首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of diazepam on potassium contractures, contraction threshold, and resting tension have been examined in rat soleus muscle fibres. Two actions of the drug were defined that could not be attributed to changes in the resting membrane potential or depolarization in high potassium solutions. The major effect was an increase in the amplitude of submaximal tension during either twitches or potassium contractures and an increase in resting tension. At 400 microM diazepam, there was (a) a fourfold increase in 40 mM potassium contracture tension, (b) a negative shift of 8 mV in the membrane potential for half maximum tension estimated from the best fit of a Boltzmann-type equation to average potassium contracture data, (c) a negative shift of 8 mV in the threshold for contraction measured under voltage clamp conditions, and (d) a contracture of variable amplitude to a level that was occasionally equivalent to maximum tetanic tension. These potentiating actions of diazepam depended on drug concentration within the range of 100-800 microM. In contrast, the second effect of diazepam, depression of maximum tension by 10-15%, was independent of drug concentration between 100 and 400 microM. The results support the idea that diazepam produces an increase in resting myoplasmic calcium concentrations.  相似文献   

2.
Na+- and CA2+-sensitive microelectrodes were used to measure intracellular Na+ and Ca2+ activities (alpha iCa) of sheep ventricular muscle and Purkinje strands to study the interrelationship between Na+ and Ca2+ electrochemical gradients (delta muNa and delta muCa) under various conditions. In ventricular muscle, alpha iNa was 6.4 +/- 1.2 mM and alpha iCa was 87 +/- 20 nM ([Ca/+] = 272 nM). A graded decrease of external Na+ activity (alpha oNa) resulted in decrease of alpha iNa, and increase of alpha iCa. There was increase of twitch tension in low- alpha oNa solutions, and occasional increase of resting tension in 40% alpha oNa. Increase of external Ca2+ (alpha oCa) resulted in increase of alpha iCa and decrease of alpha iNa. Decrease of alpha oCa resulted in decrease of alpha iCa and increase of alpha iNa. The apparent resting Na-Ca energy ratio (delta muCa/delta muNa) was between 2.43 and 2.63. When the membrane potential (Vm) was depolarized by 50 mM K+ in ventricular muscle, Vm depolarized by 50 mV, alpha iNa decreased, and alpha iCa increased, with the development of a contracture. The apparent energy coupling ratio did not change with depolarization. 5 x 10(-6) M ouabain induced a large increase in alpha iNa ad alpha iCa, accompanied by an increase in twitch and resting tension. Under the conditions we have studied, delta muNa and delta muCa appeared to be coupled and n was nearly constant at 2.5, as would be expected if the Na-Ca exchange system was able to set the steady level of alpha iCa. Tension threshold was about 230 nM alpha iCa. The magnitude of twitch tension was directly related to alpha iCa.  相似文献   

3.
The caffeine contracture of normal human muscle, which has been used as a model for malignant hyperpyrexia, is greatly potentiated by halothane. Prior administration of procaine markedly reduces the halothane-potentiated caffeine contracture, and procaine given at the height of the contracture induces relaxation. Lignocaine, on the other hand, produces a variable response and sometimes increases the contracture.The muscle from a patient with an inherited susceptibility to malignant hyperpyrexia contracted spontaneously with halothane alone, and this contracture was reversed by procaine.These experiments support the therapeutic use of procaine in malignant hyperpyrexia.  相似文献   

4.
Selenium is known to play an important role in the physiology of many different cell types and extracellular application of selenite causes cellular dysfunction in many different types of tissues. In a previous study, we have shown that in rat ventricles, sodium selenite (≥1 mM) caused an increase in the resting tension and a decrease in contractile force, in a time-dependent manner. In the present study, we have shown that sodium selenite caused a contracture state both in Langendorff perfused hearts and isolated papillary muscles. We also showed that the application of extracellular ATP (0.1 mM) markedly reduced this detrimental effect of sodium selenite on ventricular contraction in Langendorff perfused hearts and delayed it in isolated papillary muscle preparations. In contrast, isoproterenol (0.1 μM) did not seem to influence this action of sodium selenite in papillary muscle preparations. Possible reasons for this protective effect of ATP to selenite-induced contracture are also discussed.  相似文献   

