首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake of spermine by isolated rat intestinal brush-border membrane vesicles was studied. Uptake was biphasic, with an initial rapid uptake followed by a prolonged slower phase. Spermine uptake was not affected by a Na+ electrochemical gradient. The equilibrium uptake of spermine was considerably dependent upon the medium pH. At pH 7.5 the degree of uptake was higher than that at pH 6.5 and was inversely proportional to the extravesicular osmolarity with a relatively high binding, which was estimated by extraporation to infinite extravesicular osmolarity (zero intravesicular space), while the uptake at pH 6.5 was not altered under the various medium osmolarities. A kinetic analysis of the initial uptake rate of spermine at 37 degrees C gave a Km of 24.2 microM and Vmax of 206.1 pmol/mg protein per min. Furthermore, the uptake at 4 degrees C was nonlinear, providing evidence for saturability. These findings suggest that spermine was associated with intestinal brush-border membrane vesicles in two ways, by binding to the outside and inside of membrane vesicles. The interaction of spermine and the apical membrane can be a contributory factor in the accumulation of this polyamine in the intestine of the intact animal.  相似文献   

2.
D-Glucose transport was investigated in isolated brush-border membrane vesicles from human small intestine. Characteristics of D-glucose transport from the jejunum were compared with that in the mid and terminal ileum. Jejunal and mid-ileal D-glucose transport was Na+-dependent and electrogenic. The transient overshoot of jejunal D-glucose transport was significantly greater than corresponding values in mid-ileum. The terminal ileum did not exhibit Na+-dependent D-glucose transport, but did exhibit Na+-dependent taurocholate transport. Na+-glucose co-transport activity as measured by tracer-exchange experiments was greatest in the jejunum, and diminished aborally. We conclude that D-glucose transport in man is Na+-dependent and electrogenic in the proximal intestine and directly related to the activity of D-glucose-Na+ transporters present in the brush-border membranes. D-Glucose transport in the terminal ileum resembles colonic transport of D-glucose.  相似文献   

3.
The uptake of Na(+)-dependent D-glucose by renal brush-border membrane vesicles (BBMV) isolated from streptozotocin-induced diabetic rats was decreased as compared with controls. Since a Vmax of 4.8 nmol/mg protein per 30 s in diabetic BBMV was significantly decreased as compared with that of controls (Vmax = 7.0 nmol/mg protein per 30 s) without changing an apparent affinity for D-glucose, the decrease in the Na(+)-dependent D-glucose uptake in diabetic rats is likely to be due to the reduction in the number of the transporter. These results are also confirmed by the binding study of [3H]phlorizin to diabetic BBMV. When the blood glucose level is lowered in diabetic rats by both the treatment with insulin and starvation, the decreased Na(+)-dependent D-glucose uptake is returned to control level. These results suggest that Na(+)-dependent D-glucose reabsorption through the apical membrane in proximal tubular kidney cells is dynamically regulated by the change in blood glucose level.  相似文献   

4.
The effect of membrane potential on the uptake of tryptamine, an organic cation, by rat intestinal brush-border membrane vesicles was studied. In the presence of an outwardly directed H(+)-gradient, the initial uptake of tryptamine was stimulated remarkably and the overshoot phenomenon was observed. In contrast, the uptake was depressed by an inwardly-directed H(+)-gradient. The effect of H(+)-gradient on the uptake of tryptamine was maintained in the presence of FCCP, whereas it vanished when voltage-clamped vesicles were used. Moreover, the uptake of tryptamine was linearly augmented with increase of the valinomycin-induced inside-negative K+ diffusion potential. These results suggest that tryptamine is taken up into intestinal brush-border membrane vesicles depends upon the ionic diffusion potential. The effect of several indole derivatives and amine compounds on the uptake of tryptamine was also examined. The uptake of tryptamine was inhibited by all amine compounds used, but anionic and zwitterionic compounds had no effect, suggesting that these amines interact on brush-border membrane and cause an inhibitory effect.  相似文献   

