首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
M Oliveberg  B G Malmstr?m 《Biochemistry》1992,31(14):3560-3563
The reactions of the fully reduced, three-electron-reduced, and mixed-valence cytochrome oxidase with molecular oxygen have been followed in flow-flash experiments, starting from the CO complexes, at 445 and 830 nm at pH 7.4 and 25 degrees C. With the fully reduced and the three-electron-reduced enzyme, four kinetic phases with rate constants in the range from 1 x 10(5) to 10(3) s-1 can be observed. The initial fast phase is associated with an absorbance increase at 830 nm. This is followed by an absorbance decrease (2.8 x 10(4) s-1), the amplitude of which increases with the degree of reduction of the oxidase. The third phase (6 x 10(3) s-1) displays the largest absorbance change at both wavelengths in the fully reduced enzyme and is not seen in the mixed-valence oxidase at 830 nm; a change with opposite sign but with a similar rate constant is found at 445 nm in this enzyme form. The slowest phase (10(3) s-1) is also largest in the fully reduced oxidase and not seen in the mixed-valence enzyme. It is suggested that O2 initially binds to reduced CuB and is then transferred to cytochrome a3 before electron transfer from cytochrome a/CuA takes place. The fast oxidation of cytochrome a seen with the fully reduced enzyme is suggested not to occur during natural turnover. A reaction cycle for the complete turnover of the enzyme is presented. In this cycle, the oxidase oscillates between electron input and output states of the proton pump, characterized by cytochrome a having a high and a low reduction potential, respectively.  相似文献   

2.
Electron transfer process in cytochrome oxidase after pulse radiolysis   总被引:3,自引:0,他引:3  
The reduction of bovine heart cytochrome oxidase by the 1-methylnicotinamide (MNA) radical was investigated by the use of pulse radiolysis. With the decay of the MNA radical, the absorption at 445 and 605 nm, a characteristic to ferrous heme a of the oxidase, increased. The kinetic difference spectrum obtained was similar to that of the fully reduced minus the fully oxidized form of the oxidase, and was not different from that obtained in the reaction of the MNA radical with the mixed valence CO complex of the oxidase, where heme a3 is the CO-bound reduced form with heme a oxidized. This suggests that the absorption changes at 445 and 605 nm arise from the reduction of heme a, not heme a3. In order to elucidate the contribution of "visible" copper in this reaction, the absorption of the oxidase in the near-infrared region was measured. A decrease of the 830 nm band due to the reduction of visible copper was detected with a half-life of 5 microseconds. This absorption change obeyed pseudo-first order kinetics and its rate constant increased with the concentration of the oxidase. This suggests that the absorption change at 830 nm is followed by a bimolecular reaction of the MNA radical with visible copper of the oxidase. After the first phase of the reduction, the return of the 830 nm band corresponding to oxidation of the copper was observed with a half-life of 100 microseconds. Concomitantly, the absorption at 605 and 445 nm due to the reduction of heme a increased. The rates of oxidation of the copper were identical to those of the reduction of heme a and independent of the oxidase concentration. This suggests that the MNA radical reacts with visible copper of the oxidase with a second order rate constant of 1.5 X 10(9) m-1 s-1 and subsequently the electron flows to heme a by intramolecular electron migration with a first order rate constant of 1.8 X 10(4) s-1. An activation energy of the intramolecular electron transfer was calculated to be 2.8 kcal/mol in the range 4-33 degrees C.  相似文献   

3.
The reaction of fully reduced and mixed-valence cytochrome oxidase with O2 has been followed in flow-flash experiments, starting from the CO complexes, at 428, 445, 605 and 830 nm between pH 5.8b and 9.0 in the temperature range of 2-40 degrees C. With the fully reduced enzyme, four kinetic phase with rate constants at pH 7.4 and 25 degrees C of 9 x 10(4), 2.5 x 10(4), 1.0 x 10(4) and 800 s(-1), respectively, are observed. The rates of the three last phases display a very small temperature dependence, corresponding to activation energies in the range 13-54 kJ x mol(-1). The rates of the third and fourth phases decrease at high pH due to the deprotonation of groups with pKa values of 8.3 and 8.8, respectively, but also the second phase appears to have a small pH dependence. In the reaction of the mixed-valence enzyme, three kinetic phases with rate constants at pH 7.4 and 25 degrees C of 9 x 10(4), 6000 and 150 s(-1), respectively, are observed. The third phase only has a small temperature dependence, corresponding to an activation energy of 20 kJ x mol(-1). No pH dependence could be detected for any phase. Reaction schemes consistent with the experimental observations are presented. The pH dependencies of the rates of the two final phase in the reaction of the fully reduced enzyme are proposed to be related to the involvement of protons in the reduction of a peroxide intermediate. The temperature dependence data suggest that the reorganization energies and driving forces are closely matched in all electron transfer steps with both enzyme forms. It is suggested that the slowest step in the reaction of the mixed-valence enzyme is a conformation change involved in the reaction cycle of cytochrome oxidase as a proton pump.  相似文献   

