首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 226 毫秒
1.
Exosomes are small membrane vesicles that intracellularly accumulate into late or multivesicular endosomes (multivesicular bodies, MVB). Exosomes have a particular lipid and protein content, reflecting their origin as intraluminal vesicles of late endosomes. The stimulation of several hematopoietic cells induces the fusion of the limiting membrane of the MVB with the plasma membrane, leading to the release of exosomes towards the extracellular environment. In T lymphocytes, stimulation of the T cell receptor (TCR) induces the fusion of the MVBs with the plasma membrane and exosomes carrying several bio-active proteins are secreted. Among these proteins, the pro-apoptotic protein Fas ligand (FasL) is released as a non-proteolysed form (mFasL), associated to the exosomes. These mFasL-bearing exosomes may trigger the apoptosis of T lymphocytes. Here, we present evidences supporting a role of diacylglycerol kinase alpha (DGKalpha), a diacylglycerol (DAG)-consuming enzyme, on the secretion of exosomes carrying mFasL, and the subsequent activation-induced cell death (AICD) on a T cell line and primary T lymphoblasts.  相似文献   

2.
Exosomes: small vesicles participating in intercellular communication   总被引:1,自引:0,他引:1  
Exosomes are small membrane vesicles, which eukaryotic cells secrete into their extracellular environment. They are formed as intraluminal vesicles by inward budding of the limiting membrane into the lumen of late endosomes. Upon fusion of thus arising multivesicular bodies with the plasma membrane, these vesicles are released as exosomes and enter body fluids such as blood plasma, urine and saliva. Containing certain combinations of lipids, adhesion and intercellular signaling molecules as well as RNAs, exosomes participate in intercellular communication processes. Depending on their origin, exosomes can modulate immune-regulatory processes, set up tumor escape mechanisms and mediate regenerative or degenerative processes, amongst others. In summary, exosomes are molecular complex intercellular signaling organelles with multiple functions, which appear as promising new tools for the clinical diagnostics and potentially for novel therapeutic strategies.  相似文献   

3.
Exosomes are small lipid bilayer-enclosed 30–140 nm diameter vesicles formed from endosomes. Exosomes are secreted by various cell types including endothelial cells, immune cells and other cardiovascular tissues, and they can be detected in plasma, urine, cerebrospinal fluid, as well as tissues. Exosomes were initially regarded as a disposal mechanism to discard unwanted materials from cells. Recent studies suggest that exosomes play an important role in mediating of intercellular communication through the delivery and transport of cellular components such as nucleic acids, lipids, and proteins and thus regulate cardiovascular disease. Further, the underlying mechanisms by which abnormally released exosomes promote cardiovascular disease are not well understood. This review highlights recent studies involving endothelial exosomes, gives a brief overview of exosome biogenesis and release, isolation and identification of exosomes, and provides a contemporary understanding of the endothelial exosome pathophysiology and potential therapeutic strategies.  相似文献   

4.
Exosomes: a common pathway for a specialized function   总被引:6,自引:0,他引:6  
Exosomes are membrane vesicles that are released by cells upon fusion of multivesicular bodies with the plasma membrane. Their molecular composition reflects their origin in endosomes as intraluminal vesicles. In addition to a common set of membrane and cytosolic molecules, exosomes harbor unique subsets of proteins linked to cell type-associated functions. Exosome secretion participates in the eradication of obsolete proteins but several findings, essentially in the immune system, indicate that exosomes constitute a potential mode of intercellular communication. Release of exosomes by tumor cells and their implication in the propagation of unconventional pathogens such as prions suggests their participation in pathological situations. These findings open up new therapeutic and diagnostic strategies.  相似文献   

