首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The morphogenetic behavior of a tropical marine Yarrowia lipolytica strain on hydrophobic substrates was studied. Media containing coconut oil or palm kernel oil (rich in lauric and myristic acids) prepared in distilled water or seawater at a neutral pH supported 95% of the cells to undergo a transition from the yeast form to the mycelium form. With potassium laurate, 51% of the cells were in the mycelium form, whereas with myristate, 32% were in the mycelium form. However, combinations of these two fatty acids in proportions that are present in coconut oil or palm kernel oil enhanced the mycelium formation to 65%. The culture also produced extracellular lipases during the morphogenetic change. The yeast cells were found to attach to the large droplets of the hydrophobic substrates during the transition, while the mycelia were associated with the aqueous phase. The alkane-grown yeast partitioned more efficiently in the hydrophobic phases when compared with the coconut oil-grown mycelia. A fatty acid analysis of the mycelial form revealed the presence of lauric acid in addition to the long-chain saturated and unsaturated fatty acids observed in the yeast form. The mycelia underwent a rapid transition to the yeast form with n-dodecane, a medium-chain aliphatic hydrocarbon. Thus, the fungus displayed a differential behavior towards the two types of saturated hydrophobic substrates.  相似文献   

2.
The transition from yeast to mycelia of Histoplasma capsulatum could be accomplished by shifting the temperature of incubation from 37 to 25 degrees C. It was accompanied by many changes in cellular metabolism, including changes in respiration, intracellular cyclic adenosine 3',5'-monophosphate (cAMP) levels, and activities of two enzymes specific for the yeast phase, cystine reductase (EC 1.6.4.1) and cysteine oxidase (EC 1.13.11.20). Even at 37 degrees C, the yeast to mycelial transition could be induced by cAMP and agents which raise the intracellular levels of cAMP (theophylline, acetylsalicylic acid, prostaglandin E1, and nerve growth factor). During this morphogenesis the same pattern of changes occurred as in the temperature-induced transition. Therefore, these changes were not simply dependent on a shift in temperature, but rather were part of the process of the phase transition.  相似文献   

3.
Erythritol uptake and metabolism were compared in wild-type mycelium and a dome morphological mutant of the wood-rotting mushroom Schizophyllum commune. Wild-type mycelium utilized glucose, certain hexitols, and pentitols including ribitol, as well as d-erythrose, erythritol, and glycerol as sole carbon sources for growth. The dome mutant utilized all of these compounds except d-erythrose and erythritol. Erythritol- or glycerol-grown wild-type mycelium incorporated erythritol into various cellular constituents, whereas glucose-grown cells lagged considerably before initiation of erythritol uptake. This acquisition was inhibited by cycloheximide. Dome mycelium showed behavior similar to wild-type in uptake of erythritol after growth on glucose or glycerol, except that erythritol was not further catabolized. Enzymes of carbohydrate metabolism were compared in cell extracts of glucose-cultured wild-type mycelium and dome. Enzymes of hexose monophosphate catabolism, nicotinamide adenine dinucleotide (NAD)-dependent sugar alcohol dehydrogenases, and reduced nicotinamide adenine dinucleotide phosphate (NADPH)-coupled erythrose reductase were demonstrated in both. The occurrence of erythrose reductase was unaffected by the nature of the growth carbon source, showed optimal activity at pH 7, and generated NAD phosphate and erythritol as products of the reaction. Glycerol-, d-erythrose-, or erythritol-grown wild-type mycelium contained an NAD-dependent erythritol dehydrogenase absent in glucose cells. Erythritol dehydrogenase activity was optimal at pH 8.8 and produced erythrulose during NAD reduction. Glycerol-growth of dome mycelium induced the erythritol uptake system, but a functional erythritol dehydrogenase could not be demonstrated. Neither wild-type nor dome mycelium produced erythritol dehydrogenase during growth on ribitol. Erythritol metabolism in wild-type cells of S. commune, therefore, involves an NADPH-dependent reduction of d-erythrose to produce erythritol, followed by induction of an NAD-coupled erythritol dehydrogenase to form erythrulose. A deficiency in erythritol dehydrogenase rather than permeability barriers explains why dome cannot employ erythritol as sole carbon source for mycelial growth.  相似文献   