4.
The reaction of the electrostatic cytochrome c-cytochrome oxidase complex with oxygen is measured by transient absorption spectroscopy. The oxygen reaction is initiated by photolytic removal of CO from cytochrome oxidase, using a flash-pumped dye laser. The subsequent reaction of the cytochrome c-cytochrome oxidase complex with oxygen is reported at 550, 605, 744, and 830 nm at different cytochrome c:cytochrome oxidase ratios and different oxygen concentrations. In the absence of cytochrome c the time course of the reaction of the oxidase is well described by a triple exponential process at any of the measured wavelengths. The three processes are well resolved at high O2 levels (i.e. greater than 200 microM), where they reach first-order rate limits of 2.4 x 10(4), 7.5 x 10(3), and 650 s-1. When cytochrome c is added the oxidation of cytochrome a and one of the redox active cooper centers (CuA) are interrupted. The maximal effect of cytochrome c on the oxidation of the oxidase occurs at a c:aa3 ratio of 1. Cytochrome c reacts in a biphasic process with rates of up to 7 x 10(3) and 550 s-1 at high oxygen. The fast phase takes up 60% of the process, and this is independent of the cytochrome c:cytochrome oxidase ratio. The results are discussed in the context of a model in which electron entry into cytochrome oxidase from cytochrome c is via CuA, and cytochrome a functions to mediate electron transfer from CuA to the oxygen binding site. The role of CuA as initial electron acceptor in cytochrome c oxidase is related to its physical proximity to cytochrome c is the cytochrome c-cytochrome oxidase complex.  相似文献   

5.
Intramolecular electron transfer (ET) between the CuA center and heme a in bovine cytochrome c oxidase was investigated by pulse radiolysis. CuA, the initial electron acceptor, was reduced by 1-methyl nicotinamide radicals in a diffusion-controlled reaction, as monitored by absorption changes at 830 nm. After the initial reduction phase, the 830 nm absorption was partially restored, corresponding to reoxidation of the CuA center. Concomitantly, the absorption at 445 nm and 605 nm increased, indicating reduction of heme a. The rate constants for heme a reduction and CuA reoxidation were identical within experimental error and independent of the enzyme concentration. This demonstrates that a fast intramolecular electron equilibration is taking place between CuA and heme a. The rate constants for CuA --> heme a ET and the reverse (heme a --> CuA) process were found to be 13 000 s-1 and 3700 s-1, respectively, at 25 degrees C and pH 7.4. This corresponds to an equilibrium constant of 3.4 under these conditions. Thermodynamic and activation parameters of the ET reactions were determined. The significance of these results, particularly the observed low activation barriers, are discussed within the framework of the known three-dimensional structure, ET pathways and reorganization energies.  相似文献   