5.
Renal brush-border membrane vesicles prepared from streptozotocin-induced 4-day-diabetic rats possessed a Na+-dependent D-glucose transport system that exhibited apparent Kt and Vmax values about 2-fold greater than normal. Apparently, hyperglycemia and probably other stimuli cause the induction and membrane incorporation of a low-affinity transporter in these membranes; this increased sugar-transport capacity is retained for at least 4 weeks so long as the animals maintained or increased their body weight. Membranes prepared from 28-day-diabetic, severely ill ketoacidotic animals lose this enhanced transport ability and the decrease in Vmax was found to correlate directly with the weight loss. Furthermore, the transporter in brush-border membranes prepared from these cachectic animals had an even lower affinity for glucose than those from the acute hyperglycemic animals. That these changes in the diabetic animals represent major alterations in renal brush-border membrane construction is further supported by our observation that the specific activity of the marker enzymes, alkaline phosphatase and neutral alpha-glucosidase, are profoundly increased and decreased, respectively, in this condition.  相似文献   

6.
The binding of aminoglycoside antibiotics to, and their effects on, the plasma membrane were studied using isolated rat renal brush-border membrane vesicles. Dibekacin was noted to bind with brush-border membrane vesicles having a single class of many binding sites. 3H-labeled dibekacin binding was inhibited competitively by unlabeled dibekacin, gentamicin or amikacin. The inhibition constants obtained from the Dixon plots followed the order of gentamicin approximately equal to dibekacin greater than amikacin. The alkaline phosphatase activity of brush-border membrane vesicles was inhibited by gentamicin significantly, as was also observed by a histochemical study. Sodium-dependent D-glucose uptake by brush-border membrane vesicles was significantly inhibited by the addition of gentamicin.  相似文献   

7.
Iron uptake from Fe/ascorbate by mouse brush-border membrane vesicles is not greatly inhibited by prior treatment with a variety of protein-modification reagents or heat. Non-esterified fatty acid levels in mouse proximal small intestine brush-border membrane vesicles show a close positive correlation with initial Fe uptake rates. Loading of rabbit duodenal brush-border membrane vesicles with oleic acid increases Fe uptake. Depletion of mouse brush-border membrane vesicle fatty acids by incubation with bovine serum albumin reduces Fe uptake. Iron uptake by vesicles from Fe/ascorbate is enhanced in an O2-free atmosphere. Iron uptake from Fe/ascorbate and Fe3+-nitrilotriacetate (Fe3+-NTA) were closely correlated. Incorporation of oleic acid into phosphatidylcholine/cholesterol (4:1) liposomes leads to greatly increased permeability to Yb3+, Tb3+, Fe2+/Fe3+ and Co2+. Ca2+ and Mg2+ are also transported by oleic acid-containing liposomes, but at much lower rates than transition and lanthanide metal ions. Fe3+ transport by various non-esterified fatty acids was highest with unsaturated acids. The maximal transport rate by saturated fatty acids was noted with chain length C14-16. It is suggested that Fe transport can be mediated by formation of Fe3+ (fatty acid)3 complexes.  相似文献   

8.
Acute, subclinical, and chronic pyridoxine deficiency did not modify the oxalate influx in rat intestinal BBMV but elevated the oxalate reabsorption by renal tubular cells. The Na+ and K+ ions did not affect oxalate uptake in either intestinal or renal BBMV. Although thiol group blocking agents did not affect intestinal uptake of oxalate they significantly altered oxalate translocation across the renal tubular cells. Following pyridoxine deficiency the rat kidneys appear to be more specific for inducing oxalate lithiasis as compared to oxalate influx through the intestine.  相似文献   

