首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Purpose/background: Multiscale entropy (MSE) is a nonlinear measure of postural control that quantifies how complex the postural sway is by assigning a complexity index to the center of pressure (COP) oscillations. While complexity has been shown to be task dependent, the relationship between sway complexity and level of task challenge is currently unclear. This study tested whether MSE can detect short-term changes in postural control in response to increased standing balance task difficulty in healthy young adults and compared this response to that of a traditional measure of postural steadiness, root mean square of velocity (VRMS).

Methods: COP data from 20?s of quiet stance were analyzed when 30 healthy young adults stood on the following surfaces: on floor and foam with eyes open and closed and on the compliant side of a Both Sides Up (BOSU) ball with eyes open. Complexity index (CompI) was derived from MSE curves.

Results: Repeated measures analysis of variance across standing conditions showed a statistically significant effect of condition (p?<?0.001) in both the anterior–posterior and medio-lateral directions for both CompI and VRMS. In the medio-lateral direction there was a gradual increase in CompI and VRMS with increased standing challenge. In the anterior–posterior direction, VRMS showed a gradual increase whereas CompI showed significant differences between the BOSU and all other conditions. CompI was moderately and significantly correlated with VRMS.

Conclusions: Both nonlinear and traditional measures of postural control were sensitive to the task and increased with increasing difficulty of standing balance tasks in healthy young adults.  相似文献   

2.
Textured insoles may enhance sensory input on the plantar surfaces of the feet, thereby influencing neuromuscular function. The aim of this study was to investigate whether textured surfaces alter postural stability and lower limb muscle activity during quiet bipedal standing balance with eyes open. Anterior–posterior (AP) and mediolateral (ML) sway variables and the intensity of electromyographic (EMG) activity in eight dominant lower limb muscles were collected synchronously over 30 s in 24 young adults under three randomised conditions: control surface (C), texture 1 (T1) and texture 2 (T2). Repeated measures ANOVA showed that the textured surfaces did not significantly affect AP or ML postural sway in comparison to the control condition (p > 0.05). Neither did the textured surfaces significantly alter EMG activity in the lower limbs (p > 0.05). Under the specific conditions of this study, texture did not affect either postural sway or lower limb muscle activity in static bipedal standing. The results of this study point to three areas of further work including the effect of textured surfaces on postural stability and lower limb muscle activity: (i) in young healthy adults under more vigorous dynamic balance tests, (ii) post-fatigue, and (iii) in older adults presenting age-related deterioration.  相似文献   

3.
Postural control is important to cope with demands of everyday life. It has been shown that both attentional demand (i.e., cognitive processing) and fatigue affect postural control in young adults. However, their combined effect is still unresolved. Therefore, we investigated the effects of fatigue on single- (ST) and dual-task (DT) postural control. Twenty young subjects (age: 23.7 ± 2.7) performed an all-out incremental treadmill protocol. After each completed stage, one-legged-stance performance on a force platform under ST (i.e., one-legged-stance only) and DT conditions (i.e., one-legged-stance while subtracting serial 3s) was registered. On a second test day, subjects conducted the same balance tasks for the control condition (i.e., non-fatigued). Results showed that heart rate, lactate, and ventilation increased following fatigue (all p < 0.001; d = 4.2–21). Postural sway and sway velocity increased during DT compared to ST (all p < 0.001; d = 1.9–2.0) and fatigued compared to non-fatigued condition (all p < 0.001; d = 3.3–4.2). In addition, postural control deteriorated with each completed stage during the treadmill protocol (all p < 0.01; d = 1.9–3.3). The addition of an attention-demanding interference task did not further impede one-legged-stance performance. Although both additional attentional demand and physical fatigue affected postural control in healthy young adults, there was no evidence for an overadditive effect (i.e., fatigue-related performance decrements in postural control were similar under ST and DT conditions). Thus, attentional resources were sufficient to cope with the DT situations in the fatigue condition of this experiment.  相似文献   

4.

Background

Diminished control of standing balance, traditionally indicated by greater postural sway magnitude and speed, is associated with falls in older adults. Tai Chi (TC) is a multisystem intervention that reduces fall risk, yet its impact on sway measures vary considerably. We hypothesized that TC improves the integrated function of multiple control systems influencing balance, quantifiable by the multi-scale “complexity” of postural sway fluctuations.