6.
Cytochrome c-554 of the ammonia-oxidizing chemolithoautotropic bacteria is thought to mediate electron transfer from hydroxylamine oxidoreductase to a terminal oxidase and/or to ammonia monooxygenase. The cytochrome has four c hemes which interact magnetically and have the same redox potential. We report that the kinetics of reduction of ferric cytochrome c-554 by dithionite or the oxidation of ferrous cytochrome c-554 by O2 or H2O2 are complex and multiphasic. Transient rapid-scan difference spectra indicate discrete maxima at approximately 418 nm, 425 nm and 432 nm. Absorbance changes at all three difference maxima appear to occur in all kinetic phases, although not in equal amounts for each wavelength. Reduction by 20 mM dithionite was biphasic. At pH 7.5 the first phase, which involved approximately 50% of the total absorbance change, had a rate constant (20 degrees C) of 140 s-1 and energy of activation of 20 kJ X mol-1. The slow phase had a rate constant 0.43 s-1 and a relatively high energy of activation, 87 kJ X mol-1, suggesting that a change in protein configuration accompanied the reaction. As the pH of the solution increased, the rate constant for both phases decreased and the fraction of absorbance change in the rapid phase increased. Oxidation of ferrous cytochrome c-554 by O2 involved a discrete rapid phase with a rate constant of 14 s-1, accounting for 6% of the absorbance. The remainder of the reaction was multiphasic with rate constants in the range 0.1-0.01 s-1. With H2O2 as the oxidant, the rapid phase involved 39% of the change in absorbance with a rate constant of 19 s-1. The remainder of the reoxidation was multiphasic with rate constants ranging over 0.4-0.01 s-1.  相似文献   

7.
Stopped-flow kinetics were made of the reaction between ascorbate-reduced Pseudomonas cytochrome oxidase and potassium ferricyanide under both N2 and CO atmospheres. Under N2 three kinetic processes were observed, two being dependent on ferricyanide concentration, with second-order rate constants of 9.6 X 10(4)M-1.s-1 and 1.5 X 10(4)M-1.s-1, whereas the other was concentration-independent, with a first-order rate constant of 0.17 +/- 0.03s-1. Measurements of their kinetic difference spectra have allowed the fastest and second-fastest phases of the reaction to be assigned to direct bimolecular reactions of ferricyanide with the haem c and haem d, moieties of the enzyme respectively. Under CO, the second-order rate constant for the reaction of the haem c was, at 1.3 X 10(5)M-1.s-1, slightly enhanced over the rate in a N2 atmosphere, but the reaction velocity of the haem d1 component was greatly decreased, being apparently limited to that of the rates of CO dissociation from the molecule (0.15s-1 and 0.03s-1). The results are compared with those obtained during a previous study of the reaction of reduced Pseudomonas cytochrome oxidase with oxidized azurin.  相似文献   

8.
The binding of CO to ascorbate-reduced Pseudomonas cytochrome oxidase was investigated by static-titration, stopped-flow and flash-photolytic techniques. Static-titration data indicated that the binding process was non-stoicheiometric, with a Hill number of 1.44. Stopped-flow kinetics obtained on the binding of CO to reduced Pseudomonas cytochrome oxidase were biphasic in form; the faster rate exhibited a linear dependence on CO concentration with a second-order rate constant of 2 X 10(4) M-1-s-1, whereas the slower reaction rapidly reached a pseudo-first-order rate limit at approx. 1s-1. The relative proportions of the two phases observed in stopped-flow experiments also showed a dependency on CO concentration, the slower phase increasing as the CO concentration decreased. The kinetics of CO recombination after flash-photolytic dissociation of the reduced Pseudomonas cytochrome oxidase-CO complex were also biphasic in character, both phases showing a linear pseudo-first-order rate dependence on CO concentration. The second-order rate constants were determined as 3.6 X 10(4)M-1-s-1 and 1.6 X 10(4)M-1-s-1 respectively. Again the relative proportions of the two phases varied with CO concentration, the slower phase predominating at low CO concentrations. CO dissociation from the enzyme-CO complex measured in the presence of O2 and NO indicated the presence of two rates, of the order of 0.03s-1 and 0.15s-1. When sodium dithionite was used as a reducing agent for the Pseudomonas cytochrome oxidase, the CO-combination kinetics observed by both stopped flow and flash photolysis were extremely complex and not able to be simply analysed.  相似文献   

