首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Belser JA  Zeng H  Katz JM  Tumpey TM 《Journal of virology》2011,85(19):10117-10125
Highly pathogenic avian influenza (HPAI) H7 virus infection in humans frequently results in conjunctivitis as a major symptom. However, our understanding of what properties govern virus subtype-specific tropism, and of the host responses responsible for eliciting ocular inflammation and pathogenicity following influenza virus infection, are not well understood. To study virus-host interactions in ocular tissue, we infected primary human corneal and conjunctival epithelial cells with H7, H5, and H1 subtype viruses. We found that numerous virus subtypes were capable of infecting and replicating in multiple human ocular cell types, with the highest titers observed with highly pathogenic H7N7 and H5N1 viruses. Similar patterns of proinflammatory cytokine and chemokine production following influenza virus infection were observed in ocular and respiratory cells. However, primary ocular cells infected with HPAI H7N7 viruses were found to have elevated levels of interleukin-1β (IL-1β), a cytokine previously implicated in ocular disease pathology. Furthermore, H7N7 virus infection of corneal epithelial cells resulted in enhanced and significant increases in the expression of genes related to NF-κB signal transduction compared with that after H5N1 or H1N1 virus infection. The differential induction of cytokines and signaling pathways in human ocular cells following H7 virus infection marks the first association of H7 subtype-specific host responses with ocular tropism and pathogenicity. In particular, heightened expression of genes related to NF-κB-mediated signaling transduction following HPAI H7N7 virus infection in primary corneal epithelial cells, but not respiratory cells, identifies activation of a signaling pathway that correlates with the ocular tropism of influenza viruses within this subtype.  相似文献   

2.
3.
4.
Ocular pigment epithelium (PE) cells promote the generation of T regulators (PE-induced Treg cells). Moreover, T cells exposed to PE acquire the capacity to suppress the activation of bystander T cells via TGFbeta. Membrane-bound TGFbeta on iris PE cells interacts with TGFbeta receptors on T cells, leading to the conversion of T cells to CD8(+) Treg cells via a cell contact-dependent mechanism. Conversely, soluble forms of TGFbeta produced by retinal PE cells can convert CD4(+) T cells into Treg cells in a manner that is independent of cell contact. In this study, we looked at the expression of immunoregulatory factors (TGFbeta, thrombospondins, CD59, IL-1 receptor antagonist, etc.) in PE cells as identified via an oligonucleotide microarray. Several thrombospondin-binding molecules were detected, and thus we focused subsequent analyses on thrombospondins. Via the conversion of latent TGFbeta to an active form that appears to be mediated by thrombospondin 1 (TSP-1), cultured iris PE and retinal PE cells induce a PE-induced Treg cell fate. After conversion, both ocular PE and PE-induced Treg cells express TSP-1. Regulatory T cell generation was amplified when the T cells also expressed TSP-1. In addition, PE-induced Treg cells significantly suppressed activation of bystander T cells via TSP-1. These results strongly suggest that the ability of ocular PE and PE-induced Treg cells to suppress bystander T cells depends on their capacity to produce TSP-1. Thus, intraocular TSP-1 produced by both ocular parenchymal cells and regulatory T cells is essential for immune regulation in the eye.  相似文献   

5.
In this paper, we consider the ocular lens in the context of contemporary developments in biological ideas. We attempt to reconcile lens biology with stem cell concepts and a dearth of lens tumors. Historically, the lens has been viewed as a closed system, in which cells at the periphery of the lens epithelium differentiate into fiber cells. Theoretical considerations led us to question whether the intracapsular lens is indeed self-contained. Since stem cells generate tumors and the lens does not naturally develop tumors, we reasoned that lens stem cells may not be present within the capsule. We hypothesize that lens stem cells reside outside the lens capsule, in the nearby ciliary body. Our ideas challenge the existing lens biology paradigm. We begin our discussion with lens background information, in order to describe our lens stem cell hypothesis in the context of published data. Then we present the ciliary body as a possible source for lens stem cells, and conclude by comparing the ocular lens with the corneal epithelium.  相似文献   