5.
Exosome secretion: molecular mechanisms and roles in immune responses   总被引:1,自引:0,他引:1  
Exosomes are small membrane vesicles, secreted by most cell types from multivesicular endosomes, and thought to play important roles in intercellular communications. Initially described in 1983, as specifically secreted by reticulocytes, exosomes became of interest for immunologists in 1996, when they were proposed to play a role in antigen presentation. More recently, the finding that exosomes carry genetic materials, mRNA and miRNA, has been a major breakthrough in the field, unveiling their capacity to vehicle genetic messages. It is now clear that not only immune cells but probably all cell types are able to secrete exosomes: their range of possible functions expands well beyond immunology to neurobiology, stem cell and tumor biology, and their use in clinical applications as biomarkers or as therapeutic tools is an extensive area of research. Despite intensive efforts to understand their functions, two issues remain to be solved in the future: (i) what are the physiological function(s) of exosomes in vivo and (ii) what are the relative contributions of exosomes and of other secreted membrane vesicles in these proposed functions? Here, we will focus on the current ideas on exosomes and immune responses, but also on their mechanisms of secretion and the use of this knowledge to elucidate the latter issue.  相似文献   

6.
Role of exosomes in immune regulation   总被引:5,自引:0,他引:5  
Exosomes are small vesicles originating from late endosomes, 30-100 nm in diameter with typical cup-shape morphology. They are reported to bear high levels of a narrow spectrum of molecules involved in immune response and signal transduction. Apart from removing obsolete membrane proteins, some surprising biological functions of exosomes were unveiled recently and their applications in immunotherapy of tumors are currently intensively investigated. Dendritic cell- (DC) and tumor-derived exosomes have considerable anti-tumor effects in experimental studies and several clinical trials. Despite their potential applications in eliciting a "positive" immune response, exosomes might induce some "unwanted" immune responses, such as immune tolerance and immune evasion. Therefore further investigations about the physiological functions of exosomes and the optimal way of exosome application in tumor immunotherapy are necessary. This review presents recent developments in the field of exosome research and focuses on its applications to tumor immunotherapy.  相似文献   

7.
Exosomes are small membrane vesicles that are released into the extracellular compartment as a consequence of fusion of multivesicular endosomes with the plasma membrane. To unravel the molecular basis of protein sorting into exosomes, we have made a chimeric protein containing the cytosolic domain of the transmembrane subunit of the viral Env protein of BLV and the ectodomain of CD8 (CDTM-BLV-CD8). When expressed in K562 cells known to constitutively secrete exosomes, the chimera was found to be very efficiently targeted to the released vesicles. Very interestingly, the cytosolic domain of the Env protein contains peptide motifs potentially recognized by components of the ESCRT machinery that could be related to chimera sorting into the vesicles. Then, quantifying the chimera secretion, we investigated the site of exosome biogenesis in K562 cells using a pharmacological approach. We present different arguments indicating that CDTM-BLV-CD8-containing exosomes are likely formed from a recycling endosomal/TGN compartment.  相似文献   

8.
The field of exosome research is rapidly expanding, with a dramatic increase in publications in recent years. These small vesicles (30-100 nm) of endocytic origin were first proposed to function as a way for reticulocytes to eradicate the transferrin receptor while maturing into erythrocytes, and were later named exosomes. Exosomes are formed by inward budding of late endosomes, producing multivesicular bodies (MVBs), and are released into the environment by fusion of the MVBs with the plasma membrane. Since the first discovery of exosomes, a wide range of cells have been shown to release these vesicles. Exosomes have also been detected in several biological fluids, including plasma, nasal lavage fluid, saliva and breast milk. Furthermore, it has been demonstrated that the content and function of exosomes depends on the originating cell and the conditions under which they are produced. A variety of functions have been demonstrated for exosomes, such as induction of tolerance against allergen, eradication of established tumors in mice, inhibition and activation of natural killer cells, promotion of differentiation into T regulatory cells, stimulation of T cell proliferation and induction of T cell apoptosis. Year 2007 we demonstrated that exosomes released from mast cells contain messenger RNA (mRNA) and microRNA (miRNA), and that the RNA can be shuttled from one cell to another via exosomes. In the recipient cells, the mRNA shuttled by exosomes was shown to be translated into protein, suggesting a regulatory function of the transferred RNA. Further, we have also shown that exosomes derived from cells grown under oxidative stress can induce tolerance against further stress in recipient cells and thus suggest a biological function of the exosomal shuttle RNA. Cell culture media and biological fluids contain a mixture of vesicles and shed fragments. A high quality isolation method for exosomes, followed by characterization and identification of the exosomes and their content, is therefore crucial to distinguish exosomes from other vesicles and particles. Here, we present a method for the isolation of exosomes from both cell culture medium and body fluids. This isolation method is based on repeated centrifugation and filtration steps, followed by a final ultracentrifugation step in which the exosomes are pelleted. Important methods to identify the exosomes and characterize the exosomal morphology and protein content are highlighted, including electron microscopy, flow cytometry and Western blot. The purification of the total exosomal RNA is based on spin column chromatography and the exosomal RNA yield and size distribution is analyzed using a Bioanalyzer.  相似文献   