5.
This study explores the effect of glucose on resting tension in mammalian cardiac muscle. Exogenous glucose (5 mM) ameliorates the increase in resting tension seen in severely hypoxic cardiac muscle. This effect of glucose is independent of any influence on total adenosine triphosphate (ATP) concentration, and cannot be duplicated with 2-deoxyglucose. Resting tension remains stable in muscles exposed to 1 mM iodoacetate (IAA) under aerobic conditions; contracture occurs rapidly when IAA exposed preparations are made severely hypoxic. These observations suggest that glycolysis is sufficient but not necessary for the maintenance of stable resting tension under our experimental conditions. While it is not clear from these data that glycolytically produced ATP is used preferentially, the possibility that a small compartment of ATP is supplied to the relaxing system is clearly suggested.  相似文献   

6.
Sodium-free contractures were studied in myocardial strips from R. pipiens with extracellular sodium (Na0+) replaced by choline chloride and extracellular calcium (Ca20+) varied with EGTA buffer. At calculated Ca02+ below 2.8 X 10(-7) mol/l, no contracture occurred in most of the experiments, even in the presence of cyanide. When Ca02+ was above 2.8 X 10(-7) mol/l, relatively short tension transients of up to 80 sec duration could be avoided if the myocardial strip was previously equilibrated for 20 min in a Na+-Ca2+-free solution. Instead, contractures developed slowly within one to several hours. The maximum contracture was dependent on Ca02+ in a dose-response-like pattern. The time-course of contracture development was not affected by verapamil, but KCN significantly increased the rate of resting tension increase. In solutions with normal Na+-Ca2+ content and even in a Na+-Ca2+-free milieu, the cellular ultrastructure was normal. Development of contracture after addition of Ca2+ to the Na+-free solution was combined with ultrastructural damage of the ventricular strip. It is concluded that Na+-free contractures depend on transsarcolemmal net-Ca2+ uptake as a sum of Na-Ca-exchange-dependent Ca2+ uptake and active sequestering of intracellular free calcium Ca2+ mediated by sarcolemmal and probably intracellular Ca2+-ATPases. The negative inotropic effect of the Ca blocker verapamil seems not to be mediated by the Na-Ca exchange.  相似文献   

7.
We investigated the effect of Ca2+ overload on the phospholipase C-catalyzed hydrolysis of phosphoinositides in the rat left ventricular papillary muscle. Ca2+ overload on the papillary muscle was induced by treatment with 0.3 mM ouabain in Ca2+-containing medium following either Ca2+-containing or Ca2+-free superfusion. The phosphoinositide breakdown was evaluated by determining accumulations of [3H]inositol phosphates ([3H]IPs) in the tissues prelabeled with [3H]inositol. Ca2+ repletion following Ca2+-free superfusion resulted in a rapid but small increase in resting tension that was not followed by contracture, nor was it associated with a significant increase in [3H]IPs accumulations. Treatment with ouabain following Ca2+-containing superfusion increased resting tension after a lag period of several minutes and produced contracture associated with an increase in [3H]IPs accumulations. The ouabain induced increases in resting tension, and accumulations of [3H]IPs were significantly potentiated by prior Ca2+-free superfusion instead of Ca2+-containing superfusion. There was a significant positive correlation between increases in resting tension and the phosphoinositide breakdown. The increased resting tension and the accumulations of [3H]IPs were not antagonized by treatments with prazosin plus atropine or indomethacin, but were abolished by superfusion with Ca2+-free buffer solution. Although the enhanced phospholipase C-catalyzed hydrolysis of phosphoinositides appears to be a consequence rather than a cause of increased intracellular Ca2+, such a biochemical change may provoke a positive feedback mechanism to develop the muscle contracture through the putative intracellular messenger action of inositol triphosphate and diacylglycerol.Abbreviations [3H]IPs [3H]Inositol Phosphates - IP Inositol Phosphate - IP2 Inositol Bisphosphate - IP3 Inositol Trisphosphate - PI Phosphatidylinositol - PI-4-P Phosphatidylinositol-4-phosphate - PI-4,5-P2 Phosphatidylinositol 4,5-bisphosphate - PRZ Prazosin - ATR Atropine - INDO Indomethacin - min Minutes  相似文献   