9.
The kinetics of the electron-transfer process which occurs between ferrocytochrome c and partially reduced mammalian cytochrome oxidase were studied by the rapid spectrophotometric techniques of stopped flow and temperature jump. Stopped-flow experiments showed initial very fast extinction changes at 605 nm and at 563 nm, indicating the simultaneous reduction of cytochrome a and oxidation of ferrocytochrome c. During this 'burst' phase, say the first 50 ms after mixing, it was invariably found that more cytochrome c had been oxidized than cytochrome a had been reduced. This discrepancy in electron equivalents may be accounted for by the rapid reduction of another redox site in the enzyme, possibly that associated with the extinction changes observed at 830 nm. During the incubation period in which the partially reduced oxidase was prepared, the rate of reduction of cytochrome a by ferrocytochrome c, at constant reactant concentrations, decreased with time. Temperature-jump experiments showed the presence of two relaxation processes. The faster of the two phases was assigned to the electron-transfer reaction between cytochrome c and cytochrome a. A study of the concentration-dependence of the reciprocal relaxation time for this phase yielded a rate constant of 9 X 10(6)M-1-s-1 for the electron transfer from cytochrome c to cytochrome a, and a value of 8.5 X 10(6)M-1-s-1 for the reverse reaction. The equilibrium constant for the electron-transfer reaction is therefore close to unity. The slower phase has been interpreted as signalling the transfer of electrons between cytochrome a and another redox site within the oxidase molecule.  相似文献   

10.
The influence of temperature on cytochrome c oxidase (CCO) catalytic activity was studied in the temperature range 240-308 K. Temperatures below 273 K required the inclusion of the osmolyte ethylene glycol. For steady-state activity between 278 and 308 K the activation energy was 12 kcal x mol-1; the molecular activity or turnover number was 12 s-1 at 280 K in the absence of ethylene glycol. CCO activity was studied between 240 and 277 K in the presence of ethylene glycol. The activation energy was 30 kcal x mol-1; the molecular activity was 1 s-1 at 280 K. Ethylene glycol inhibits CCO by lowering the activity of water. The rate limitation in electron transfer (ET) was not associated with ET into the CCO as cytochrome a was predominantly reduced in the aerobic steady state. The activity of CCO in flash-induced oxidation experiments was studied in the low temperature range in the presence of ethylene glycol. Flash photolysis of the reduced CO complex in the presence of oxygen resulted in three discernable processes. At 273 K the rate constants were 1500 s-1, 150 s-1 and 30 s-1 and these dropped to 220 s-1, 27 s-1 and 3 s-1 at 240 K. The activation energies were 5 kcal.mol-1, 7 kcal.mol-1, and 8 kcal.mol-1, respectively. The fastest rate we ascribe to the oxidation of cytochrome a3, the intermediate rate to cytochrome a oxidation and the slowest rate to the re-reduction of cytochrome a followed by its oxidation. There are two comparisons that are important: (a). with vs. without ethylene glycol and (b). steady state vs. flash-induced oxidation. When one makes these two comparisons it is clear that the CCO only senses the presence of osmolyte during the reductive portion of the catalytic cycle. In the present work that would mean after a flash-induced oxidation and the start of the next reduction/oxidation cycle.  相似文献   

11.
The mechanism of electron transfer catalyzed by cytochrome oxidase was investigated by monitoring the reaction of cytochrome oxidase with cytochrome c under carefully controlled anaerobic conditions. The kinetics of the reaction were examined by varying conditions of ionic strength, inhibitor binding, and oxidation-reduction potential. An analogue of cytochrome c in which the iron atom was replaced with cobalt was used to probe the effect of redox potential on the reaction. Under conditions of low ionic strength, there is very rapid oxidation of cytochrome c and reduction of oxidase which occurs at a rate of 3 X 10(7) M-1 s-1. The number of electrons transferred exhibit a hyperbolic dependence on the concentration of cytochrome c reaching a maximum of 2 electrons transferred at the highest concentration of reduced cytochrome c employed. The total number of electrons transferred was always observed to be distributed equally between cytochrome a and a second acceptor which appears to be the associated copper center; electron transfer to cytochrome a3 did not occur in the absence of oxygen. Substitution of cytochrome c by the cobalt analogue (which represents a decrease in oxidation-reduction potential of about 400 mV) yielded identical results indicating that the origin of the lack of reactivity of cytochrome a3 is of a kinetic nature. The effect of increasing the ionic strength on the reaction was 2-fold: a marked decrease in reaction rate and the appearance of biphasic kinetics with the amplitude of the very fast absorbance changes at 605 nm decreasing from 80% to 40% of the total anticipated from static absorbance measurements. Each of the two phases accounted for a maximum of 1 electron at the highest ionic strength employed. These results are simulated in terms of a sample kinetic reaction scheme involving a two-step electron transfer at one binding site.  相似文献   