4.
Experiments were performed to determine whether conditions which cause the rapid loss of nitrate reductase activity in Neurospora crassa mycelia were accompanied by the loss of antigenically detectable nitrate reductase protein. When mycelia with nitrate reductase activity were transferred to ammonia media, there was a rapid loss in the reduced nicotinamide adenine dinucleotide-nitrate reductase activity plus the parallel loss of the reduced nicotinamide adenine dinucleotide-diaphorase and the reduced methyl viologen-nitrate reductase activities associated with the nitrate reductase. In addition, there was the loss of cross-reacting material to anti-nitrate reductase antisera that was concomitant with the loss of nitrate reductase activity. When mycelia were exposed to either ammonia plus cycloheximide, nitrate plus cycloheximide, or nitrogen-free media, or to media which lacked an assimilable carbon source, the amount of cross-reacting material declined in concert with the nitrate reductase activity. The mutant nit-6, which lacks nitrite reductase activity, was exposed to ammonia or nitrate plus cycloheximide media. The nitrate reductase and the amount of cross-reacting material declined together as in the wild-type mycelia. We conclude that the loss of nitrate reductase activity was accompanied by the specific loss of this protein and that no pool of inactivated nitrate reductase molecules existed.  相似文献   

5.
We measured both pyridine nucleotide levels and ribonucleotide reductase-specific activity in Yoshida ascites hepatoma cells as a function of growth in vivo and during recruitment from non-cycling to cycling state in vitro. Oxidized nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADP) levels remained unchanged during tumour growth, while NADP+ and reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels were very high in exponentially growing cells and markedly decreased in the resting phase. Ribonucleotide reductase activity paralleled NADP(H) (NADP+ plus NADPH) intracellular content. The concomitant increase in both NADP(H) levels and ribonucleotide reductase activity was also observed during G1-S transition in vitro. Cells treated with hydroxyurea showed a comparable correlation between the pool size of NADP(H) and ribonucleotide reductase activity. On the basis of these findings, we suggest that fluctuations in NADP(H) levels and ribonucleotide reductase activity might play a critical role in cell cycle regulation.  相似文献   

6.
When stationary phase cells of the dimorphic yeast Candida albicans are diluted into fresh medium at 37°C at either pH 4.5 or pH 6.5, they evaginate at exactly the same time and with the same synchrony. However, they then grow in the budding yeast form at the former pH and in the elongate mycelium form at the latter pH. Three phases of protein synthesis are distinguished for cells forming either buds or mycelia: an initial 50-min period (phase I) during which total cell protein remains constant and the rate of incorporation of labeled amino acid into protein is virtually zero; a second period (phase II) during which there is a slow but constant increase in both total cell protein and the rate of incorporation; and a third period (phase III) during which there is a dramatic increase in both total cell protein and the rate of incorporation. The transition from phase I to phase II occurs at the same time for cells forming either buds or mycelia, but the transition from phase II to phase III occurs 20 to 30 min later in the mycelium than in the bud forming population, the same temporal difference observed for phenotypic commitment. The polypeptides synthesized during phases II and III were first analyzed by one-dimensional polyacrylamide gel electrophoresis. The patterns are similar for the two phenotypes. The major polypeptides synthesized during phase II are also synthesized during phase III, but in addition, a group of at least four new major polypeptides appear during phase III for both phenotypes. The minor polypeptides synthesized during phase III were also compared between the two phenotypes by two-dimensional polyacrylamide gel electrophoresis. The patterns, including roughly 200 distinguishable polypeptides, were similar. The similarities in the patterns of protein synthesis and the delay in the onset of phase III in mycelium forming cells are discussed in terms of phenotypic commitment. From these considerations, alternate hypotheses for the regulation of fungal dimorphism, in particular, and cell divergence, in general, are proposed.  相似文献   

7.
Cysteine metabolism has been thought to be important to the phenomenon of dimorphism inHistoplasma capsulatum. We sought mutants with genetic blocks in the metabolism of cysteine by selection of colonies resistant to the toxic analogue, selenocystine. The 22 resistant strains thus obtained were all deficient in uptake of cystine from the surrounding medium but were normally able to convert from mycelium to yeast and back again. Furthermore, they had normal quantities of NADH-dependent cystine reductase when this enzyme was measured. We conclude that mutants defective in cystine uptake can be readily obtained by selection of colonies resistant to selenocystine, and that a lesion in cystine-uptake does not appear to affect the phenomenon of dimorphism in this organism.Preliminary reports of this work were presented at the Second International Congress of Mycology, Tampa, 1977 and at the first International Conference on Histoplasmosis, Atlanta, 1978.  相似文献   