8.
Summary We have measured the effects of the carboxylic Ca++ ionophore A23187 on muscle tension, resting potential and 3-O-methylglucose efflux. The ionophore produces an increase in tension that is dependent on external Ca++ concentration since (a) the contracture was blocked by removing external Ca++ and (b) its size was increased by raising outside Ca++. Neither resting potential nor resting and insulin-stimulated sugar efflux were modified by the ionophore. These data imply that the action of insulin is not mediated by increasing cytoplasmic [Ca++]. Additional support for this conclusion was obtained by testing the effects of caffeine on sugar efflux. This agent, which releases Ca++ from the reticulum, did not increase resting sugar efflux and inhibited the insulin-stimulated efflux. Incubation in solutions containing butyrated derivatives of cyclic AMP or cyclic GMP plus theophylline did not modify the effects of insulin on sugar efflux. Evidence suggesting that our experimental conditions increased the cytoplasmic cyclic AMP activity was obtained.  相似文献   

9.
We have measured the effects of the carboxylic Ca++ ionophore A23187 on muscle tension, resting potential and 3-O-methylglucose efflux. The ionophore produces an increase in tension that is dependent on external Ca++ concentration since (a) the contracture was blocked by removing external Ca++ and (b) its size was increased by raising outside Ca++. Neither resting potential nor resting and insulin-stimulated sugar efflux were modified by the ionophore. These data imply that the action of insulin is not mediated by increasing cytoplasmic [Ca++]. Additional support for this conclusion was obtained by testing the effects of caffeine on sugar efflux. This agent, which releases Ca++ from the reticulum, did not increase resting sugar efflux and inhibited the insulin-stimulated efflux. Incubation in solutions containing butyrated derivatives of cyclic AMP or cyclic GMP plus theophylline did not modify the effects of insulin on sugar efflux. Evidence suggesting that our experimental conditions increased the cytoplasmic cyclic AMP activity was obtained.  相似文献   

10.
We studied the effects of superfusion of canine heart muscle tissue with a solution that mimicks hypoxia, acidosis and hyperkalemia (altered Tyrode's solution). Contracture (rise in resting tension) develops much sooner (5.2 +/- 0.8 vs. 30-40 min in 5 mM dextrose) in the absence of dextrose. High dextrose (55 mM) stabilizes the rise in tonic tension and protects against the action potential shortening during such superfusion. Presence of verapamil (1-1.5 microM) during altered Tyrode's superfusion considerably lessens the magnitude of the increase in tonic tension (31.7 +/- 8.6 vs. 129.5 +/- 32.6 mg in the control). Presence of high magnesium (5 mM) during altered Tyrode's superfusion also offers some protection against tonic tension increase (12.6 +/- 3.6 mg rise in tonic tension vs. 129.5 +/- 3.2 mg in the control), action potential shortening, and amplitude decrease. These results suggest that (a) magnesium and verapamil both have significant effects on the cellular calcium uptake, and (b) anaerobic metabolism utilizing either glycogen or exogenous glucose is capable of preventing contracture during ischemia.  相似文献   

11.
The influences of octanoic, decanoic, and hexadencanoic acid were tested on the contracture capability of isolated skeletal muscle of frogs and rats. 1. 100 mM octanoic or 10mM decanoic acid induce contractures in skeletal mucles after 20-30 min of exposure. 2. The time of exposure necessary for induction of contractures is shortened by an increase of bath temperature, electrical stimulation or KCl-depolarization of muscles. 3. Simultaneous addition of fatty acid and caffeine (10 mM) effects a depression and a delay of the caffeine contracture. The contractures evoked by 5 mM caffeine are inhibited by lower concentrations of fatty acids (1 mM octaonoic acid, 0,1 mM hexadecanoic acid). 4. After the complete development of a caffeine (or fatty acid) contracture the muscle is not able to develop an identical contracture by a second application of the same drug, even after intermediate treatment during one or two hours in Ringer solution. If the contracture is interrupted one minute after the caffeine application by changing the solution, the tension returns quickly to the resting level. A subsequent addition of caffeine (10 mM) after about 10 minutes effects an identical contracture. Thus the effect of fatty acids on caffeine contracture may be studied on the same muscle which served as its own control. 5. As mechanisms involved in the development of fatty acid contractures and in the inhibition of caffeine contractures, interactions of free fatty acids and lipids of biological membranes are disucssed. Especially, there may be changes of the calcium affinity of cellular membranes.  相似文献   