Objectives

To evaluate both traditional and complexity-based measures of sway to characterize the short- and potential long-term effects of TC training on postural control and the relationships between sway measures and physical function in healthy older adults.

Methods

A cross-sectional comparison of standing postural sway in healthy TC-naïve and TC-expert (24.5±12 yrs experience) adults. TC-naïve participants then completed a 6-month, two-arm, wait-list randomized clinical trial of TC training. Postural sway was assessed before and after the training during standing on a force-plate with eyes-open (EO) and eyes-closed (EC). Anterior-posterior (AP) and medio-lateral (ML) sway speed, magnitude, and complexity (quantified by multiscale entropy) were calculated. Single-legged standing time and Timed-Up–and-Go tests characterized physical function.

Results

At baseline, compared to TC-naïve adults (n = 60, age 64.5±7.5 yrs), TC-experts (n = 27, age 62.8±7.5 yrs) exhibited greater complexity of sway in the AP EC (P = 0.023), ML EO (P<0.001), and ML EC (P<0.001) conditions. Traditional measures of sway speed and magnitude were not significantly lower among TC-experts. Intention-to-treat analyses indicated no significant effects of short-term TC training; however, increases in AP EC and ML EC complexity amongst those randomized to TC were positively correlated with practice hours (P = 0.044, P = 0.018). Long- and short-term TC training were positively associated with physical function.

Conclusion

Multiscale entropy offers a complementary approach to traditional COP measures for characterizing sway during quiet standing, and may be more sensitive to the effects of TC in healthy adults.

Trial Registration

ClinicalTrials.gov NCT01340365  相似文献   

5.

Background

Postural balance is vital for safely carrying out many daily activities, such as locomotion. The purpose of this study was to determine how changes in normal standing (NS) and standing with toe-extension (SWT) impact postural control during quiet standing. Furthermore, the research aimed to examine the extent to which the effect of these factors differed between genders.

Methodology/Principal Findings

Thirty healthy young adults (age = 21.2±1.3 y; height = 1.63±0.07 m; mass = 56.0±9.3 kg) with no prior lower limb injuries participated in the study. A postural stability test using the Biodex Balance System was used for both NS and SWT conditions. The three measurements from the BBS were Overall Stability Index (OSI), Medial-Lateral Stability Index (MLSI) and Anterior-Posterior Stability Index (APSI). No significant difference was found between NS and SWT in the OSI, MLSI or APSI (F 2, 28 = 3.357, p = 0.077). The main difference between the stability index scores was significant (F 2, 28 = 275.1, p<0.001). The Bonferroni post-hoc test showed significant differences between the OSI and MLSI (p<0.001); the OSI and APSI (p<0.001); and the MLSI and the APSI (p<0.001). Significant differences were found during NS (p<0.001), for the MLSI when compared with the APSI, but this was not found during the SWT condition. Additionally, no gender effects were proven to exist that altered postural sway during quiet standing.

Conclusions/Significance

This study reveals significant interaction between the stability indices measured; OSI, APSI and MLSI in both NS and SWT. Standing with toe extended does not have a significant impact on an individual’s ability to control their balance during normal quiet standing. However, the findings revealed that the sway tendency in the medial-lateral direction might serve as a factor in an individual’s ability to regain balance.  相似文献   

6.
BackgroundWhen performing two tasks at once, a dual task, performance on one or both tasks typically suffers. People with Parkinson’s disease (PD) usually experience larger dual task decrements on motor tasks than healthy older adults (HOA). Our objective was to investigate the decrements in cycling caused by performing cognitive tasks with a range of difficulty in people with PD and HOAs.MethodsTwenty-eight participants with Parkinson’s disease and 20 healthy older adults completed a baseline cycling task with no secondary tasks and then completed dual task cycling while performing 12 tasks from six cognitive domains representing a wide range of difficulty.ResultsCycling was faster during dual task conditions than at baseline, and was significantly faster for six tasks (all p<.02) across both groups. Cycling speed improved the most during the easiest cognitive tasks, and cognitive performance was largely unaffected. Cycling improvement was predicted by task difficulty (p<.001). People with Parkinson’s disease cycled slower (p<.03) and showed reduced dual task benefits (p<.01) than healthy older adults.ConclusionsUnexpectedly, participants’ motor performance improved during cognitive dual tasks, which cannot be explained in current models of dual task performance. To account for these findings, we propose a model integrating dual task and acute exercise approaches which posits that cognitive arousal during dual tasks increases resources to facilitate motor and cognitive performance, which is subsequently modulated by motor and cognitive task difficulty. This model can explain both the improvement observed on dual tasks in the current study and more typical dual task findings in other studies.  相似文献   