6.
Minor H incompatible P815 tumor cells inoculated into the anterior chamber (AC) of the eyes of BALB/c mice grow progressively, revealing this to be an immunologically privileged site. By contrast, a similar inoculation of tumor cells is rapidly rejected from nonprivileged ocular sites (subconjunctiva). Mice with progressively growing AC-tumors and those that reject their ocular subconjunctiva tumors both have expanded clones of tumor-specific cytotoxic precursor cells (pTc) in their spleens and cervical lymph nodes. In an effort to determine why the expanded pool of primed pTc is unable to effect rejection of AC intraocular tumors, we have examined the susceptibility of the tumor cells growing within the immunologically privileged AC to lysis by cytotoxic T cells and the cytotoxic function of tumor-infiltrating lymphocytes. P815 tumor cells extracted from intraocular tumors and P815 cells maintained in routine tissue culture are equally susceptible to lysis when exposed in vitro to fully differentiated, DBA/2-specific cytotoxic T cells. Thus, progressively growing tumor cells within the AC are not insensitive to immune-mediated lysis by cytotoxic T cells. We have been able to harvest significant numbers of DBA/2-specific pTc from these same intraocular tumors. When the tumor-infiltrating lymphocytes are driven in vitro with exogenous IL-2, they acquire the capacity to lyse specifically P815 tumor cells. However, no evidence of fully cytotoxic, tumor-specific T cells was found among lymphocytes harvested from intraocular tumors, i.e., when the harvested cells were tested immediately for cytolytic activity. Inasmuch as we have reported that directly cytotoxic T cells are present during tumor rejection at nonimmunologically privileged ocular sites, such as the subconjunctival space, we conclude that progressive growth of P815 tumor cells within the anterior chamber is due in part to a failure of infiltrating pTc to differentiate in situ into fully functional cytotoxic effector cells.  相似文献   

7.
8.
Using a viral-induced immunopathology model, we showed that when CD4(+) T cells were allowed to undergo homeostatic expansion prior to ocular herpes simplex virus infection, mice developed more severe inflammatory lesions with the increased severity associated with enhanced effector function of ocular CD4(+) T cells, and blocking their functional activity reduced the lesion severity. Additionally, homeostatically expanded CD4(+) T cells upregulated VLA-4, and in vivo administration of anti-VLA-4 mAb significantly decreased the homeostatic proliferation. Furthermore, blocking of VLA-4 interaction also diminished the infiltration of CD4(+) T cells into the cornea and decreased lesion severity. Our results imply that homeostatic expansion of T cells, as could occur in a virus-induced lymphopenia, may generate cells with enhanced effector function that can contribute to tissue damage.  相似文献   

9.
Aims Recent studies have showed that erythropoietin (EPO) is a neuroprotectant for central nerve system neurons in addition to being a hematopoietic cytokine in response to hypoxia. In this study, we investigate the role of the EPO/EPO receptor (EPOR) system in the rat retina after ocular hypertension injury that mimics glaucoma. Methods Elevated intraocular pressure was induced by laser coagulation of the episcleral and limbal veins. Expression of EPO and EPOR in the normal and glaucomous retinas was investigated by immunohistochemistry and Western blot. To examine the effects of endogenous EPO on the survival of retinal ganglion cells (RGCs) subjected to hypertensive injury, soluble EPOR was directly injected into the vitreous body. Recombinant human EPO was both intravitreally and systemically administrated to study the effect of exogenous EPO on the survival of RGCs after ocular hypertension injury. Results Immunohistochemistry studies identified Müller cells as the main source of EPO in the normal retina. Expression of EPO and EPOR proteins was increased significantly 2 weeks after ocular hypertension. RGCs, amacrine and bipolar cells all demonstrated an increased expression of EPOR after ocular hypertension. Neutralization of endogenous EPO with soluble EPOR exacerbated ocular hypertensive injury, suggesting a role of the EPO/EPOR system in the survival of RGCs after injury. Similarly, topical and systemic administration of recombinant human EPO rescues RGCs after chronic ocular hypertension. Conclusions These results indicate that an endogenous EPO/EPOR system participates in intrinsic recovery mechanisms after retina injury and RGCs might be rescued by exogenous administration of EPO.  相似文献   

10.
Infectious agents in the eye induce both a local and a systemic humoral immune response. Previously, differences in Ag recognition were observed between systemic and ocular derived IgG of patients with ocular toxoplasmosis. This finding implied a nonrandom distribution of IgG-producing B cells in the inflamed eye. In the present study, we compared the intraocular and systemic B cell responses of patients with ocular toxoplasmosis to a single Toxoplasma gondii Ag. Two series of C-terminally deleted recombinant T. gondii GRA-2 proteins were constructed to delineate IgG B cell epitopes of paired ocular and serum samples. Differences in epitope region recognition between the ocular and systemic compartment were detected in 9 of 13 patients. The difference in distribution of GRA-2 epitopes between paired samples is indicative of a local GRA-2 specific B cell population functionally different from the systemic GRA-2-specific B cell population. Our results suggest a selective activation of a subset of B cells locally in nonlymphoid tissue.  相似文献   

