首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
越来越多的研究表明,共生菌与昆虫的抗药性存在一定的联系.在不同的虫菌共生体系中,共生菌和昆虫抗药性联系的表现型存在较大的差异.昆虫对抗药性的生理补偿效应会影响共生菌群落组成.反之,共生菌通过提高宿主的适合度,利用自身的解毒作用或通过免疫系统间接调控宿主的解毒能力来影响宿主昆虫的抗药性.多组学和分子生物学技术的发展有助于对共生菌和昆虫抗药性的联系进行更深入的研究.  相似文献   

2.
Cytochrome P450 monooxygenases and insecticide resistance in insects   总被引:14,自引:0,他引:14  
Cytochrome P450 monooxygenases are involved in many cases of resistance of insects to insecticides. Resistance has long been associated with an increase in monooxygenase activities and with an increase in cytochrome P450 content. However, this increase does not always account for all of the resistance. In Drosophila melanogaster, we have shown that the overproduction of cytochrome P450 can be lost by the fly without a corresponding complete loss of resistance. These results prompted the sequencing of a cytochrome P450 candidate for resistance in resistant and susceptible flies. Several mutations leading to amino-acid substitutions have been detected in the P450 gene CYP6A2 of a resistant strain. The location of these mutations in a model of the 3D structure of the CYP6A2 protein suggested that some of them may be important for enzyme activity of this molecule. This has been verified by heterologous expression of wild-type and mutated cDNA in Escherichia coli. When other resistance mechanisms are considered, relatively few genetic mutations are involved in insecticide resistance, and this has led to an optimistic view of the management of resistance. Our observations compel us to survey in more detail the genetic diversity of cytochrome P450 genes and alleles involved in resistance.  相似文献   

3.
乙酰胆碱酯酶性质改变与昆虫抗药性的关系   总被引:5,自引:1,他引:5  
乙酰胆碱酯酶是生物神经传导中的一种关键性酶,同时又是有机磷和氨基甲酸酯杀虫剂的靶标,因此一直是人们研究的热点。就近年来昆虫乙酰胆碱酯酶(AChE)在生化和分子生物学方面的研究进展、昆虫AChE基因结构及表达的变化对动力学参数、昆虫抗药性的影响机制以及害虫与天敌AChE的比较研究进行了简要综述。  相似文献   

4.
细胞色素P450介导的昆虫抗药性的分子机制   总被引:4,自引:0,他引:4  
邱星辉 《昆虫学报》2014,57(4):477-482
细胞色素P450(简称P450) 对杀虫剂的代谢作用直接影响到昆虫对杀虫剂的耐受性和杀虫剂对昆虫的选择性,由P450介导的杀虫剂代谢解毒作用的增强是昆虫产生抗药性的常见而重要的机制。P450介导的杀虫剂代谢抗性具有普遍性、交互抗性与进化可塑性的特点,涉及P450基因重复与基因扩增、基因转录上调以及结构基因的变异等多样化的分子机制,并且多重机制的共同作用可以导致高水平抗药性。这些研究发现说明,无论是昆虫抗药性机制的研究,还是抗药性监测与治理都要有动态的、因地制宜的理念。  相似文献   

5.
天敌昆虫抗药性研究进展   总被引:3,自引:0,他引:3  
天敌昆虫抗药性研究在协调害虫化学防治和生物防治中有着重要的理论和现实意义,其研究的最终目的在于更好地推进抗性天敌在害虫综合治理(IPM)中的应用。抗药性天敌昆虫具有潜在的巨大价值。鉴于此,本文系统地综述了天敌昆虫抗药性最新研究进展,包括杀虫剂对天敌昆虫的影响、天敌昆虫抗药性现状、抗药性机理和限制天敌昆虫抗药性发展因素等。文章最后还对抗药性天敌昆虫的应用前景进行了展望。  相似文献   

6.
昆虫谷胱甘肽S-转移酶的多样性及其介导的抗药性   总被引:1,自引:0,他引:1  
尤燕春  谢苗  尤民生 《昆虫知识》2013,50(3):831-840
谷胱甘肽S-转移酶(GSTs)是一类广泛分布于生物体的多功能解毒酶系,参与许多内外源有毒物质的代谢。昆虫GSTs目前主要分为6个已知亚族,其中Delta和Epsion是昆虫特异的亚族,已鉴定的抗性相关基因主要分属于这两个亚族。作为重要的解毒酶,它主要参与昆虫对有机磷、拟除虫菊酯和有机氯等杀虫剂的抗性形成。本文主要对昆虫细胞质GSTs的分类、基因多样性及其在抗药性中的作用等相关研究进展进行综述。  相似文献   