7.
To facilitate stable walking, humans must generate appropriate motor patterns and effective corrective responses to perturbations. Yet most EMG analyses do not address the continuous nature of muscle activation dynamics over multiple strides. We compared muscle activation dynamics in young and older adults by defining a multivariate state space for muscle activity. Eighteen healthy older and 17 younger adults walked on a treadmill for 2 trials of 5 min each at each of 5 controlled speeds (80–120% of preferred). EMG linear envelopes of v. lateralis, b. femoris, gastrocnemius, and t. anterior of the left leg were obtained. Interstride variability, local dynamic stability (divergence exponents), and orbital stability (maximum Floquet multipliers; FM) were calculated. Both age groups exhibited similar preferred walking speeds (p=0.86). Amplitudes and variability of individual EMG linear envelopes increased with speed (p<0.01) in all muscles but gastrocnemius. Older adults also exhibited greater variability in b. femoris and t. anterior (p<0.004). When comparing continuous multivariate EMG dynamics, older adults demonstrated greater local and orbital instability of their EMG patterns (p<0.01). We also compared how muscle activation dynamics were manifested in kinematics. Local divergence exponents were strongly correlated between kinematics and EMG, independent of age and walking speed, while variability and max FM were not. These changes in EMG dynamics may be related to increased neuromotor noise associated with aging and may indicate subtle deterioration of gait function that could lead to future functional declines.  相似文献   

8.
Fall prevention has an indispensable role in enhancing life expectancy and quality of life among older adults. The first step to prevent falls is to devise reliable methods to identify individuals at high fall risk. The purpose of the current study was to assess alterations in local postural muscle and central sensory balance control mechanisms due to low-frequency externally applied vibration among elders at high fall risk, in comparison with healthy controls, as a potential tool for assessing fall risk. Three groups of participants were recruited: healthy young (n = 10; age = 23 ± 2 years), healthy elders (n = 10; age = 73 ± 3 years), and elders at high fall risk (n = 10; age = 84 ± 9 years). Eyes-open and eyes-closed upright standing balance performance was measured with no vibration, 30 Hz, and 40 Hz vibration of Gastrocnemius muscles. When vibratory stimulation was applied, changes in local-control performance manifested significant differences among the groups (p < 0.01). On average between conditions, we observed 97% and 92% less change among high fall risk participants when compared to healthy young and older adults, respectively. On the other hand, vibration-induced changes in the central-control performance were not significant between groups (p ≥ 0.19). Results suggest that local-control deficits are responsible for balance behavior alterations among elders at high fall risk and healthy individuals. This observation may be attributable to deterioration of short-latency reflexive loop in elders at high fall risk. On the other hand, we could not ascribe the balance alterations to problems related to central nervous system performance or long-latency responses.  相似文献   

9.
In this study, we investigated how modulation in corticospinal excitability elicited in the context of standing tasks varies as a function of age and between muscles. Changes in motor evoked potentials (MEPs) recorded in tibialis anterior (TA) and gastrocnemius lateralis (GL) were monitored while participants (young, n = 10; seniors, n = 11) either quietly stood (QS) or performed a heel raise (HR) task. In the later condition, transcranial magnetic stimulation (TMS) pulses were delivered at three specific time points during the task: 1) 250 ms before the “go” cue (preparatory (PREP) phase), 2) 100 ms before the heel rise (anticipatory postural adjustment (APA) phase), and 3) 200 ms after heel rise (execution (EXEC) phase). In each task and each phase, variations in MEP characteristics were analysed for age and muscle-dependent effects. Variations in silent period (SP) duration were also examined for certain phases (APA and EXEC). Our analysis revealed no major difference during QS, as participants exhibited very similar patterns of modulation in both TA and GL, irrespective of their age group. During the HR task, young adults exhibited a differential modulation in the PREP phase with enhanced responses in TA relative to GL, which was not seen in seniors. Finally, besides differences in MEP latency, age had little influence on MEP modulation during the APA and EXEC phases, where amplitude was largely a function of background muscle activity associated with each phase (i.e., APA: TA; EXEC: GL). No age or muscle effects were detected for SP measurements. Overall, our results revealed no major differences between young adults and healthy seniors in the ability to modulate corticospinal facilitation destined to ankle muscles during standing tasks, with maybe the exception of the ability to prime muscle synergies in the preparatory phase of action.  相似文献   