9.
Biotin transport in rat intestinal brush-border membrane vesicles   总被引:1,自引:0,他引:1  
Transport of biotin across rat intestinal brush-border membrane was examined using the brush-border membrane vesicle (BBMV) technique. Uptake of biotin by BBMV is the result of transport of the substrate into the intravesicular space with negligible binding to membrane surfaces. In the presence of a Na+ gradient (out greater than in), transport of biotin was higher with a transient 'overshoot' phenomenon. In comparison, transport of biotin in the presence of a choline gradient (out greater than in) was lower with no 'overshoot' phenomenon. In both jejunal and ileal BBMV, the transport of biotin as a function of concentration was saturable in the presence of a Na+ gradient (out greater than in) but was linear in the presence of a choline gradient (out greater than in). Vmax of the Na+-dependent transport system was 0.88 and 0.37 pmol/mg protein per s and apparent Kt was 7.57 and 7.85 microM in jejunal and ileal BBMV, respectively. Structural analogues inhibited the transport process of biotin. Unlike the electrogenic transport of D-glucose, the transport of the anionic biotin was not affected by imposing a relatively positive intravesicular potential with the use of valinomycin and an inwardly-directed K+ gradient, suggesting that biotin transport is most probably an electroneutral process. This suggestion was further supported by studies on biotin transport in the presence of anions of different lipid permeability. The results of this study demonstrate that biotin transport across rat intestinal brush-border membrane is by a carrier-mediated, Na+-dependent and electroneutral process. Furthermore, transport of biotin is higher in the jejunum than the ileum.  相似文献   

10.
Differentiation and maturation of enterocytes occur with migration from the crypt to villus compartments. To investigate the effect of epithelial cell differentiation on sodium-dependent D-glucose transport, brush-border membrane vesicles were prepared from small intestinal epithelial cell suspensions selectively isolated from villus and crypt populations. Enterocytes were isolated with a morphologically monitored sequential cell dissociation method. Thymidine kinase, sucrase, and alkaline phosphatase activities were measured as differentiation markers of specific cell populations. Brush-border membrane vesicles were purified and their kinetic characteristics defined with a rapid filtration method under conditions of a zero-trans, 100 mM cis-NaSCN gradient. Typical "overshoot" phenomena characteristic of sodium D-glucose cotransport were observed for both villus (five- to eight-fold equilibrium values) and crypt brush-border membrane vesicles (two- to four-fold equilibrium values). Kinetics analyses of the initial D-glucose flux in brush-border membrane vesicles suggested the presence of at least two sodium-dependent D-glucose carriers in the villus and only a single carrier in the crypt compartments. These data indicate that sodium D-glucose cotransport occurs in brush-border membranes of both villus and crypt populations. Moreover, quantitative and qualitative differences between these two membrane populations suggest that epithelial D-glucose transport processes are differentiation dependent and reflect the degree of enterocyte development.  相似文献   

11.
In vivo kinetics of mucosal uptake of luminal 59Fe2+ by tied segments of normal mouse duodenum are characterised by a Km of approx. 100 μM and a Vmax of approx. 9 pmol/min per mg wet weight of intestine. These values were determined at pH 7.25 in the presence of excess sodium ascorbate. Studies with luminal Fe2+ concentrations of 100 μM reveal: (1) uptake is relatively independent of ascorbate: Fe ratio and luminal pH and (2) uptake is potently inhibited by 1 mM Co2+ or Mn2+ and large luminal NaCl concentrations but not by Ca2+. 3 days of hypoxia (0.5 atmospheres) yields no significant increase in subsequent total mucosal uptake by in vivo tied segments while uptake is significantly reduced by semi-starvation. Quantitative comparison of in vivo mucosal uptake with subsequent determination of isolated brush-border membrane 59Fe2+ transport in individual mice reveals a positive correlation (P < 0.01) between the two parameters. These results, in conjunction with studies of isolated mouse duodenal brush-border membrane (Simpson, R.J. and Peters, T.J. (1985) Biochim. Biophys. Acta, 814, 381–388 and (1986) Biochim. Biophys. Acta 856, 109–114) suggest that the Fe2+ transport properties of isolated brush-border membrane are quantitatively adequate to explain in vivo mucosal uptake in normal and hypoxic mice at Fe2+ concentrations up to 100 μM.  相似文献   

12.
13.
Fe2+ uptake by mouse intestinal brush-border membrane vesicles consists of two components: a rapid, high affinity (Kd less than 1 microM), low capacity binding (less than 2 nmol/mg protein), presumably to the outside of the vesicles, and a second, large capacity component with an initial rate showing a hyperbolic dependence on medium Fe2+ (Km 35-90 microM). The latter, predominant process is relatively independent of medium ascorbate: Fe2+ ratio, is inhibited by Co2+ and Mn2+ but varies greatly from one membrane preparation to another. This component is strongly inhibited by large extravesicular NaCl and KCl concentrations and may represent transport into the vesicles. No significant change in uptake could be observed in vesicles prepared from hypoxic mice.  相似文献   