11.
In man, mutations of the megalin-encoding gene causes the rare Donnai-Barrow/Facio-Oculo-Acoustico-Renal Syndrome, which is partially characterized by high-grade myopia. Previous studies of renal megalin function have established that megalin is crucial for conservation of renal filtered nutrients including vitamin A; however, the role of megalin in ocular physiology and development is presently unknown. Therefore, we investigate ocular megalin expression and the ocular phenotype of megalin-deficient mice. Topographical and subcellular localization of megalin as well as the ocular phenotype of megalin-deficient mice were examined with immunological techniques using light, confocal and electron microscopy. We identified megalin in the retinal pigment epithelium (RPE) and non-pigmented ciliary body epithelium (NPCBE) in normal mouse eyes. Immunocytochemical investigations furthermore showed that megalin localizes to vesicular structures in the RPE and NPCBE cells. Histological investigations of ocular mouse tissue also identified a severe myopia phenotype as well as enlarged RPE melanosomes and abnormal ciliary body development in the megalin-deficient mice. In conclusion, the complex ocular phenotype observed in the megalin-deficient mice suggests that megalin-mediated developmental abnormalities may contribute to the high myopia phenotype observed in the Donnai-Barrow Syndrome patients and, thus, that megalin harbors important roles in ocular development and physiology. Finally, our data show that megalin-deficient mice may provide a valuable model for future studies of megalin in ocular physiology and pathology.  相似文献   

12.
As specialized sentinels between the innate and adaptive immune response, APCs are essential for activation of Ag-specific lymphocytes, pathogen clearance, and generation of immunological memory. The process is tightly regulated; however, excessive or atypical stimuli may ignite activation of APCs in a way that allows self-Ag presentation to autoreactive T cells in the context of the necessary costimulatory signals, ultimately resulting in autoimmunity. Studies in both animal models and patients suggest that dry eye is a chronic CD4(+) T cell-mediated ocular surface autoimmune-based inflammatory disease. Using a desiccating stress-induced mouse model of dry eye, we establish the fundamental role of APCs for both the generation and maintenance of ocular-specific autoreactive CD4(+) T cells. Subconjunctival administration of liposome-encapsulated clodronate efficiently diminished resident ocular surface APCs, inhibited the generation of autoreactive CD4(+) T cells, and blocked their ability to cause disease. APC-dependent CD4(+) T cell activation required intact draining cervical lymph nodes, as cervical lymphadenectomy also inhibited CD4(+) T cell-mediated dry eye disease. In addition, local depletion of peripheral conjunctival APCs blocked the ability of dry eye-specific CD4(+) T cells to accumulate within the ocular surface tissues, suggesting that fully primed and targeted dry eye-specific CD4(+) T cells require secondary activation by resident ocular surface APCs for maintenance and effector function. These data demonstrate that APCs are necessary for the initiation and development of experimental dry eye and support the standing hypothesis that dry eye is a self-Ag-driven autoimmune disease.  相似文献   

13.
The eye is a relatively small but very complex organ. It is responsible for vision. Most of its cells are terminally differentiated, and several pathologies affecting those cells lead to vision loss and eventual blindness. Several years ago, a group of cells, located in the limbus, was identified as having the capacity of self-renewal and later on found to feed the renewal of the corneal epithelial layer. Since then, this niche of stem cells has been studied in order to provide clues that can be valuable for the regeneration of ocular structures. The worldwide shortage of donors, increased risk of transmissible diseases and immune rejection and the increased life expectancy, all contributed for the development of strategies to regenerate or repair ocular tissues. In this review we focus on two approaches for ocular regeneration: one based on stem cells and the other one based on tissue engineering strategies, and present examples where these two strategies overlap. We review the sources of cells and tissue engineering strategies for the regeneration of the cornea and of the retina, summarizing the most relevant and recent findings.  相似文献   