10.
The aim of this cross-sectional study was to delineate age-associated kinematic and kinetic gait patterns of normal walking, and to test the hypothesis that older adults exhibit gait patterns that reduce generative mechanical work expenditures (MWEs). We studied 52 adult Baltimore Longitudinal Study of Aging participants (means age 72±9, from 60 to 92 years) who could walk 4 m unaided. Three-dimensional kinematic and kinetic parameters assessed during rotation-defined gait periods were used to estimate MWEs for the rotation of lower extremities about the medial–lateral (ML) and anterior–posterior (AP) axes of proximal joints, which represent MWEs in the AP and ML sides, respectively. Relationships between gait parameters and age were examined using regression analysis with adjustments for walking speed, sex, height, and weight. Older age was associated with slower self-selected walking speed (p<0.001), shorter stride length (p<0.001), and greater propensity of landing flat-footed (p=0.003). With older age, hip generative MWE for thigh rotation was lower about the AP axis (hip abduction and adduction) during stance (p=0.010) and higher about the ML axis (hip extension and flexion) during late stance (p<0.001). Knee absorptive MWE for shank rotation about the AP axis (knee abduction and adduction) during early stance was also lower with older age (p<0.003). These age-related gait patterns may represent a compensatory effort to maintain balance and may also reflect mobility limitations.  相似文献   

11.
The current study was undertaken to determine if age-related differences in muscle activities might relate to older adults being significantly less able than young adults to recover balance during a forward fall. Fourteen young and twelve older healthy males were released from forward leans of various magnitudes and asked to regain standing balance by taking a single forward step. Myoelectric signals were recorded from 12 lower extremity muscles and processed to compare the muscle activation patterns of young and older adults. Young adults successfully recovered from significantly larger leans than older adults using a single step (32.2° vs. 23.5°). Muscular latency times, the time between release and activity onset, ranged from 73 to 114 ms with no significant age-related differences in the shortest muscular latency times. The overall response muscular activation patterns were similar for young and older adults. However older adults were slower to deactivate three stance leg muscles and also demonstrated delays in activating the step leg hip flexors and knee extensors prior to and during the swing phase. In the forward fall paradigm studied, age-differences in balance recovery performance do not seem due to slowness in response onset but may relate to differences in muscle activation timing during the stepping movement.  相似文献   

12.
Technical advancements in instrumentation and analytical methods have improved the ability of assessing balance control. This study investigated the effects of early stages of aging on postural sway using traditional and contemporary postural indices from different domains. Eleven healthy young adults and fourteen healthy non-faller older adults performed two postural tasks: (a) functional limits of stability and (b) unperturbed bipedal stance for 120 s. Postural indices from spatial, temporal, frequency, and structural domains were extracted from the body’s center of pressure (COP) signals and its Rambling and Trembling components. Results revealed a preservation of functional limits of upright stability in older adults accompanied by larger, faster, and shakier body sway in both anterior-posterior and medio-lateral directions; increased medio-lateral sway frequency; increased irregularity of body sway pattern in time in both directions; and increased area, variability, velocity, and jerkiness of both rambling and trembling components of the COP displacement in the anterior-posterior direction (p < 0.02). Such changes might be interpreted as compensatory adjustments to the age-related decline of sensory, neural, and motor functions. In conclusion, balance assessment using postural indices from different domains extracted from the COP displacement was able to capture subtle effects of the natural process of aging on the mechanisms of postural control. Our findings suggest the use of such indices as potential markers for postural instability and fall risk in older adults.  相似文献   

