首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
 Some events of spermiogenesis and the submicroscopic anatomy of male gametes in Gyratrix hermaphroditus are described. Special features occurring during the steps of sperm cell maturation are the development of delicate rootlet-like and spike-shaped structures attached to the basal bodies, an anchor apparatus of cilia staying near the tip of the outgrowing spermatids, the differentiation of a single mitochondrial rod, and the processes of compartmentalizing the chromatin resulting in the formation of extranuclear lamellar stacks. Mature spermatozoa are especially characterized by two incorporated axonemes, a string of large mushroom-shaped dense bodies in the anterior section of the cell, and two lateral rows of nuclear lamellar stacks in the median cell segment. Based on the present findings, the process of spermiogenesis and the organization of spermatozoa in the ground pattern of the monophylum Kalyptorhynchia are reconstructed. Apparently, the sister group of the Kalyptorhynchia can be found within the other free-living and symbiotic Rhabdocoela; the hypothesis of a sister group relationship with the Neodermata is not corroborated. Probably, spermatozoal characteristics can contribute to a discrimination between distinct populations of G. hermaphroditus which is proved to be a complex of several sibling species. Accepted: 25 June 1998  相似文献   

2.
The spermatozoa of two species supposed to be basal to Gastrotricha Chaetonotida, Neodasys ciritus and Musellifer delamarei, were studied in order to supply further elements to the understanding of sperm evolution in Chaetonotida, a group in which a fully parthenogenetic reproduction is dominant. Two considerably different sperm patterns were found: the spermatozoon of N. ciritus has a simple, conical acrosome, a short, condensed nucleus, few conventional mitochondria randomly arranged along the sperm head, and a 9×2+2 flagellum perpendicular to the sperm major axis. The spermatozoon of M. delamarei is a filiform cell with a simple acrosome, a partially condensed nucleus, four mitochondria at the nuclear base, and a flagellum with a 9×2+2 axoneme and large accessory fibers. Some sperm features of M. delamarei are comparable to those of Xenotrichulidae, the only other Chaetonotida producing conventional spermatozoa, whereas the sperm of N. ciritus appears different from all the other patterns known among Gastrotricha, thus knowledge of it does not help in solving the problem of the discussed phylogenetic position of the genus.  相似文献   

3.
Spermiogenesis is characterized by fully incorporated (in the testes of mature worms) or partially free (submature worms) axonemes in spermatids. Formation of free flagella correlates with tight arrangement of cells in the testes and small size of the zone of differentiation and vice versa . In both cases the axonemes elongate within the growing shaft, so that the organization of the resulting spermatids is different only with regard to the distal end. In late spermatids, the nucleus occupies the proximal half, the two mitochondria and the axonemes directed distally lie in the distal half. After detachment of the spermatid, a migration of the nucleus takes place. In the resulting mature sperm, the proximal (anterior) half is occupied by the mitochondria and axonemes the basal bodies of which lie at the anterior end of the spermatozoon; the nucleus occupies the distal (posterior) half. Because of the distal orientation of the axonemes and a peculiar mode of the migration of the nucleus, the spermiogenesis of Notentera should be classified as a new variant of the type characteristic of the Neodermata (parasitic Platyhelminthes). Based on the analysis of the available morphological and other relevant data it is argued (i) that a high-ranked taxon, the Fecampiida, should be established within the Neoophora to include Notentera and the closely related Fecampiidae and (ii) that all the Platyhelminthes with neodermatan-type spermiogenesis form a monophyletic taxon, the Revertospermata, which includes the sister groups Fecampiida and Mediofusata.  相似文献   