8.
Ethane oxidation was studied in ethane-grown resting cells (mycelia) of an Acremonium sp. and in cell-free preparations of such mycelia. From resting cell experiments evidence was found for a pathway of ethane oxidation via ethanol, acetaldehyde, and acetic acid. In vitro studies indicated that ethane-oxidizing activity in such mycelia occurred predominantly in the microsomal fraction of crude homogenates. Microsomal preparations were inactive in the absence of added coenzyme. Marked stimulation of activity was obtained in such preparations with reduced nicotinamide adenine dinucleotide phosphate and to a much lesser degree with nicotinamide adenine dinucleotide phosphate. Ethane oxidation was inhibited by sodium azide and carbon monoxide.  相似文献   

9.
Oxidation of ethane by an Acremonium species.   总被引:1,自引:1,他引:0       下载免费PDF全文
Ethane oxidation was studied in ethane-grown resting cells (mycelia) of an Acremonium sp. and in cell-free preparations of such mycelia. From resting cell experiments evidence was found for a pathway of ethane oxidation via ethanol, acetaldehyde, and acetic acid. In vitro studies indicated that ethane-oxidizing activity in such mycelia occurred predominantly in the microsomal fraction of crude homogenates. Microsomal preparations were inactive in the absence of added coenzyme. Marked stimulation of activity was obtained in such preparations with reduced nicotinamide adenine dinucleotide phosphate and to a much lesser degree with nicotinamide adenine dinucleotide phosphate. Ethane oxidation was inhibited by sodium azide and carbon monoxide.  相似文献   

10.
Conidia of Neurospora crassa which are in different physiological states show different rates of survival after freezing and thawing. [14C]adenine uptake by frozen and thawed conidia in different physiological states show a correlation with their survival. The uptake method was extended to study the survival of mycelium in log phase and stationary phase. From the uptake data it appears that log phase mycelium is extremely sensitive to all rates of freezing and thawing studied, while the stationary phase mycelium showed slight tolerance to freezing, if freezing was done at a slow rate. A study of the efflux of labeled compounds from the conidia in various physiological states or from the mycelia after freezing and thawing showed that, although efflux followed the same general trend as survival in conidia, it did not relate to the survival in mycelium, suggesting that the death of conidia or mycelium in the freeze-thaw treatments is not due to efflux of compounds.  相似文献   

11.
Sulfate-reducing pathway in Escherichia coli involving bound intermediates.   总被引:14,自引:11,他引:3  
Although a sulfate-reducing pathway in Escherichia coli involving free sulfite and sulfide has been suggested, it is shown that, as in Chlorella, a pathway involving bound intermediates is also present. E. coli extracts contained a sulfotransferase that transferred the sulfonyl group from a nucleosidephosphosulfate to an acceptor to form an organic thiosulfate. This enzyme was specific for adenosine 3'-phosphate 5'-phosphosulfate, did not utilize adenine 5'-phosphosulfate, and transferred to a carrier molecule that was identical with thioredoxin in molecular weight and amino acid composition. In the absence of thioredoxin, only very low levels of the transfer of the sulfo group to thiols was observed. As in Chlorella, thiosulfonate reductase activity that reduced glutathione-S-SO3- to bound sulfide could be detected. In E. coli, this enzyme used reduced nicotinamide adenine dinucleotide phosphate and Mg2+, but did not require the addition of ferredoxin or ferredoxin nicotinamide adenine dinucleotide phosphate reductase. Although in Chlorella the thiosulfonate reductase appears to be a different enzyme from the sulfite reductase, the E. coli thiosulfonate reductase and sulfite reductase may be activities of the same enzyme.  相似文献   

12.
The pathogenic fungusHistoplasma capsulatum undergoes a mycelial to yeast transition when the temperature of incubation is switched from 25° to 37°C. The presence of exogenous cysteine or cystine has been reported to be required for this phase transition and for maintenance of yeast form and growth. However, the initial stages of mycelial to yeast transition and yeast growth are associated with the rapid utilization and conversion of exogenous cystine to at least one sulfhydryl compound, which appears in the extracellular milieu as detected by dithiodinitrobenzoic acid. Attempts to identify the extracellular thiol-containing compound with cystine metabolic standards indicate that the released thiols are not cysteine or reduced glutathione. These results indicate that other thiols may be important in supportingH. capsulatum yeast morphogenesis.  相似文献   