12.
1. The effects of the saliva of the aquatic hemipteran Belostoma anurum were investigated on the isolated guinea-pig heart, perfused with Locke solution by the Langendorff's method.2. The electrocardiogram (bipolar lead), the contractile force (g) and coronary flow (ml/min) were simultaneously recorded.3. The total protein present in the saliva of each belostomatid was 11.17 ± 2.39 μg (N = 10), and SDS-PAGE of the saliva showed a complex protein composition (N = 10).4. Bolus injections of 0.2 ml saliva obtained from 10 belostomatids elicited complex effects which were divided into two phases (N = 8): an initial phase characterized by sinus bradycardia and/or A-V block associated with a decrease in contractile force and an increase in coronary flow followed by a decrease and a second phase, 0.5–5 min after saliva injection, characterized by a progressive increase in resting tension (ventricular contracture).5. Since pretreatment of the preparation with atropine or verapamil did not prevent the initial and the late effects (N = 12), we conclude that these effects are not explained either by a muscarinic effect or by a stimulation of calcium channels.6. Injection of saliva previously mixed with heparin (1000 IU/ml, N = 7), evoked the first but not the second phase (ventricular contracture).7. Injection of saliva from two belostomatids into the isolated hearts of guinea pigs, not previously treated with heparin, elicited dramatic effects, such as ventricular contracture (N = 6).8. We suggest that the formation of an acid-base complex (heparin-saliva) would prevent, in part, the toxic effects of the saliva on the heart.  相似文献   

13.
To investigate whether the action potential duration (APD) or resting tension was dependent on global ATP content, and whether they were preferentially dependent on glycolytic ATP, APD and resting tension were measured under various metabolic inhibition with corresponding measurement of ATP content in guinea pig ventricular muscles. Oxidative phosphorylation was inhibited by either hypoxic perfusion, the perfusion of sodium cyanide, or 2,4-dinitrophenol. Glycolysis was blocked by the perfusion of iodoacetic acid, and hypoxia with variable glycolytic activities was achieved by hypoxic perfusion in the presence of glucose (5, 10, and 50 mM). APD began to decrease when ATP content decreased to less than 3 mM/kg w.w. from the control level of 4.35 mM/kg w.w. APD shortened significantly and resting tension increased steeply, when ATP content decreased below 1 mM/kg w.w. The dependence of APD and the increase in resting tension on ATP content was not affected by the mode of metabolic block, that is, the inhibition of glycolysis and/or oxidative phosphorylation. Though other factors can affect APD and resting tension, we found no evidence of functional ATP compartmentation, with respect to APD and the increase in resting tension during metabolic inhibition.  相似文献   

14.
The physiological properties of mechanical response and the ultrastructure in the longitudinal body wall muscle (LBWM) of the opisthobranch mollusc Dolabella auricularia were studied to obtain information about excitation-contraction coupling in somatic smooth muscles responsible for smooth and slow body movement of molluscans. The contracture tension produced by 400 mM K was not affected by Mn ions (5--10 mM) and low pH (up to 4.0), but was reduced by procaine (2 mM). The K-contracture tension was not readily eliminated in a Ca-free solution containing ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'- tetraacetate (EGTA). A large contracture tension was also produced by rapid cooling of the surrounding fluid from 20 degrees to 5 degrees--3 degrees C even when the preparation showed no mechanical response to 400 mM K after prolonged (more than 2 h) soaking in the Ca-free solution. These results indicate that the LBWM fibers contain a large amount of intracellularly stored Ca which can be effectively released by membrane depolarization. The fibers were connected with each other, forming the gap junctions, the desmosomes, and the intermediate junctions. The sarcoplasmic reticulum (SR) consisted of vesicular and tubular elements, and was mostly located near the fiber surface. The plasma membrane showed marked tubular invaginations of 600-800 A in diameter, with many branches (surface tubules), extending inwards for approximately 2 micron. These surface tubules were closely apposed to the SR, and the bridgelike structures analogous to those in the triadic junction of vertebrate skeletal muscle were observed in the space between the surface tubules and the SR. It is suggested that the influence of membrane depolarization is transmitted inwards along the surface tubules to cause the release of Ca from the SR.  相似文献   