13.
Poor balance in older persons contributes to a rise in fall risk and serious injury, yet no consensus has developed on which measures of postural sway can identify those at greatest risk of falling. Postural sway was measured in 161 elderly individuals (81.8y±7.4), 24 of which had at least one self-reported fall in the prior six months, and compared to sway measured in 37 young adults (34.9y±7.1). Center of pressure (COP) was measured during 4 minutes of quiet stance with eyes opened. In the elderly with fall history, all measures but one were worse than those taken from young adults (e.g., maximal COP velocity was 2.7× greater in fallers than young adults; p<0.05), while three measures of balance were significantly worse in fallers as compared to older persons with no recent fall history (COP Displacement, Short Term Diffusion Coefficient, and Critical Displacement). Variance of elderly subjects'' COP measures from the young adult cohort were weighted to establish a balance score (“B-score”) algorithm designed to distinguish subjects with a fall history from those more sure on their feet. Relative to a young adult B-score of zero, elderly “non-fallers” had a B-score of 0.334, compared to 0.645 for those with a fall history (p<0.001). A weighted amalgam of postural sway elements may identify individuals at greatest risk of falling, allowing interventions to target those with greatest need of attention.  相似文献   

14.
Tracking head motion in a simple, portable and accurate manner during performance of postural tasks in a virtual reality environment could have important implications for investigating normal and pathological head kinematics. We investigated concurrent validity of head tracking of two Head Mounted Displays (HMDs), Oculus Rift and HTC Vive, vs. a gold-standard motion capture system (Qualisys). Head kinematics of N = 20 healthy young adults was quantified during static and dynamic postural tasks. While wearing the Oculus Rift or HTC Vive, participants observed moving stars (static tasks) or a flying ball (dynamic task). Head kinematics were recorded simultaneously by the Rift or Vive and Qualisys camera system. We calculated head directional path, acceleration in 6 directions and volume of translation movement. Intra-Class Correlations (ICC) and 95% Limits of agreement were calculated. Most ICC values were around 0.9 with several at 0.99 indicating excellent agreement between the HMDs and Qualisys. Weaker agreement was observed for vertical displacement during a static task and moderate agreement was observed pitch and yaw displacement during a dynamic task. A negative bias of a small magnitude (indicating more movement in VR) was observed for most variables in static tasks, while a positive bias was observed for most variables in the dynamic task (indicating less movement in VR). Our results generally support the concurrent validity of Oculus Rift and HTC Vive head tracking during static and dynamic standing tasks in healthy young adults. Specific task- and direction-dependent differences should be considered when planning measurement studies using these novel tools.  相似文献   

15.
Introduction. The beginning of the movement sequence from standing to sitting requires the modulation of plantar flexors activity, including the soleus muscle (SOL), to allow the forward translation of the tibia in relation to the foot, preserving its antigravity function.

Purpose. To analyze the SOL activity during the initial phase of standing to sitting in stroke subjects.

Methods. Two groups of ten subjects each participated in this study, one composed of healthy subjects and the other with subjects with a history of stroke. Electromyographic activity (EMGa) of SOL was analyzed in the ipsilateral (IPSI) and contralateral (CONTRA) limb to side lesion in stroke subjects, and in one limb in healthy subjects during the initial phase of standing to sitting. A force plate was used to identify the movement sequence phase.

Results. The mean values of SOL EMGa were higher in healthy subjects than the ones obtained in the IPSI and CONTRA limb in stroke subjects. Significant differences were only observed between the IPSI and healthy limb (p?=?0.035).

Conclusion. When compared to the healthy subjects, stroke subjects showed a decreased SOL EMGa in the IPSI limb, which suggests that therapeutic decisions must consider the need to promote a better postural control also in the IPSI limb.  相似文献   

16.
Objectives:To determine associations of inter- and intra-muscular adipose tissue (IMAT) with cardiometabolic health and physical function in older adults.Methods:48 community-dwelling older adults aged ≥65 years (mean 71.6±4.8 years; 52% women) underwent whole-body dual-energy X-ray absorptiometry, to assess appendicular lean mass (ALM), and peripheral quantitative computed tomography (pQCT; 66% tibia), to assess calf IMAT cross-sectional area ([CSA]; cm2) and muscle density (mg/cm3; higher values indicate lower fat infiltration). Fasting glucose, lipids, triglycerides and C-reactive protein (CRP) were analysed. Physical function was assessed by postural sway (computerised posturography; N=41), and gait analysis (GAITRite Electronic Walkway; N=40).Results:Higher IMAT CSA and muscle density were associated with significantly higher (B=0.85 95%CI [0.34, 1.36]) and lower (-2.14 [-4.20, -0.08]) CRP and higher (0.93 [0.56, 1.30]) and lower postural sway (-3.12 [-4.74, -1.50]), respectively, after adjustment for age, sex and ALM/BMI. Higher IMAT CSA was associated with slower gait speed and cadence, and greater step time and step width (all P<0.03), while higher muscle density was associated with smaller step width (P<0.01) only.Conclusions:Older adults with higher calf IMAT have poorer balance, mobility and inflammatory status. Interventions aimed at improving physical function in older adults should incorporate strategies to reduce IMAT.  相似文献   