13.
Summary Male and female rat liver were studied during post-natal development. A correlation was found between biochemically determined hydroxylations and enzymhisto-chemically determined NADPH-nitro-BT reductase and Naphthol-AS-D esterase. No correlation was found between glucose-6-phosphate dehydrogenase or iso-citric acid dehydrogenase activity and hydroxylations. The difference in hydroxylating capacity between male and female rats may be caused by the fact that the number of cells with hydroxylating activity in the liver lobule, as judged by the NADPH-nitro-BT reductase and Naphthol-AS-D esterase activity, is higher in male than in female rats.List of Abbreviations NADH reduced nicotinamide adenine dinucleotide - NADPH reduced nicotinamide adenine dinucleotide phosphate - G6PD glucose-6-phosphate dehydrogenase - ICD iso-citric acid dehydrogenase - G6Pase glucose-6-phosphatase - NADPH -nitro-BT red - NADPH Nitro-blue tetrazolium reductase - SDH succinic acid dehydrogenase - TCA trichloracetic acid  相似文献   

14.
The ascomycete Paracoccidioides brasiliensis is a human pathogen with a broad distribution in Latin America. The infection process of P. brasiliensis is initiated by aerially dispersed mycelia propagules, which differentiate into the yeast parasitic phase in human lungs. Therefore, the transition to yeast is an initial and fundamental step in the infective process. In order to identify and characterize genes involved in P. brasiliensis transition to yeast, which could be potentially associated to early fungal adaptation to the host, expressed sequence tags (ESTs) were examined from a cDNA library, prepared from mycelia ongoing differentiation to yeast cells. In this study, it is presented a screen for a set of genes related to protein synthesis and to protein folding/modification/destination expressed during morphogenesis from mycelium to yeast. Our analysis revealed 43 genes that are induced during the early transition process, when compared to mycelia. In addition, eight novel genes related to those processes were described in the P. brasiliensis transition cDNA library. The types of induced and novel genes in the transition cDNA library highlight some metabolic aspects, such as putative increase in protein synthesis, in protein glycosylation, and in the control of protein folding that seem to be relevant to the fungal transition to the parasitic phase.  相似文献   

15.
Growth of Streptomyces viridochromogenes on a solid glycerol-NH4NO3 salts medium was accompanied by the formation of aerial mycelia and spores. Adding 0.5% or more casein hydrolysate to the medium stimulated growth while completely repressing the formation of aerial mycelia and spores. This repression was temporary, as evidenced by the fact that transfer of the organisms to media not containing casein hydrolysate resulted in the appearance of aerial mycelia and spores. The effects of individual amino acids were tested. Glycine retarded growth and repressed formation of both aerial mycelia and spores. L-Aspartic acid, L-glutamic acid, and L-histidine stimulated or had little effect on growth and repressed formation of spores but not aerial mycelia. Repression by casein hydrolysate could not be attributed to the carbon/nitrogen ratio or the pH of the medium. Adding 1.25 to 2.5 mM adenine to the medium caused a reversal of the casein hydrolysate repression of aerial mycelium formation but did not reverse repression of sporulation. Dimethyladenine and 8-azaguanine had an effect similar to that of adenine, but a variety of other purine or pyrimidine derivatives had no effect on casein hydrolysate repression. The repression of aerial mycelium and spore formation by casein hydrolysate occurred only in media containing 15 mM or more phosphate. Aerial mycelia and spores were formed in media containing casein hydrolysate and 3 mM or less phosphate.  相似文献   

16.
Alpha-lipoic acid, which becomes a powerful antioxidant in its reduced form, has been suggested as a dietary supplement to treat diseases associated with excessive oxidant stress. Because the vascular endothelium is dysfunctional in many of these conditions, we studied the uptake, reduction, and antioxidant effects of alpha-lipoic acid in cultured human endothelial cells (EA.hy926). Using a new assay for dihydrolipoic acid, we found that EA.hy926 cells rapidly take up and reduce alpha-lipoic acid to dihydrolipoic acid, most of which is released into the incubation medium. Nonetheless, the cells maintain dihydrolipoic acid following overnight culture, probably by recycling it from alpha-lipoic acid. Acute reduction of alpha-lipoic acid activates the pentose phosphate cycle and consumes nicotinamide adenine dinucleotide phosphate (NADPH). Lysates of EA.hy926 cells reduce alpha-lipoic acid using both NADPH and nicotinamide adenine dinucleotide (NADH) as electron donors, although NADPH-dependent reduction is about twice that due to NADH. NADPH-dependent alpha-lipoic acid reduction is mostly due to thioredoxin reductase. Pre-incubation of cells with alpha-lipoic acid increases their capacity to reduce extracellular ferricyanide, to recycle intracellular dehydroascorbic acid to ascorbate, to decrease reactive oxygen species generated by redox cycling of menadione, and to generate nitric oxide. These results show that alpha-lipoic acid enhances both the antioxidant defenses and the function of endothelial cells.  相似文献   

