypothesis that tyrosine phosphorylation of the beta subunit plays a role in agrin-induced AChR aggregation.  相似文献   

20.
The zebrafish ennui mutation was identified from a mutagenesis screen for defects in early behavior. Homozygous ennui embryos swam more slowly than wild-type siblings but normal swimming recovered during larval stages and homozygous mutants survived until adulthood. Electrophysiological recordings from motoneurons and muscles suggested that the motor output of the CNS following mechanosensory stimulation was normal in ennui, but the synaptic currents at the neuromuscular junction were significantly reduced. Analysis of acetylcholine receptors (AChRs) in ennui muscles showed a marked reduction in the size of synaptic clusters and their aberrant localization at the myotome segment borders of fast twitch muscle. Prepatterned, nerve-independent AChR clusters appeared normal in mutant embryos and dispersed upon outgrowth of motor axons onto the muscles. Genetic mosaic analysis showed that ennui is required cell autonomously in muscle fibers for normal synaptic localization of AChRs. Furthermore, exogenous agrin failed to induce AChR aggregation, suggesting that ennui is crucial for agrin function. Finally, motor axons branched more extensively in ennui fast twitch muscles especially in the region of the myotome borders. These results suggest that ennui is important for nerve-dependent AChR clustering and the stability of axon growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号