14.
Retinoids have many functions in the eye, including, perhaps, the visual guidance of ocular growth. Therefore, we identified where retinoid receptors, binding proteins, and biosynthetic enzymes are located in the ocular tissues of the chick as a step toward discovering where retinoids are generated and where they act. Using antibodies to interphotoreceptor retinoid binding protein (IRBP), cellular retinol binding protein (CRBP), cellular retinoic acid binding protein (CRABP), cellular retinaldehyde binding protein (CRALBP), retinaldehyde dehydrogenase (RALDH), and retinoic acid receptors (RAR and RXR), we localized these proteins to cells in the retina, retinal pigmented epithelium, choroid and sclera of the chick eye. IRBP was detected in the photoreceptor layer and pigmented epithelium; CRBP was in the pigmented epithelium; CRABP was in amacrine and bipolar cells in the retina; CRALBP was in Müller cells, pigmented epithelium, choroid, and fibrous sclera; RALDH was in retinal amacrine cells, pigmented epithelium, and choroid; RAR was in amacrine cells, choroid, and chondrocytes and fibroblasts in the sclera; and RXR was in amacrine and ganglion cells, bipolar cell nuclei, choroid, and chondrocytes. We also found that the growth-modulating toxins colchicine and quisqualate destroyed selectively different subsets of CRABP-containing amacrine cells. We conclude that the distribution of proteins involved in retinoid metabolism is consistent with a role of retinoids not only in phototransduction, but also in maintenance of cellular phenotype and visual guidance of ocular growth.  相似文献   

15.
Retinoic acid (RA), the active derivative of vitamin A (retinol), is an essential morphogen signaling molecule and major regulator of embryonic development. The dysregulation of RA levels during embryogenesis has been associated with numerous congenital anomalies, including craniofacial, auditory, and ocular defects. These anomalies result from disruptions in the cranial neural crest, a vertebrate‐specific transient population of stem cells that contribute to the formation of diverse cell lineages and embryonic structures during development. In this review, we summarize our current knowledge of the RA‐mediated regulation of cranial neural crest induction at the edge of the neural tube and the migration of these cells into the craniofacial region. Further, we discuss the role of RA in the regulation of cranial neural crest cells found within the frontonasal process, periocular mesenchyme, and pharyngeal arches, which eventually form the bones and connective tissues of the head and neck and contribute to structures in the anterior segment of the eye. We then review our understanding of the mechanisms underlying congenital craniofacial and ocular diseases caused by either the genetic or toxic disruption of RA signaling. Finally, we discuss the role of RA in maintaining neural crest‐derived structures in postembryonic tissues and the implications of these studies in creating new treatments for degenerative craniofacial and ocular diseases.  相似文献   

16.
Glaucoma is defined as a chronic and progressive optic nerve neuropathy, characterized by apoptosis of retinal ganglion cells (RGC) that leads to irreversible blindness. Ocular hypertension is a major risk factor, but in glaucoma RGC death can persist after ocular hypertension is normalized. To understand the mechanism underlying chronic RGC death we identified and characterized a gene product, alpha2-macroglobulin (alpha2M), whose expression is up-regulated early in ocular hypertension and remains up-regulated long after ocular hypertension is normalized. In ocular hypertension retinal glia up-regulate alpha2M, which binds to low-density lipoprotein receptor-related protein-1 receptors in RGCs, and is neurotoxic in a paracrine fashion. Neutralization of alpha2M delayed RGC loss during ocular hypertension; whereas delivery of alpha2M to normal eyes caused progressive apoptosis of RGC mimicking glaucoma without ocular hypertension. This work adds to our understanding of the pathology and molecular mechanisms of glaucoma, and illustrates emerging paradigms for studying chronic neurodegeneration in glaucoma and perhaps other disorders.  相似文献   

17.
Stem cells in the eye   总被引:3,自引:0,他引:3  
In the adult organism, all tissue renewal and regeneration depends ultimately on somatic stem cells, and the eye is no exception. The importance of limbal stem cells in the maintenance of the corneal epithelium has long been recognised, and such cells are now used clinically for repair of a severely damaged cornea. The slow cycling nature of lens epithelial cells and their ability to terminally differentiate into fiber cells are suggestive of a stem cell lineage. Furthermore, recent studies have identified progenitor cells in the retina and ocular vasculature which may have important implications in health and disease. Although the recent literature has become flooded with articles discussing aspects of stem cells in a variety of tissues our understanding of stem cell biology, especially in the eye, remains limited. For instance, there is no definitive marker for ocular stem cells despite a number of claims in the literature, the patterns of stem cell growth and amplification are poorly understood and the microenvironments important for stem cell regulation and differentiation pathways are only now being elucidated. A greater understanding of ocular stem cell biology is essential if the clinical potential for stem cells is to be realised. For instance; How do we treat stem cell deficiencies? How do we use stem cells to regenerate damaged retinal tissue? How do we prevent stem cell lineages contributing to retinal vascular disease? This review will briefly consider the principal stem cells in the mature eye but will focus in depth on limbal stem cells and corneal epithelium. It will further discuss their role in pathology and their potential for therapeutic intervention.  相似文献   