17.
Mobile computing devices (e.g., smartphones and tablets) that have low-friction surfaces require well-directed fingertip forces of sufficient and precise magnitudes for proper use. Although general impairments in manual dexterity are well-documented in older adults, it is unclear how these sensorimotor impairments influence the ability of older adults to dexterously manipulate fixed, low-friction surfaces in particular. 21 young and 18 older (65+ yrs) adults produced maximal voluntary contractions (MVCs) and steady submaximal forces (2.5 and 10% MVC) with the fingertip of the index finger. A Teflon covered custom-molded splint was placed on the fingertip. A three-axis force sensor was covered with either Teflon or sandpaper to create low- and high-friction surfaces, respectively. Maximal downward forces (Fz) were similar (p = .135) for young and older adults, and decreased by 15% (p<.001) while pressing on Teflon compared to sandpaper. Fluctuations in Fz during the submaximal force-matching tasks were 2.45× greater (p<.001) for older adults than in young adults, and reached a maximum when older adults pressed against the Teflon surface while receiving visual feedback. These age-associated changes in motor performance are explained, in part, by altered muscle activity from three hand muscles and out-of-plane forces. Quantifying the ability to produce steady fingertip forces against low-friction surfaces may be a better indicator of impairment and disability than the current practice of evaluating maximal forces with pinch meters. These age-associated impairments in dexterity while interacting with low-friction surfaces may limit the use of the current generation of computing interfaces by older adults.  相似文献   

18.
Abstract

Background and aims: Role of the neck and jaw sensory motor system in control of body balance has been established. Tongue is an integral part of jaw sensory motor system and helps in execution of purposeful and precise motor tasks like eating, drinking and speaking. The purpose of this study was to evaluate the possible effects of tongue position on the postural control system.

Materials and method: We compared the mean center of gravity (COG) velocity during quiet standing on an unstable surface with eyes closed during two test conditions: (i) with habitual jaw resting position and (ii) with instructed tongue positioned against the upper incisors. One hundred and sixteen normal healthy male subjects (average age 31.56?±?8.51 years and height 170.86?±?7.26?cm) participated in the study. Their COG velocity (deg/s) was measured using the NeuroCom® Balance Master version 8.5.0 (Clackamas, OR, USA).

Results and conclusions: The results show that COG velocity decreased significantly while tongue was positioned against upper incisors in comparison to the habitual jaw resting position. Our findings suggest that the tongue positioning can modulate postural control mechanisms. Tongue positioning against the upper incisors can enhance the postural stability during upright standing on an unstable surface and in the absence of vision in healthy young adults. Our findings can be of value for evaluation and rehabilitation protocols for postural control dysfunction.  相似文献   

19.
Older adults are more variable than young adults on tasks that demand the simultaneous control of more than one effector, and the difference between age groups may be related to their different capacity of coordinating the force output of the involved effectors. The goal of this study was to determine whether age-associated differences in motor output variability during tasks involving the simultaneous dorsiflexion of two feet can be partially explained by differences in coordination and possibly attenuated by physical training. Ten young and 22 old adults (10 trained and 12 untrained old adults) volunteered to participate in the study. Trained older adults had experience in a high-intensity mixed modality training (MMT) regime for a minimum of 1?year. Volunteers performed successive trials of a constant force task and a goal-directed task, with and without visual feedback. Within- and between-trial variability were calculated and coordination was quantified using the uncontrolled manifold (UCM) approach (i.e., co-variation of the force outputs of both feet were used to quantify a motor synergy index). Older adults exhibited greater variability and lower synergy (p?p?相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号