12.
In stopped-flow experiments in which oxidized cytochrome c oxidase was mixed with ferrocytochrome c in the presence of a range of oxygen concentrations and in the absence and presence of cyanide, a fast phase, reflecting a rapid approach to an equilibrium, was observed. Within this phase, one or two molecules of ferrocytochrome were oxidized per haem group of cytochrome a, depending on the concentration of ferrocytochrome c used. The reasons for this are discussed in terms of a mechanism in which all electrons enter through cytochrome a, which, in turn, is in rapid equilibrium with a second site, identified with 'visible' copper (830 nm-absorbing) Cud (Beinert et al., 1971). The value of the bimolecular rate constant for the reaction between cytochromes c2+ and a3+ was between 10(6) and 10(7) M(-1)-S(-1); some variability from preparation to preparation was observed. At high ferrocytochrome c concentrations, the initial reaction of cytochrome c2+ with cytochrome a3+ could be isolated from the reaction involving the 'visible' copper and the stoicheiometry was found to approach one molecule of cytochrome c2+ oxidized for each molecule of cytochrome a3+ reduced. At low ferrocytochrome c concentrations, however, both sites (i.e. cytochrome a and Cud) were reduced simultaneously and the stoicheiometry of the initial reaction was closer to two molecules of cytochrome c2+ oxidized per molecule of cytochrome a reduced. The bleaching of the 830 nm band lagged behind or was simultaneous with the formation of the 605 nm band and does not depend on the cytochrome c concentration, whereas the extinction at the steady-state does. The time-course of the return of the 830 nm-absorbing species is much faster than the bleaching of the 605 nm-absorbing component, and parallels that of the turnover phase of cytochrome c2+ oxidation. Additions of cyanide to the oxidase preparations had no effect on the observed stoicheiometry or kinetics of the reduction of cytochrome a and 'visible' copper, but inhibited electron transfer to the other two sites, cytochrome a3 and the undetectable copper, Cuu.  相似文献   

13.
A minimal kinetic model of the photocycle, including both quinone (Q-6) reduction at the secondary quinone-binding site and (mammalian) cytochrome c oxidation at the cytochrome docking site of isolated reaction centers from photosynthetic purple bacteria Rhodobacter sphaeroides, was elaborated and tested by cytochrome photooxidation under strong continuous illumination. The typical rate of photochemical excitation by a laser diode at 810 nm was 2.200 s-1, and the rates of stationary turnover of the reaction center (one-half of that of cytochrome photooxidation) were 600 +/- 70 s-1 at pH 6 and 400 +/- 50 s-1 at pH 8. The rate of turnover showed strong pH dependence, indicating the contribution of different rate-limiting processes. The kinetic limitation of the photocycle was attributed to the turnover of the cytochrome c binding site (pH < 6), light intensity and quinone/quinol exchange (6 < pH < 8), and proton-coupled second electron transfer in the quinone acceptor complex (pH > 8). The analysis of the double-reciprocal plot of the rate of turnover versus light intensity has proved useful in determining the light-independent (maximum) turnover rate of the reaction center (445 +/- 50 s-1 at pH 7.8).  相似文献   

14.
Intramolecular electron transfer in partially reduced cytochrome c oxidase has been studied by the perturbed equilibrium method. We have prepared a three-electron-reduced, CO-inhibited form of the enzyme in which cytochrome a and copper A are partially reduced and in an intramolecular redox equilibrium. When these samples were irradiated with a nitrogen laser (0.6-ns, 1.0-mJ pulses) to photodissociate the bound CO, changes in absorbance at 598 and 830 nm were observed which were consistent with a fast electron transfer from cytochrome a to copper A. The absorbance changes at 598 nm gave an apparent rate of 17,000 +/- 2000 s-1 (1 sigma), at pH 7.0 and 25.5 degrees C. These changes were not observed in either the CO mixed-valence or the CO-inhibited fully reduced forms of the enzyme. The rate was fastest at about pH 8.0, falling off toward both lower and higher pHs. There was a small but clear temperature dependence. The process was also observed in the cytochrome c-cytochrome c oxidase high-affinity complex. The electron equilibration measured between cytochrome a and copper A is far faster than any rate measured or inferred previously for this process.  相似文献   