17.
An investigation of sulfate reduction in B tsnC*7004, a mutant of Escherichia coli lacking thioredoxin, is reported. Although thioredoxin is indispensable for the adenosine 3'-phosphate 5'-phosphosulfate (PAPS) sulfotransferase reaction under the usual conditions of assay in extracts of wild-type cells, the mutant grew as well as the wild type on sulfate, indicating that sulfate reduction is not rate limiting for growth. Another cofactor for the PAPS sulfotransferase reaction was found in extracts of the mutant that is absent from wild type cells. This cofactor was indistinguishable from thioredoxin in molecular weight but had a slightly different isoelectric point, allowing a separation of the two types of molecules by isoelectric focusing. Whereas electrons from nicotinamide adenine dinucleotide phosphate, reduced form, could be transferred via thioredoxin reductase or via glutathione and glutathione reductase to reduce thioredoxin in extracts of wild-type cells, electrons from nicotinamide adenine dinucleotide, reduced form, could only be transferred to the cofactor of the mutant via glutathione and glutathione reductase. All of the other available mutants blocked in sulfate reduction in E. coli contained normal levels of thioredoxin. The "PAPS reductase" mutant is shown to be blocked in the PAPS sulfotransferase reaction. We conclude that the cofactor found in mutant B tsnC*7004 is probably a mutated thioredoxin with an amino acid substitution that alters the isoelectric point and the reactivity with thioredoxin reductase.  相似文献   

18.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. Here we report the sequence and analysis of a novel developmentally regulated gene and cDNA (Pbgadph), encoding a GAPDH homologue (PbGAPDH), of the pathogenic dimorphic fungus Paracoccidioides brasiliensis. We have analyzed the protein, the cDNA and genomic sequences to provide insights into the structure, function, and potential regulation of PbGAPDH. That Pbgapdh encodes PbGAPDH was demonstrated by micro-sequencing of the native protein homologue isolated from the fungus proteome. The deduced amino acid sequence of Pbgapdh showed identity to those of from other species (88-76%). Phylogenetic analysis indicated that GAPDH could be useful for the determination of evolutionary relationships. Expression of the Pbgapdh gene and the cognate protein were developmentally regulated in phases of P. brasiliensis, with a higher expression in the yeast parasitic phase and was induced during the transition from mycelium to yeast and decreased during the reverse process, transition from yeast to mycelium.  相似文献   

19.
Role of molybdenum in nitrate reduction by chlorella   总被引:11,自引:4,他引:7       下载免费PDF全文
Molybdenum is absolutely required for the nitrate-reducing activity of the nicotinamide adenine dinucleotide nitrate reductase complex isolated from Chlorella fusca. The whole enzyme nicotinamide adenine dinucleotide nitrate reductase is formed by cells grown in the absence of added molybdate, but only its first activity (nicotinamide adenine dinucleotide diaphorase) is functional. The second activity of the complex, which subsequently participates also in the enzymatic transfer of electrons from nicotinamide adenine dinucleotide to nitrate (FNH2-nitrate reductase), depends on the presence of molybdenum. Neither molybdate nor nitrate is required for nitrate reductase synthesis de novo, but ammonia acts as a nutritional repressor of the complete enzyme complex. Under conditions which exclude de novo synthesis of nitrate reductase, the addition of molybdate to molybdenum-deficient cells clearly increases the activity level of this enzyme, thus suggesting in vivo incorporation of the trace metal into the pre-existing inactive apoenzyme.  相似文献   

20.
The rate of transport of L-amino acids by Saccharomyces cerevisiae epsilon 1278b increased with time in response to nitrogen starvation. This increase could be prevented by the addition of ammonium sulfate or cycloheximide. A slow time-dependent loss of transport activity was observed when ammonium sulfate (or ammonium sulfate plus cycloheximide) was added to cells after 3 h of nitrogen starvation. This loss of activity was not observed in the presence of cycloheximide alone. In a mutant yeast strain which lacks the nicotinamide adenine dinucleotide phosphate-dependent (anabolic) glutamate dehydrogenase, no significant decrease in amino acid transport was observed when ammonium sulfate was added to nitrogen-starved cells. A double mutant, which lacks the nicotinamide adenine dinucleotide phosphate-dependent enzyme and in addition has a depressed level of the nicotinamide adenine dinucleotide-dependent (catabolic) glutamate dehydrogenase, shows the same sensitivity to ammonium ion as the wild-type strain. These data suggest that the inhibition of amino acid transport by ammonium ion results from the uptake of this metabolite into the cell and its subsequent incorporation into the alpha-amino groups of glutamate and other amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号