9.
Exosomes are nano-vesicles secreted by a wide range of mammalian cell types. These vesicles are abundant in serum and other extracellular fluids and contain a large repertoire of proteins, mRNA and microRNA. Exosomes have been implicated in cell to cell communication, the transfer of infectious agents, and neurodegenerative diseases as well as tumor progression. However, the precise mechanisms by which they are internalized and/or secreted remain poorly understood. In order to follow their release and uptake in breast tumor cells in real time, cell-derived exosomes were tagged with green fluorescent protein (GFP)-CD63 while human serum exosomes were rhodamine isothiocynate-labeled. We show that detachment of adherent cells from various substrata induces a rapid and substantial secretion of exosomes, which then concentrate on the cell surfaces and mediate adhesion to various extracellular matrix proteins. We also demonstrate that disruption of lipid rafts with methyl-beta-cyclodextrin (MβCD) inhibits the internalization of exosomes and that annexins are essential for the exosomal uptake mechanisms. Taken together, these data suggest that cellular detachment is accompanied by significant release of exosomes while cellular adhesion and spreading are enhanced by rapid uptake and disposition of exosomes on the cell surface.  相似文献   

10.
Exosomes are naturally occurring extracellular vesicles released by most mammalian cells in all body fluids. Exosomes are known as key mediators in cell‐cell communication and facilitate the transfer of genetic and biochemical information between distant cells. Structurally, exosomes are composed of lipids, proteins, and also several types of RNAs which enable these vesicles to serve as important disease biomarkers. Moreover, exosomes have emerged as novel drug and gene delivery tools owing to their multiple advantages over conventional delivery systems. Recently, increasing attention has been focused on exosomes for the delivery of drugs, including therapeutic recombinant proteins, to various target tissues. Exosomes are also promising vehicles for the delivery of microRNAs and small interfering RNAs, which is usually hampered by rapid degradation of these RNAs, as well as inefficient tissue specificity of currently available delivery strategies. This review highlights the most recent accomplishments and trends in the use of exosomes for the delivery of drugs and therapeutic RNA molecules.
  相似文献   

11.
作为一种纳米级别的囊泡,外泌体的相关研究近年来逐渐成为热点。外泌体来源于细胞内的多囊泡胞内体,经由细胞膜释放到细胞外。由于来自特定细胞类型的外泌体含有多种特异性的蛋白质和microRNA,使其成为了可以广泛用于疾病诊断及预后的新型生物标志物。相较于其他外源性药物载体,外泌体具有更低的免疫原性,并能够靶向作用于病变细胞。这使得由细胞天然产生或经过人工改造的外泌体作为一种新兴的药物载体具有良好的发展前景。特别是近几年,外泌体在临床应用领域的发展潜力不断获得拓展,针对肿瘤、糖尿病、心脑血管疾病、神经退行性病变等重大疾病,以外泌体为基础的疾病诊断和药物的研发都取得了快速的进步。本篇综述重点介绍了外泌体作为一种生物标志物在疾病诊断和预后中的应用,同时阐述了外泌体作为一种新兴的药物载体所具有的优势以及存在的问题。  相似文献   