4.
The spermatozoon ultrastructure of four species of moss-dwelling Heterotardigrada belonging to four genera of Echiniscidae, namely Pseudechiniscus juanitae, Echiniscus duboisi, Novechiniscus armadilloides and Antechiniscus parvisentus, was investigated. In all species, the testicular male gamete is similar in morphology and in length. The spermatozoon is made up of a long head, consisting of a cylindrical acrosome and an oval or rod-shaped nuclear region which contains a nucleus with osmiophilic and electron-dense chromatin, and a tapering tail, with a "9+2" axoneme. An elongated sack-like structure originates from the posterior part of the head, extending beyond the main axis of the cell and running parallel to the tail. It consists of two parallel tubular regions which sometimes form a strict double helix and contain two voluminous, "free" mitochondria with unmodified cristae. In addition, a voluminous vesicle is present laterally to the centriole or between the end of the nucleus and the beginning of the mitochondria, limited by two cytomembranes and filled with electron-lucent and granular material. The male gametes representative of these moss-dwelling Echiniscidae are very similar to the spermatozoa of the marine Echiniscoididae Echiniscoides sigismundi. This close similarity emphasises that habitat changes have had little influence on the organisation of the sperm cell representative of Echiniscoidea. Spermatozoon characters which could be useful for phylogenetic studies on Tardigrada are discussed.  相似文献   

5.
The ultrastructure of Mantophasma zephyra spermatozoa is described. Sperm cells have a trilayered acrosome with conspicuous extra-acrosomal material which expands along the nucleus. The nucleus is crossed anteriorly by a canal and its posterior end is embedded in the centriole adjunct material. A centriole with microtubular triplets is present. The flagellum has a 9+9+2 axonemal pattern, two partially crystallised mitochondrial derivatives, two membranous sacs and three connecting bands. The accessory microtubules are filled with dense material and have 16 protofilaments in their tubular wall. The intertubular material is not very expanded. In the seminal vesicles spermatozoa are stuck together to form spermatodesms, and their heads are also joined by adherens junctions. A cladistic analysis based on sperm features indicates a close relationship of Mantophasmatodea with Mantodea.  相似文献   

6.
Complete 18S ribosomal DNA (rDNA) sequences and partial 28S rDNA sequences from a selection of rhabditophoran taxa were obtained and used in combination with literature data to determine the phylogenetic position of the Prolecithophora and of two families sometimes included in the Prolecithophora, the Urastomidae and the Genostomatidae. The results are largely compatible with earlier molecular studies when supported clades are considered, and adjusting for the denser taxonomic sampling of this study. The position of the Proseriata is not compatible with the taxon Seriata, which is rejected. The Rhabdocoela excluding the Fecampiida and the Neodermata is monophyletic. The phylogenetic position of the Neodermata cannot be determined, but its placement is not compatible with the proposed taxa Revertospermata and Mediofusata Kornakova & Joffe, 1999, which are rejected. The Urastomidae and the Genostomatidae in all analyses group with the Fecampiida, and it is our recommendation that these taxa be included in the Fecampiida. The amended Fecampiida always group separately from the Prolecithophora sensu stricto , the Rhabdocoela, and the Neodermata. Our analyses reveal the existence of a strongly supported clade consisting of Prolecithophora + Tricladida + the amended Fecampiida, and we propose the name Adiaphanida for this clade. Tentatively the sister group of the Prolecithophora is a clade consisting of the Tricladida + amended Fecampiida.  相似文献   

7.
Ultrastructural observations on spermiogenesis and spermatozoa of selected pyramidellid gastropods (species ofTurbonilla, Pyrgulina, Cingulina andHinemoa) are presented. During spermatid developement, the condensing nucleus becomes initially anterio-posteriorly compressed or sometimes cup-shaped. Concurrently, the acrosomal complex attaches to an electrondense layer at the presumptive anterior pole of the nucleus, while at the opposite (posterior) pole of the nucleus a shallow invagination is formed to accommodate the centriolar derivative. Midpiece formation begins soon after these events have taken place, and involves the following processes: (1) the wrapping of individual mitochondria around the axoneme/coarse fibre complex; (2) later internal metamorphosis resulting in replacement of cristae by paracrystalline layers which envelope the matrix material; and (3) formation of a glycogen-filled helix within the mitochondrial derivative (via a secondary wrapping of mitochondria). Advanced stages of nuclear condensation (elongation, transformation of fibres into lamellae, subsequent compaction) and midpiece formation proceed within a microtubular sheath (‘manchette’). Pyramidellid spermatozoa consist of an acrosomal complex (round to ovoid apical vesicle; column-shaped acrosomal pedestal), helically-keeled nucleus (short, 7–10 μm long, shallow basal invagination for axoneme/coarse fibre attachment), elongate helical midpiece (composed of axoneme, coarse fibres, paracrystalline and matrix materials, glycogen-filled helix), glycogen piece (length variable, preceeded by a dense ring structure at junction with midpiece). The features of developing and mature spermatozoa observed in the Pyramidellidae are as observed in opisthobranch and pulmonate gastropods indicating that the Pyramidelloidea should be placed within the Euthyneura/Heterobranchia, most appropriately as a member group of the Opisthobranchia.  相似文献   