15.
Reaction of oxygen with cytochrome c oxidase from Paracoccus denitrificans   总被引:6,自引:0,他引:6  
The reaction of reduced cytochrome c oxidase (EC 1.9.3.1) from Paracoccus denitrificans (American Type Culture Collection 13543) with dioxygen has been followed by laser flash photolysis of the CO derivative. In detergent-stabilized solutions the reaction showed at least two distinct kinetic components, the faster of which was oxygen concentration dependent and had a rate of approximately 60 X 10(6) M-1 s-1. The slower reaction was independent of oxygen concentration and had a rate of 9 X 10(2) s-1. These rates are about 1.5 times greater than comparable rates for ox heart oxidase reported by C. Greenwood and Q. H. Gibson (J. Biol. Chem. (1967) 242, 1782-1787). The kinetic components have markedly different optical spectra which agree precisely in form with those for ox heart enzyme (Greenwood, C., and Gibson, Q. H. (1967) J. Biol. Chem. 242, 1782-1787) but are shifted by 2 nm toward the red. In phospholipid vesicles, the spectral contribution of the faster component was augmented. The dissociation constant for CO at 20 degrees C is 1.6 microM, 6 times greater than for the ox heart enzyme. The bacterial enzyme binds one CO per 2 heme a. The enzyme has an absorption band at 830 nm in the oxidized form similar to that of the ox heart enzyme.  相似文献   

16.
The redox reaction between cytochrome c-551 and its oxidase from the respiratory chain of pseudomonas aeruginosa was studied by rapid-mixing techniques at both pH7 and 9.1. The electron transfer in the direction of cytochrome c-551 reduction, starting with the oxidase in the reduced and CO-bound form, is monophasic, and the governing bimolecular rate constants are 1.3(+/- 0.2) x 10(7) M-1 . s-1 at pH 9.1 and 4 (+/- 1) x 10(6) M-1 . s-1 at pH 7.0. In the opposite direction, i.e. mixing the oxidized oxidase with the reduced cytochrome c-551 in the absence of O2, both a lower absorbance change and a more complex kinetic pattern were observed. With oxidized azurin instead of oxidized cytochrome c-551 the oxidation of the c haem in the CO-bound oxidase is also monophasic, and the second-order rate constant is 2 (+/- 0.7) x 10(6) M-1 . s-1 at pH 9.1. The redox potential of the c haem in the oxidase, as obtained from kinetic titrations of the completely oxidized enzyme with reduced azurin as the variable substrate, is 288 mV at pH 7.0 and 255 mV at pH 9.1. This is in contrast with the very high affinity observed in similar titrations performed with both oxidized azurin and oxidized cytochrome c-551 starting from the CO derivative of the reduced oxidase. It is concluded that: (i) azurin and cytochrome c-551 are not equally efficient in vitro as reducing substrates of the oxidase in the respiratory chain of Pseudomonas aeruginosa; (ii) CO ligation to the d1 haem in the oxidase induces a large decrease (at least 80 mV) in the redox potential of the c-haem moiety.  相似文献   

17.
Rebinding of CO to reduced cytochrome c oxidase in plant mitochondria has been monitored optically at 590-630 nm after flash photolysis at low temperature from 160 to 200 K. (1) Under 100%-CO saturation, CO rebinding exhibits a four-step mechanism. The thermodynamic parameters of the first phase have been determined; its activation energy, Ea1, is 38.9 kJ.mol-1 and its enthalpy, delta H+/-1, and entropy, delta S+/-1, of activation are respectively 37.5 kJ.mol-1 and -75.8J.mol-1.K-1. (2) When the CO concentration is decreased to 0.2%, rebinding still occurs according to a four-step mechanism. The rate constant of the first phase is CO-concentration-independent. Under non-saturating conditions there is only one CO molecule per occupied site. The rebinding mechanism does not require additional CO molecules to be present in the haem pocket. (3) Dual-wavelength scanning experiments failed to detect optical forms correlated with the resolved phases. (4) Results are discussed with respect to previous work related to CO rebinding to mammalian cytochrome c oxidase and myoglobin.  相似文献   