12.
Exosomes are small membrane vesicles released by a variety of cell types. Exosomes contain genetic materials, such as mRNAs and microRNAs (miRNAs), implying that they may play a pivotal role in cell-to-cell communication. Mesenchymal stem cells (MSCs), which potentially differentiate into multiple cell types, can migrate to the tumor sites and have been reported to exert complex effects on tumor progression. To elucidate the role of MSCs within the tumor microenvironment, previous studies have suggested various mechanisms such as immune modulation and secreted factors of MSCs. However, the paracrine effects of MSC-derived exosomes on the tumor microenvironment remain to be explored. The hypothesis of this study was that MSC-derived exosomes might reprogram tumor behavior by transferring their molecular contents. To test this hypothesis, exosomes from MSCs were isolated and characterized. MSC-derived exosomes exhibited different protein and RNA profiles compared with their donor cells and these vesicles could be internalized by breast cancer cells. The results demonstrated that MSC-derived exosomes significantly down-regulated the expression of vascular endothelial growth factor (VEGF) in tumor cells, which lead to inhibition of angiogenesis in vitro and in vivo. Additionally, miR-16, a miRNA known to target VEGF, was enriched in MSC-derived exosomes and it was partially responsible for the anti-angiogenic effect of MSC-derived exosomes. The collective results suggest that MSC-derived exosomes may serve as a significant mediator of cell-to-cell communication within the tumor microenvironment and suppress angiogenesis by transferring anti-angiogenic molecules.  相似文献   

13.
外泌体(exosomes)是一种能被大多数细胞分泌的微小膜泡,是具有脂质双层膜结构的细胞外囊泡。现认为外泌体是细胞外囊泡(extracellular vesicles, EVs)的一种亚群。研究表明,外泌体是细胞间信息传递的一种载体。肝脏既可以分泌外泌体,同时也是其他组织细胞产生的外泌体的作用靶点,且肝内与肝外来源的外泌体与肝纤维化的形成、发生、发展均有密切联系。本文主要就外泌体在肝纤维化相关疾病中的作用及外泌体与肝纤维化指标之间的关系进行综述。  相似文献   

14.
Exosomes are extracellular vesicles that primarily exist in bodily fluids such as blood. Autophagy is an intracellular degradation process, which, along with exosomes, can significantly influence human health and has therefore attracted considerable attention in recent years. Exosomes have been shown to regulate the intracellular autophagic process, which, in turn, affects the circulating exosomes. However, crosstalk between exosomal and autophagic pathways is highly complex, depends primarily on the environment, and varies greatly in different diseases. In addition, studies have demonstrated that exosomes, from specific cell, can mitigate several diseases by regulating autophagy, which can also affect the excessive release of some harmful exosomes. This phenomenon lays a theoretical foundation for the improvement of many diseases. Herein, we review the mechanisms and clinical significance of the association and regulation of exosomes and autophagy, in order to provide a new perspective for the prevention and treatment of associated diseases.  相似文献   

15.
Exosome function: from tumor immunology to pathogen biology   总被引:3,自引:0,他引:3  
Exosomes are the newest family member of 'bioactive vesicles' that function to promote intercellular communication. Exosomes are derived from the fusion of multivesicular bodies with the plasma membrane and extracellular release of the intraluminal vesicles. Recent studies have focused on the biogenesis and composition of exosomes as well as regulation of exosome release. Exosomes have been shown to be released by cells of hematopoietic and non-hematopoietic origin, yet their function remains enigmatic. Much of the prior work has focused on exosomes as a source of tumor antigens and in presentation of tumor antigens to T cells. However, new studies have shown that exosomes might also promote cell-to-cell spread of infectious agents. Moreover, exosomes isolated from cells infected with various intracellular pathogens, including Mycobacterium tuberculosis and Toxoplasma gondii , have been shown to contain microbial components and can promote antigen presentation and macrophage activation, suggesting that exosomes may function in immune surveillance. In this review, we summarize our understanding of exosome biogenesis but focus primarily on new insights into exosome function. We also discuss their possible use as disease biomarkers and vaccine candidates.  相似文献   