14.
We studied the effect of gentamicin on Na+-dependent D-glucose transport into brush-border membrane vesicles isolated from rabbit kidney outer cortex (early proximal tubule) and outer medulla (late proximal tubule) in vitro. We found the same osmotically active space and nonspecific binding between control and gentamicin-treated brush-border membrane vesicles. There was no difference in the passive permeability properties between control and gentamicin-treated brush-border membrane vesicles. Kinetic analyses of D-glucose transport into 1 mM gentamicin-treated brush-border membrane vesicles demonstrated that gentamicin decreased Vmax in the outer cortical preparation, while it did not affect Vmax in the outer medullary preparation. With regard to Km, there was no effect of gentamicin in any vesicle preparation. When brush-border membrane vesicles were incubated with higher concentrations of gentamicin, Na+-dependent D-glucose transport was inhibited dose-dependently in both outer cortical and outer medullary preparations. Dixon plots yield inhibition constant Ki = 4 mM in the outer cortical preparation and Ki = 7 mM in the outer medullary preparation. These results indicate that the Na+-dependent D-glucose transport system in early proximal tubule is more vulnerable to gentamicin toxicity than that in late proximal tubule.  相似文献   

15.
The characteristics of carnosine (β-alanyl-l-histidine) transport have been studied using purified brush-border membrane vesicles from mouse small intestine. Uptake curves did not exhibit any overshoot phenomena, and were similar under Na+, K+ or choline+ gradient conditions (extravesicular > intravesicular). However, uptake of histidine showed an overshoot phenomenon in the presence of a Na+-gradient. There was no detectable hydrolysis of carnosine during 15 min of incubation with membrane vesicles under conditions used for transport experiments. Analysis of intravesicular contents further showed the complete absence of the constituent free amino acids of carnosine, and indicates that intact carnosine is transported. Studies on the effect of concentration on peptide uptake revealed that transport occurred by a saturable process conforming to Michaelis-Menten kinetics with a Km of 9.6 ± 1.4 mM and a Vmax of 2.9 ± 0.2 nmol / mg protein per 0.4 min. Uptake of carnosine was inhibited by both di- and tripeptides with a maximum inhibition of 68% by glycyl-l-leucyltyrosine. These results clearly demonstrate that carnosine is transported intact by a carrier-mediated, Na+-independent process.  相似文献   

16.
Transport of carnosine by mouse intestinal brush-border membrane vesicles   总被引:1,自引:0,他引:1  
The characteristics of carnosine (beta-alanyl-L-histidine) transport have been studied using purified brush-border membrane vesicles from mouse small intestine. Uptake curves did not exhibit any overshoot phenomena, and were similar under Na+, K+ or choline+ gradient conditions (extravesicular greater than intravesicular). However, uptake of histidine showed an overshoot phenomenon in the presence of a Na+-gradient. There was no detectable hydrolysis of carnosine during 15 min of incubation with membrane vesicles under conditions used for transport experiments. Analysis of intravesicular contents further showed the complete absence of the constituent free amino acids of carnosine, and indicates that intact carnosine is transported. Studies on the effect of concentration on peptide uptake revealed that transport occurred by a saturable process conforming to Michaelis-Menten kinetics with a Km of 9.6 +/- 1.4 mM and a Vmax of 2.9 +/- 0.2 nmol/mg protein per 0.4 min. Uptake of carnosine was inhibited by both di- and tripeptides with a maximum inhibition of 68% by glycyl-L-leucyltyrosine. These results clearly demonstrate that carnosine is transported intact by a carrier-mediated, Na+-independent process.  相似文献   