8.
The ultrastructure of the vas deferens, testes, spermatogenesis and spermatozoa of Gyrocotyle urna and G. parvispinosa is described. The vas deferens is ciliated and syncytial. Within the testes primary spermatocytes arise from the primary spermatogonia by incomplete mitotic divisions; the primary spermatocytes undergo two meiotic divisions leading to spermatids. In early spermatids microtubules are formed at the cell periphery. Later the spermatozoal cytoplasm (the ‘middle-piece’) grows out and the two spermatozoal flagella with their typical 9 + ‘1’ axonemes are formed. During ciliogenesis the flagella are at an angle of about 60° to the axis of the middle-piece. The flagella are inserted into basal bodies terminating in striated rootlets. Subsequently, the nucleus and isolated mitochondria migrate into the central axis. The angle between the flagella and the axis decreases; the flagella are incorporated to form the spermatozoon. In mature spermatozoa no basal body or rootlet elements were found. The phylogeny of parasitic Platyhelminthes is discussed with respect to the evolution of spermatozoa. The reduction of the acrosinoid granules which are found in spermatozoa of free-living Platyhelminthes and the incorporation of the spermatozoal flagella into the sperm body constitute autapomorphies of the Neodermata (the parasitic Platyhelminthes). Included in the Cestoda because of several common derived characters, Amphilinidea and Gyrocotylidea are the only cestodes with spermatozoa containing mitochondria. Their absence in Cestoidea—all taxa with a six-hooked larva and other characteristics—is an autapomorphy of this group.  相似文献   

9.
Spermatogenesis and the structure of mature spermatozoa were studied using TEM in a free-living marine chromadorid nematode Neochromadora poecilosoma from the Sea of Japan. In spermatocytes, fibrous bodies (FB) develop; in spermatids, the synthetic apparatus lies in the residual body, while the nucleus, mitochondria, and FB are located in the main cell body (MCB). The nucleus consists of a diffuse chromatin of fibrous structure, which is not enclosed in a nuclear envelope. In the spermatid stage, the development of FB is completed, and immature spermatozoa from the proximal region of the testis do not show any structural differences from the MCB of spermatids. The mature spermatozoa are polarized cells. They attach to the uterus wall by a pseudopod filled with filaments of the cytoskeleton; in the MCB of spermatozoon, there is a nucleus surrounded by mitochondria and osmiophilic bodies. The spermatozoa of N. poecilosoma show typical ultrastructure features of sperm cells found in most studied nematodes (amoeboid nature and the absence of axoneme, acrosome, and nuclear envelope). However, no aberrant organelles characteristic of nematode spermatozoa were found throughout sperm development in N. poecilosoma and other chromadorids.  相似文献   

10.
Spermatogenesis and the morphology of mature sperm in the free-living chromadorid Paracyatholaimus pugettensis from the Sea of Japan were studied using transmission electron microscopy. In spermatocytes fibrous bodies (FBs) appear; in spermatids, the synthetic apparatus is located in the residual body, whereas the main cell body (MCB) houses the nucleus, mitochondria, and FBs. The nucleus of the spermatid consists of a loose fibrous chromatin that is not surrounded by a nuclear envelope; centrioles lie in the perinuclear cytoplasm. The plasma membrane of the spermatid MCB forms numerous filopodia. Immature spermatozoa from the proximal part of the testis are polygonal cells with a central nucleus. The latter is surrounded by mitochondria and FBs with poorly defined boundaries. The immature spermatozoa bear lamellipodia all along their surface. Mature spermatozoa are polarized cells with an anterior pseudopodium, which is filled with filaments that make up the cytoskeleton; the MCB houses a nucleus that is surrounded by mitochondria and osmiphilic bodies. In many ultrastructural characteristics, the spermatozoa of P. Pugettensis are similar to those of most nematode species studied so far (i.e., they are ameboid, have no acrosome, axoneme, or nuclear envelope). On the other hand, as in other chromadorids, no aberrant membrane organelles were observed during spermatogenesis of P. Pugettensis.Original Russian Text Copyright © 2004 by Biologiya Morya, Zograf, Yushin.  相似文献   