18.
SARI (Suppressor of AP-1, regulated by IFN-β) is known to play an important role in some systemic disease processes such an inflammatory conditions and cancer. We hypothesize that SARI may also play a role in ocular diseases involving inflammation and neovascularization. To explore our hypothesis, further, we investigated an endotoxin-induced uveitis (EIU) and experimental argon laser-induced choroidal neovascularization (CNV) model in SARI wild-type (SARIWT) and SARI-deficient (SARI−/−) mice. Through imaging, morphological and immunohistochemical (IHC) studies, we found that SARI deficiency exacerbated the growth of CNV. More VEGF-positive cells were presented in the retina of SARI−/− mice with CNV. Compared to SARIWT mice, more inflammatory cells infiltrated the ocular anterior segment and posterior segments in SARI−/− mice with EIU. Collectively, the results point to a potential dual functional role of SARI in inflammatory ocular diseases, suggesting that SARI could be a potential therapy target for ocular inflammation and neovascularization.  相似文献   

19.
Human β-defensins are cationic peptides produced by epithelial cells that have been proposed to be an important component of immune function at mucosal surfaces. In this study, the expression and inducibility of β-defensins at the ocular surface were investigated in vitro and in vivo. Expression of human β-defensins (hBD) was determined by RT-PCR and immunohistochemistry in tissues of the ocular surface and lacrimal apparatus. Cultured corneal and conjunctival epithelial cells were stimulated with proinflammatory cytokines and supernatants of different ocular pathogens. Real-time PCR and ELISA experiments were performed to study the effect on the inducibility of hBD2 and 3. Expression and inducibility of mouse β-defensins-2, -3 and -4 (mBD2–4) were tested in a mouse ocular surface scratch model with and without treatment of supernatants of a clinical Staphylococcus aureus (SA) isolate by means of immunohistochemistry. Here we show that hBD1, -2, -3 and -4 are constitutively expressed in conjunctival epithelial cells and also partly in cornea. Healthy tissues of the ocular surface, lacrimal apparatus and human tears contain measurable amounts of hBD2 and -3, with highest concentrations in cornea and much lower concentrations in all other tissues, especially tears, suggesting intraepithelial storage of β-defensins. Exposure of cultured human corneal and conjunctival epithelial cells to proinflammatory cytokines and supernatants of various bacteria revealed that IL-1β is a very strong inductor of hBD2 and Staphylococcus aureus increases both hBD2 and hBD3 production in corneal and conjunctival epithelial cells. A murine corneal scratch model demonstrated that β-defensins are only induced if microbial products within the tear film come into contact with a defective epithelium. Our finding suggests that the tear film per se contains so much antimicrobial substances that epithelial induction of β-defensins occurs only as a result of ocular surface damage. These findings widen our knowledge of the distribution, amount and inducibility of β-defensins at the ocular surface and lacrimal apparatus and show how β-defensins are regulated specifically.  相似文献   

20.
In an effort to identify a promoter suitable for studying early ocular development, we generated transgenic mice carrying the lacZ reporter gene linked to the tyrosinase-related protein 2 (TRP2) promoter. TRP2-lacZ was expressed in early retinal pigment epithelium (RPE) and early neural crest cells in embryos. The promoter activity was robust and consistent in independent transgenic lines. The transgene was also expressed in the optic nerve and neural crest-derived neuronal cells in which the endogenous TRP2 gene is not expressed. This suggests that repressor elements may be missing in the promoter used in this study. To test whether this promoter can be used to study melanocyte development, we cross-mated TRP2-lacZ transgenic mice with mice heterozygous for the Patch (Ph) mutation. The pattern of beta-galactosidase activity in the embryos correlates well with the pigmentation phenotype in postnatal and adult Ph/+ mice. We also generated transgenic mice expressing fibroblast growth factor 9 (FGF9) directed by the TRP2 promoter and examined the effect on ocular development. Ectopic expression of FGF9 in the early embryonic RPE switched its differentiation pathway to a neuronal fate, resulting in formation of a duplicated neural retina in transgenic mice. These studies demonstrate that the TRP2 promoter is valuable for transgenic studies of ocular differentiation and development of neural crest cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号