17.
1. D-glucose transport across the intestinal brush-border membrane of the cat, a carnivorous animal, was investigated using isolated brush-border membrane vesicles (BBMV). Kinetic experiments were performed under zero-trans conditions (initial [Na+]in and [Gluc]in = O) with the transmembrane electrical potential difference clamped to zero. 2. D-glucose uptake by the BBMV was strongly stimulated by an inwardly directed Na+-gradient. Uptake under Na+-free conditions seemed to occur by simple diffusion. 3. The apparent kinetic constants (Vmax, Km) of Na+-dependent D-glucose transport were computed by forcing initial uptake rates at 0.002-10.0 mmol/l D-glucose to either a Michaelis-Menten type equation with a single or with two carrier-mediated components. 4. Best fit of the experimental data was obtained with the two-component model indicating the existence of two Na+-dependent carrier-mediated mechanisms. System 1 and system 2 differ with respect to the transport velocity as well as the substrate affinity constants with Vmax being 2.5-fold and Km being 5-fold higher for system 1 compared with system 2.  相似文献   

18.
Thiamine, a water-soluble vitamin, is essential fornormal cellular functions, growth and development. Thiamine deficiency leads to significant clinical problems and occurs under a variety ofconditions. To date, however, little is known about the mechanism ofthiamine absorption in the native human small intestine. The objectiveof this study was, therefore, to characterize the mechanism of thiaminetransport across the brush-border membrane (BBM) of human smallintestine. With the use of purified BBM vesicles (BBMV) isolated fromthe jejunum of organ donors, thiamine uptake was found to be1) independent of Na+ but markedly stimulated byan outwardly directed H+ gradient (pH 5.5in/pH7.5out); 2) competitively inhibited by thecation transport inhibitor amiloride (inhibitor constant of 0.12 mM);3) sensitive to temperature and osmolarity of the incubation medium; 4) significantly inhibited by thiamine structuralanalogs (amprolium, oxythiamine, and pyrithiamine), but not byunrelated organic cations (tetraethylammonium,N-methylnicotinamide, or choline); 5) notaffected by the addition of ATP to the inside and outside of the BBMV;6) potential insensitive; and 7) saturable as afunction of thiamine concentration with an apparent Michaelis-Menten constant of 0.61 ± 0.08 µM and a maximal velocity of 1.00 ± 0.47 pmol · mg protein1 · 10 s1. Carrier-mediated thiamine uptake was also found inBBMV of human ileum. These data demonstrate the existence of aNa+-independent, pH-dependent, amiloride-sensitive,electroneutral carrier-mediated mechanism for thiamine absorption innative human small intestinal BBMV.

  相似文献   

19.
A membrane preparation enriched in the brush-border component of the plasma membrane was isolated from rat renal superficial cortex by a divalent cation precipitation procedure. Uptake of dehydro-l-ascorbic acid, the oxidized form of l-ascorbic acid, by the brush-border membrane vesicles was studied. The uptake mechanism was found to be sodium-independent and insensitive to the trans-membrane electrical potential difference. Uptake was saturable and subject to cis-inhibition. Concentrative uptake was demonstrated only under conditions of trans-stimulation by structural analogs. The results suggest a mechanism of facilitated diffusion for the uptake of dehydro-l-ascorbic acid in renal brush-border membranes.  相似文献   

20.
The characteristics of uridine transport were studied in rabbit intestinal brush-border membrane vesicles. Uridine was taken up into an osmotically active space in the absence of metabolism and there was no binding of uridine to the membrane vesicles. Uridine uptake was markedly enhanced by sodium, but showed no significant stimulation by other monovalent cations tested. Kinetic analysis of the sodium-dependent component of uridine flux indicated a single system obeying Michaelis-Menten kinetics (Km value of 6.4 +/- 1.4 microM with a Vmax of 9.1 +/- 3.6 pmol/mg protein per s as measured under zero-trans conditions with a 100 mM NaCl gradient at 24 degrees C). A variety of purine and pyrimidine nucleosides were able to inhibit sodium-dependent uridine transport, suggesting that these nucleosides are also permeants for the same system. Consistent with this suggestion was the finding that these nucleosides also stimulated uridine efflux from the brush-border membrane vesicles. The sodium: uridine coupling stoichiometry was found to be 1:1 as measured by the activation method. From these results it is concluded that a broad specificity sodium-dependent nucleoside transporter is present at the brush-border membrane surface of rabbit enterocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号