18.
The formation and disappearance of a photosensitive species during the reaction of reduced cytochrome c oxidase (putatively a3II.O2), EC 1.9.3.1, has been followed by (a) mixing a3II.CO with O2 in a stopped flow apparatus; (b) initiating the oxygen-oxidase reaction by removing CO with a laser flash; (c) probing the reaction mixture for photosensitivity with a second laser flash. Photosensitivity appears in the reaction mixture after the first laser flash, reaches a maximum after 50-60 microseconds ([O2] greater than 100 microM), and disappears in a further 50-100 microseconds. The kinetics can be represented by the scheme [formula: see text]. In species B, O2 is associated with the protein, possibly CuB, but not with the heme. Species C is the photosensitive a3II.O2 complex, and in D, a3 iron has been oxidized. The formation of species C is responsible for the rapid phase of absorbance change in the oxidase-oxygen reaction. The rate of reaction with oxygen approaches the limit of 35,000 s-1 at high oxygen. Nitric oxide, however, reacts with FeII oxidase with a rate of 1 x 10(8) M-1 s-1, which is accurately maintained up to an observed rate of 10(5) s-1. In flash photolysis experiments, approximately half of the photodissociated nitric oxidase recombines in a biphasic geminate reaction with rates of 1 x 10(8) s-1 and 1 x 10(7) s-1.  相似文献   

19.
Absorption changes during the O2 reaction of reduced bovine cytochrome c oxidase were investigated by the rapid-reaction technique of flow-flash spectrophotometry in the Soret, visible and near-i.r. spectral regions. New features in the time courses of absorption change were observed relative to the earlier findings reported by Greenwood & Gibson [(1967) J. Biol. Chem. 242, 1782-1787]. These new features arise in the Soret and near-i.r. regions and allow the reaction to be described at all wavelengths as a composite of three exponential processes. There is a rapid O2-sensitive phase detectable in the Soret and visible region. The second phase has a rate that is somewhat less dependent on O2 concentration than is the fastest phase rate and is detectable in all three spectral regions. The rate of the third phase is almost independent of the O2 concentration and is also detectable in all spectral regions. Analysis of the three phases gives their rates and absorption amplitudes. The fast phase reaches a rate of 2.5 X 10(4) s-1 at the highest O2 concentration available at 20 degrees C, whereas the phase of intermediate rate is limited at a value of 7 X 10(3) s-1 and the slow phase rate is limited at 700 s-1. The ratios of the kinetic difference spectra for the fast phase and the slow phase do not correspond to the spectra of the individual haem centres. A branched mechanism is advanced that is able to reconcile the kinetic and static difference spectra. This mechanism suggests that some of the cytochrome a is oxidized along with cytochrome a3 in the initial O2-sensitive phase. In addition, the model requires that CuA is oxidized heterogeneously. This fits with the complex time course of oxidation observed at 830 nm while retaining CuA as virtually the sole contributor to absorbance at this wavelength.  相似文献   

20.
The formylation of the ring nitrogen atom of the tryptophan residue in cytochrome c was carried out and consequent changes in the kinetic properties of the protein were investigated. The reduction of formylated cytochrome c by Cr2+ was studied by stopped-flow techniques. At pH 6.5 the reduction process shows the presence of two phases. One phase (k = 4 X 10(4) M-1-s-1) is dependent on Cr2+ concentration and one phase (k = 5.0 s-1) is not. A study of the temperature dependence of the two phases yields values for their activation energies of 38.6kJ-mol-1 and 42.4kJ-mol-1 respectively. The reaction of the reduced formylated cytochrome c with CO was followed by means of both stopped-flow techniques and flash photolysis. The combination with CO at pH 6.8 measured in stopped-flow experiments shows two phases, both dependent on the concentration of CO (k1 = 1.8 X 10(2) M-1-s-1). If CO was dissociated from the protein by photolysis and then allowed to recombine with it, it was found to do so in a simple manner, at a rate which depended on the concentration of CO (k = 1.9 X 10(2) M-1-s-1). A tentative model which can accommodate these findings is proposed. The reaction of the oxidized form of formylated cytochrome c with NO was followed by means of stopped-flow techniques. The reaction was found to be biphasic with one phase dependent on the concentration of NO (k = 2.8 X 10(3) M-1-s-1) and one phase (k = 0.2x-1) independent of the concentration of NO. This behaviour is compared with that of the native molecule. A comparison of these kinetic observations with those on other tryptophan-specific modifications leads to the conclusion that the main alteration in kinetic properties is due, not to the nature of the modifying group, but rather to the disruption of the normal environment of the haem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号