11.
The spermathecal complex ofPhlebotomus papatasi Scopoli (Diptera: Psychodidae) undergoes histological and physiological changes during its gonotropic cycle. The present histochemical study revealed a mucopolysaccharide secretory mass in the spermathecae of the newly emerged sandfly. Sperm competition occurs when two or more males compete to fertilize an ovum in the female reproductive tract. In this study, spermatophores of two or more competing males were deposited at the base of the spermathecal ducts, which originate from the female bursa copulatrix. This suggests that females play a role in sperm displacement, which is defined as any situation in which the last male to mate with a female fertilizes maximum number her eggs. A blood meal ingested by the female for ovary development and egg laying stimulates the release of sperm from the spermatophore. The spermatozoa then migrate to the lumen of the spermatheca. The ultrastructure of spermatozoa comprises a head with double-layered acrosomal perforatorium, an elongate nucleus, and the axoneme with a 9 + 9 + 0 flagellar pattern. This axomene differs from the aflagellate axoneme of other Psychodinae. Morphological changes, such as the casting off of the acrosomal membrane, and histological changes in the spermatophore are also described. Mating plugs that have been described previously in sandflies appear to be artefacts. Females ofP. papatasi may be inseminated more than once during each gonotrophic cycle, and additional inseminations may be necessary for each cycle. The relationships between the volumes of the sperm and the spermatheca were calculated to determine sperm utilization and fecundity ofP. papatasi. As the females ofP. papatasi mate polyandrously, the anatomical and physiological complexity of the spermathecal complex may be related to post-copulatory sexual selection.  相似文献   

12.
This study details the ultrastructure of the spermatozoa of the American Alligator, Alligator mississippiensis. American Alligator spermatozoa are filiform and slightly curved. The acrosome is tapered at its anterior end and surrounded by the acrosome vesicle and an underlying subacrosomal cone, which rests just cephalic to the nuclear rostrum. One endonuclear canal extends from the subacrosomal cone through the rostral nucleus and deep into the nuclear body. The neck region separates the nucleus and midpiece and houses the proximal centriole and pericentriolar material. The distal centriole extends through the midpiece and has 9 × 3 sets of peripheral microtubules with a central doublet pair within the axoneme that is surrounded by a dense sheath. The midpiece is composed of seven to nine rings of mitochondria, which have combinations of concentrically and septate cristae. The principal piece has a dense fibrous sheath that surrounds an axoneme with a 9 + 2 microtubule arrangement. The sheath becomes significantly reduced in size caudally within the principal piece and is completely missing from the endpiece. Dense peripheral fibers, especially those associated with microtubule doublets 3 and 8, penetrate into the anterior portion of the principal piece axoneme. The data reported here hypothesize that sperm morphology is highly conserved in Crocodylia; however, specific morphological differences can exist between species. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

13.
We combined nearly complete sequences of large (LSU) and small (SSU) subunit rDNA from 32 flatworm species to estimate the phylogeny of the Platyhelminthes using maximum parsimony, maximum likelihood and Bayesian inference methods. Rooted against the Catenulida, combined evidence trees offered no support for the Revertospermata, which was also rejected by constraint analysis. Generally, nodal support was higher for groupings estimated from the combined data partitions and all methods of analysis provided congruent estimates of phylogeny. The Monogenea and Proseriata were resolved as monophyletic, rejecting previous suggestions of paraphyly based on SSU and partial LSU data sets and thus supporting widely accepted morphological synapomorphies. Monophyly of the Neodermata was supported and its sister group was a clade of neoophoran 'turbellarians' to the exclusion of the Proseriata which in turn was more basal. Taxa with similar spermatology to the Neodermata ( Ichthyophaga , Notentera , Urastoma and Kronborgia ) were the sister group to Tricladida + Prolecithophora, which in turn were sister to the Rhabdocoela. Polycladida + Macrostomida + Lecithoepitheliata was the earliest divergent offshoot of the Rhabditophora. Among the Neodermata, the Cercomeromorphae (Cestoda + Monogenea) was not supported, whereas Cestoda + Trematoda was well supported. Although there is no known synapomorphy for this latter grouping, our data highlight problems associated with the 'cercomer theory' and we reject putative homologies regarding neodermatan 'cercomers' that have been sustained in the literature without careful scrutiny.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 78, 155–171.  相似文献   