15.
Calcium uptake produced by a potassium contracture in isolated frog twitch fibers was 6.7 +/- 0.8 pmol in 0.7 cm of fiber (mean +/- SEM, 21 observations) in the presence of 30 microM D600. When potassium was applied to fibers paralyzed by the combination of 30 microM D600, cold, and a prior contracture, the calcium uptake fell to 3.0 +/- 0.7 pmol (11): the fibers were soaked in 45Ca in sodium Ringer for 3 min before 45Ca, in a potassium solution, was added for 2 min; each estimate of uptake was corrected for 5 min of resting influx, measured from the same fiber (average = 2.3 +/- 0.3 pmol). The calcium influx into paralyzed fibers is unrelated to contraction. This voltage-sensitive, slowly inactivating influx, which can be blocked by 4 mM nickel, has properties similar to the calcium current described by several laboratories. The paired difference in calcium uptake between contracting and paralyzed fibers, 2.9 +/- 0.8 pmol (16), is a component of influx related to contraction. Its size varies with contracture size and it occurs after tension production: 45Ca applied immediately after contracture is taken up in essentially the same amounts as 45Ca added before contraction. This delayed uptake is probably a "reflux" refilling a binding site on the cytoplasmic side of the T membrane, which had been emptied during the prior contracture, perhaps to initiate it. We detect no component of calcium uptake related to excitation-contraction coupling occurring before or during a contracture.  相似文献   

16.
Contracture of Slow Striated Muscle during Calcium Deprivation   总被引:1,自引:1,他引:0       下载免费PDF全文
When deprived of calcium the slow striated muscle fibers of the frog develop reversible contractures in either hypertonic or isotonic solutions. While calcium deprivation continues because of a flowing calcium-free solution the muscles relax slowly and completely. Restoration of calcium during contracture relaxes the muscle promptly to initial tension. When relaxed during calcium lack the return of calcium does not change tension and the muscle stays relaxed. When contractures are induced by solutions containing small amounts of calcium relaxation does not occur or requires several hours. The rate of tension development depends upon the rate at which calcium moves outward since the contractures develop slower in low concentrations of calcium and are absent or greatly slowed in a stagnant calcium-free solution. Withdrawal of calcium prevents the contractile responses to ACh, KCl, or electrical stimulation through the nerve. Muscles return to their original excitability after calcium is restored. Origin of the contractures is unrelated to nerve activity since they are maximal during transmission failure from calcium lack, occur in denervated muscles, and are not blocked by high concentrations of d-tubocurarine, procaine, or atropine. The experiments also indicate that the contractures do not originate from repetitive activity of muscle membranes. The findings are most simply explained by relating the outward movement of calcium as a link for initiating contraction in slow type striated muscle.  相似文献   

17.
Bullfrog sympathetic ganglion cells were capable of producing action potentials (Ca spikes) in an isotonic (84 mM) CaCl2 solution. The peak level of Ca spikes showed an approximately 30 mv increase with a 10-fold increase in the Ca concentration. Na as well as Ca ions were capable of acting as charge carriers during the production of action potentials in a solution containing relatively high Ca and relatively low Na ions. A decrease in the external Ca concentration depressed the maximum rate of rise at a fixed resting potential level, and increased the maximum rate of rise of the Na spikes at a high resting potential level at which Na inactivation was completely depressed. Compared to Na spikes, Ca spikes were less sensitive to TTX and procaine. Ganglion cells were also capable of producing action potentials (Sr spikes) in an isotonic SrCl2 solution and prolonged action potentials in an isotonic BaCl2 solution, but these cells were rendered inexcitable in an isotonic MgCl2 solution. The peak level of the Sr spikes was dependent on the external Sr concentration and was insensitive to both TTX and procaine. Sr ions, like Ca ions, reduced Na inactivation during the resting state, and depressed the maximum rate of rise of the Na spikes at a high resting potential level. It was concluded that Ca (and Sr) ions exert dual actions on the membrane; namely, regulating the Na permeability and acting as charge carriers during the active state of the membrane.  相似文献   