16.
Cellular communication can be mediated by the exchange of biological information, mainly in the form of proteins and RNAs. This can occur when extracellular vesicles, such as exosomes, secreted by a donor cell are internalized by an acceptor cell. Exosomes bear specific repertoires of proteins and RNAs, indicating the existence of mechanisms that control the sorting of molecules into them. Knowledge about loadings and processes and mechanisms of cargo sorting of exosomes is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis. In this review, we will discuss the molecular mechanisms associated with exosome secretion and their specific cargo sorting, with special attention to the sorting of RNAs and proteins, and thus the outcome and the emerging therapeutic opportunities of the communication between the exosome-producer and recipient cells.  相似文献   

17.
Exosome-based immunotherapy   总被引:24,自引:0,他引:24  
Exosomes are small membrane vesicles originating from late endosomes and secreted by hematopoietic and epithelial cells in culture. Exosome proteic and lipid composition is unique and might shed some light into exosome biogenesis and function. Exosomes secreted from professional antigen-presenting cells (i.e., B lymphocytes and dendritic cells) are enriched in MHC class I and II complexes, costimulatory molecules, and hsp70–90 chaperones, and have therefore been more extensively studied for their immunomodulatory capacities in vitro and in vivo. This review will present the main biological features pertaining to tumor or DC-derived exosomes, will emphasize their immunostimulatory function, and will discuss their implementation in cancer immunotherapy.Abbreviations APC antigen-presenting cell - ASI active specific immunotherapy - CTL cytotoxic T lymphocyte - DC dendritic cell - FDC follicular dendritic cell - MD-DC monocyte-derived dendritic cell - GMP good manufacturing procedure - HLA human leukocyte antigen - HSP heat shock protein - MHC major histocompatibility complex - MVB multivesicular body - ExAs ascitis-derived exosomes - DEX DC-derived exosome - TEX tumor cell–derived exosome This work was presented at the first Cancer Immunology and Immunotherapy Summer School, 8–13 September 2003, Ionian Village, Bartholomeio, Peloponnese, Greece.  相似文献   

18.
Exosomes are small membrane vesicles of endosomal origin, which are secreted from a variety of cell types. During the 1980s exosomes were first described as organelles to remove cell debris and unwanted molecules. The discovery that exosomes contain proteins, messenger and microRNAs suggests a role as mediators in cell-to-cell communication. Exosomes can be transported between different cells and influence physiological pathways in the recipient cells. In the present review, we will summarize the biological function of exosomes and their involvement in physiological and pathological processes. Moreover, the potential clinical application of exosomes as biomarkers and therapeutic tools will be discussed.  相似文献   

19.
外泌体是细胞外囊泡的一种,由多囊泡体和细胞膜融合后释放到细胞外。外泌体能递送有功能的分子,包括蛋白质、脂质和核酸给受体细胞,参与细胞间通讯,影响细胞的各种生理与病理功能。近年来,越来越多研究发现,外泌体在病原微生物感染性疾病发病机制中也发挥重要作用。在慢性感染中,外泌体能传播感染性蛋白质和病毒RNA,并改变未感染细胞的功能。同时,这些具有极强免疫原性的蛋白质可向免疫系统递送病原信息,激活免疫系统。本文就外泌体在慢性病原体感染中的相关研究进展进行综述。研究这些机制,可为慢性感染的诊断和治疗提供新的思路。  相似文献   

20.
During the orchestrated process leading to mature erythrocytes, reticulocytes must synthesize large amounts of hemoglobin, while eliminating numerous cellular components. Exosomes are small secreted vesicles that play an important role in this process of specific elimination. To understand the mechanisms of proteolipidic sorting leading to their biogenesis, we have explored changes in the composition of exosomes released by reticulocytes during their differentiation, in parallel to their physical properties. By combining proteomic and lipidomic approaches, we found dramatic alterations in the composition of the exosomes retrieved over the course of a 7-day in vitro differentiation protocol. Our data support a previously proposed model, whereby in reticulocytes the biogenesis of exosomes involves several distinct mechanisms for the preferential recruitment of particular proteins and lipids and suggest that the respective prominence of those pathways changes over the course of the differentiation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号