14.
Summary

Our analysis of spermiogenesis of Drosophila subobscura indicates that the axoneme takes part in the elongation of the spermatid nucleus, as follows. In sperm of D. subobscura the axoneme accompanies the nucleus in its full length up to the acrosome. Before the elongation of the nucleus begins, the centriole contacts the nuclear membrane, and is orientated with its axis to the centre of the spherical nucleus. Later in development, at the beginning of nucleus elongation, the axis of the centriole does no longer point to the centre of the nucleus but is dislocated more to one side of the nucleus. Subsequently, the axoneme which is growing from the centriole, pushes the nucleus which develops a cap-like structure over the anterior end of the centriole. By the continuosly growing axoneme stretching forces are applied to the anterior part of the nucleus. Consequently the elongating nucleus gets a smaller diameter anteriorly than posteriorly. And the longer the total length of the sperm is the longer is the nucleus. During elongation the chromatin shows a network-like structure. Nucleus elongation stops when the chromatin is fully condensed but the axoneme continues to grow. Thereupon the cap is no longer seen, and the anterior part of the nucleus which previously was the cap, forms now a bulge beside the centriole and the axoneme.  相似文献   

15.
Several studies have shown that larval competition and susceptibility to predation affect distributions of amphibian assemblages across ephemeral and perennial habitats. However, few studies have examined mechanisms affecting distribution patterns and site use of anurans adapted to highly ephemeral habitats. This study examines hypotheses about competition and predation as mechanisms creating non-overlapping patterns of site use in four anurans that breed in highly ephemeral habitats: Scaphiopus couchii (Couch's spade-foot toad), Gastrophryne olivacea (narrow-mouthed toad), Bufo speciosus (Texas toad), and Bufo punctatus (red-spotted toad). These four anurans showed a significantly nonrandom pattern of co-occurrence. Only 12% of 95 ephemeral breeding sites surveyed were occupied by more than one species. We tested the hypotheses that non-overlapping use of breeding sites was due to activity rates of their tadpoles that in turn reflect their competitive ability and susceptibility to predation. Tadpoles of S. couchii were significantly more active and more susceptible to predation than were tadpoles of G. olivacea, B. speciosus, and B. punctatus. The masses of G. olivacea, B. speciosus, and B. punctatus were less when they were reared with S. couchii, demonstrating the possible competitive dominance of S. couchii. These results suggest that the competitive ability of S. couchii may play a role in excluding G. olivacea, B. speciosus, and B. punctatus from very ephemeral breeding sites, and that susceptibility to predation could play a role in excluding S. couchii from breeding sites of longer duration that are more likely to be colonized by aquatic predators.  相似文献   

16.
In the present study, spermatozoa of the Prorops nasuta (Hymenoptera: Bethylidae) parasitoid were described morphologically. This is the first publication to describe a species belonging to the superfamily Chrysidoidea. Light and transmission electron microscopy were used. The spermatozoa of P. nasuta are linear, with a mean length of 665 μm. The acrosome is composed of an acrosomal vesicle and a perforatorium. The nucleus measures approximately 17 μm in length and is circular at its cross-section; however, its anterior extremity is oval. The chromatin is electron-dense and compact, although there are clear areas in the posterior peripheral regions. In the nucleus-flagellum transition region, the cross-section of the centriole adjunct is oval, with a pleated border and an E-PTA-positive peripheral region. The axoneme shows a 9 + 9 + 2 microtubule arrangement. The microtubules are E-PTA positive and, at the posterior extremity, the accessories are the last to terminate. The diameters and shapes of the two mitochondrial derivatives are almost identical. One begins beside the nuclear base and the other after the centriole adjunct. Posteriorly, they terminate together, immediately before the axoneme. Both have mitochondrial cristae and a region of paracrystalline material; however, the format and arrangement of this material differs from those of all other species previously studied. The paracrystalline material is more strongly E-PTA positive than the cristae region. Accessories bodies are electron-dense and located between the mitochondrial derivatives and the axoneme. In general, P. nasuta spermatozoa are similar to those of the majority of Hymenoptera; however, they have various exclusive characteristics that may be useful for studying the phylogeny and taxonomy of the superfamily Chrysidoidea and of Hymenoptera in general.  相似文献   