18.
Isolated muscle fibers from the motor legs of the crab Trichodactilus dilocarcinus were submitted to strong hyperpolarizing currents of varied intensities which produced tension during the current pulse. Threshold for tension was obtained with intensities of about 0.2 x 10–5 A, changing Em to ca. –150 mV (starting from a resting potential ofca. –80 mV). At the closure of the anodic square pulse, a second phase of tension usually appeared superimposed upon the one obtained during hyperpolarization. The first phase of tension increased with the increase of Ca++ concentration in the bath. Sr++ produced the same type of mechanical output as Ca++. When added to the normal Ca++ concentration, Ba++ and Mn++ in low concentrations (up to 21.5 mM) also increased the tension of this phase, but at higher concentrations they blocked both phases while Mg++ did not alter the tension. Of all the divalent cations employed, only Sr++ is capable of developing tension as a substitute for Ca++ in the external media. Procaine administered in a dosage (5 x 10–3 W/V)which would suppress the contracture due to caffeine (10 mM), did not modify the tension developed during the hyperpolarization. The preceding data indicate that the Ca++ required for tension during hyperpolarization comes from sites which would differ from those usually postulated for tension due to depolarization in the muscle fibers of other crustaceans (American crayfish). Furthermore, the external source of Ca++ appears to be one mainly implicated in the induction of tension due to inward current pulses.  相似文献   

19.
We have studied the effects of changes in the resting membrane potential (Vm) and T-tubules on caffeine contracture (25 mM) elicited in rat soleus muscle in vitro at 34 degrees C. In high [K]o (30-140 mM, [K]o X [Cl]o constant) caffeine contractures were reduced by about 40-50% and had a faster time course than in normal Krebs ([K]o = 5 mM). Detubulation of the muscles by an osmotic treatment produces a reduction of about 30% in the caffeine contracture tension. Our results with high K solutions suggest a reduced sensitivity of the myofibrils to calcium released by caffeine. The effects of detubulation on caffeine contracture suggest that caffeine may have a direct effect on sarcolemma in addition to its well known action on the sarcoplasmic reticulum (SR). However, a depletion of the calcium content in the SR of depolarized muscle fibres as well as an anatomical damage produced by the osmotic treatment can not be ruled out as an explanation for the reduced caffeine contracture.  相似文献   

20.
Thin strips of frog ventricle were isolated and bathed for 15 min in a solution containing 140 mM KCl, 5 mM Na2ATP, 3 mM EDTA, and 10 mM Tris buffer at pH 7.0. The muscle was then exposed to contracture solutions containing 140 mM KCl, 5 mM Na2ATP, 1 mM MgCl2, 10 mM Tris, 3 mM EGTA, and CaCl2 in amounts to produce concentrations of free calcium from 10-4.8 M to 10-9 M. The muscles developed some tension at approximately 10-8 M, and maximum tension was achieved in 10-5 M Ca++. They relaxed in Ca++ concentrations less than 10-8 M. The development of tension by the EDTA-treated muscles was normalized by comparison with twitch tension at a stimulation rate of 9 per min before exposure to EDTA. In 10-5 M Ca++ tension was always several times the twitch tension and was greater than the contracture tension of a frog ventricular strip in KCl low Na-Ringer. Tension equal to half-maximum was produced at approximately 10-6.2 M Ca++. Intracellular recording of membrane potential indicated that after EDTA treatment the resting potential of cells in Ringer solution with 10-5 M Ca or less was between 5 and 20 mv. Contracture solutions did not produce tension without prior treatment with EDTA. The high permeability of the membrane produced by EDTA was reversed and the normal resting and action potentials restored in 1 mM Ca-Ringer. Similar studies of EDTA-treated rabbit right ventricular papillary muscle produced a similar tension vs. Ca++ concentration relation, and the high permeability state reversed with exposure to normal Krebs solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号