17.
The male reproductive tract of Leucoptera coffeella was processed for light and transmission electron microscopy. In the testis, the eupyrene cells are arranged in individual cysts, while the apyrene cysts form aggregates, never observed in other Lepidoptera. Both cysts contain 128 spermatozoa, which differ from the typical pattern. In the seminal vesicle, both types of spermatozoa are dispersed in the lumen, also different from other Lepidoptera. The apyrene spermatozoa are similar to those observed for other Lepidoptera. They present an anterior region covered by a dense cap and the flagellum is composed of a 9 + 9 + 2 axoneme and two mitochondrial derivatives. The eupyrene spermatozoa, however, differ from the typical pattern for Lepidoptera. Their anterior region contains a nucleus, an acrosome and a peculiar arc of eight accessory microtubules connected to the plasma membrane by dense bridges. In the nucleus–flagellum region, the ninth accessory microtubule is assembled between both mitochondrial derivatives, to participate in the axoneme. The flagellum comprises a 9 + 9 + 2 axoneme and two mitochondrial derivatives with paracrystalline cores. External to the plasma membrane and close to the accessory microtubules, there are tufts of an amorphous material, suggesting reduced lacinate appendages, while the reticular ones are absent. The reduction of lacinate appendages and the absence of sperm bundles in the seminal vesicle support the concept that the appendages of other Lepidoptera could be associated with the eupyrene aggregations. The characters ‘number of spermatozoa per cyst’ and ‘absence of bundles’ should be considered plesiomorphic, supporting the position of this taxon in the base of the Ditrysia.  相似文献   

18.
The ultrastructure of spermatozoa of the acotylean Phaenocelis peleca and the cotylean Boninia divae is described. All spermatozoa are filiform and biflagellate with a 9+"1" microtubular pattern in the axoneme. Sperm characters in P. peleca follow the morphologies described for other acotyleans, with axonemes exiting the sperm shaft at the distal end and remaining in close contact with the sperm membrane. The nucleus occupies the proximal region of the shaft, and two types of dense bodies and mitochondria are located at the distal end. Unlike other members of the Cotylea, the axonemes of B. divae spermatozoa are incorporated into the sperm shaft, leaving the shaft at some distance from the distal end and then remaining free. This type of morphology is characteristic for acotyleans. Additionally, the spermatozoa of B. divae contain only one type of dense bodies plus a unique structure, which we call a central core. The nucleus in this species is unique as well; it shows periodic constrictions and rings of electron-dense granules, characters that further contribute to the distinct status of Boniniidae.  相似文献   

19.
The sperm morphology of five species of the Pterastericolidae was studied with transmission electron microscopy. The spermatozoa of all species have two axoncmes, which are incorporated in the sperm cell body for most of their length. The axonemes arc of the'9 + 1'pattern characteristic of the flatworm taxon Trepaxonemata. Outer dynein arms are absent from the microtubule doublets in the axonemes. Dense bodies are few, and occur only in the distal part of the spermatozoa, but small electron dense granules are numerous. A sister group of the Neodermata consisting of the Pterastericolidae and the Fecampidae is proposed. The monophyly of the taxon Dalyellioida is discussed  相似文献   

20.
The spermatophore of the cave-spider Telema tenella is elaborated in the vas deferens. It has the shape of a long inverted gutter with two rows of digitations and spermatozoa piled up inside. The spermatozoon possesses a 9 + 3 axoneme, retracted in the cytoplasm to form from 4 to 4.5 peripheral whorls; the elongated nucleus and its acrosomal rod make 1.5 whorl. The spermatozoa keep the main part of their cytoplasm. The spermatophore is inserted in the male palp, then transferred to the female during coition. With the exception of this family, all other male Araneae transfer free spermatozoa during coition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号