7.
陈澄宇  康志娇  史雪岩  高希武 《昆虫学报》2015,58(10):1126-1130
植物次生物质(plant secondary metabolites)对昆虫的取食行为、生长发育及繁殖可以产生不利影响,甚至对昆虫可以产生毒杀作用。为了应对植物次生物质的不利影响,昆虫通过对植物次生物质忌避取食、解毒代谢等多种机制,而对寄主植物产生适应性。其中,昆虫的解毒代谢酶包括昆虫细胞色素P450酶系(P450s)及谷胱甘肽硫转移酶(GSTs)等,在昆虫对植物次生物质的解毒代谢及对寄主植物的适应性中发挥了重要作用。昆虫的解毒酶系统不仅可以代谢植物次生物质,还可能代谢化学杀虫剂,因而昆虫对寄主植物的适应性与其对杀虫剂的耐药性甚至抗药性密切相关。昆虫细胞色素P450s和GSTs等代谢解毒酶活性及相关基因的表达可以被植物次生物质影响,这不仅使昆虫对寄主植物的防御产生了适应性,还影响了昆虫对杀虫剂的解毒代谢,因而改变昆虫的耐药性或抗药性。掌握昆虫对植物次生物质的代谢适应机制及其在昆虫抗药性中的作用,对于明确昆虫的抗药性机制具有重要的参考意义。本文综述了植物次生物质对昆虫的影响、昆虫对寄主植物次生物质的代谢机制、昆虫对植物次生物质的代谢适应性对昆虫耐药性及抗药性的影响等方面的研究进展。  相似文献   

8.
陈斌  鲜鹏杰  乔梁  周勇 《昆虫学报》2015,58(10):1116-1125
昆虫电压门控钠离子通道(voltage-gated sodium channel)存在于所有可兴奋细胞的细胞膜上,在动作电位的产生和传导上起重要作用,是有机氯和拟除虫菊酯杀虫剂的靶标位点。在农业和医学害虫控制过程中,由于有机氯和拟除虫菊酯杀虫剂的广泛使用,抗药性问题日益突出。其中,由于钠离子通道基因突变,降低了钠离子通道对有机氯和拟除虫菊酯类杀虫剂的亲和性,从而产生击倒抗性(knock-down resistance, kdr),已成为抗性产生的重要机制之一。本文综述了昆虫钠离子通道的跨膜拓扑结构、功能、进化及其基因的克隆;更重要的是总结了已报道的40多种昆虫40个钠离子通道基因非同义突变,以及钠离子通道基因选择性mRNA剪接和编辑,以及它们与杀虫剂抗性的关系;也评述了钠离子通道基因突变引起蛋白质结构的改变,从而对杀虫剂抗性的影响机制。这些研究对于进一步鉴定与杀虫剂抗性相关的突变及抗性机制,开发有机氯和拟除虫菊酯类杀虫剂抗性分子监测方法具有重要意义。  相似文献   

9.
10.
Problems of insecticide resistance   总被引:1,自引:0,他引:1  
  相似文献   

11.
We simulated the population dynamics and population genetics of two bivoltine species of corn borers, the European corn borer, Ostrinia nubilalis (Hübner), and the southwestern corn borer, Diatraea grandiosella Dyar, in a hypothetical region of irrigated transgenic and nontransgenic corn where insecticide was applied only to the nontransgenic refuge crop. Over the 100-yr time horizon, resistance developed quickly in both species and to both transgenic corn and the insecticide when the allele for resistance to the respective toxin was dominant. When the allele for transgenic resistance was not dominant and the refuge location was constant over the time horizon, spraying the refuge to control southwestern corn borer had no effect on how quickly resistance to the transgenic corn developed. In contrast, the European corn borer developed resistance to transgenic corn much sooner when the refuge was sprayed once per year, and the time to 3% resistance allele frequency decreased as efficacy of the insecticide increased. Only when the refuge was treated less than once every 5 yr (10 generations) did the frequency of application decline enough to permit resistance management for the European corn borer to approximate the effectiveness of an unsprayed refuge. A consistently sprayed refuge <40% of the corn acreage was an inadequate resistance management strategy for the European corn borer even when a low efficacy insecticide (70% mortality) was used. When assumptions about European corn borer adult behavior were changed and the adults behaved similarly to adult southwestern corn borer, the development of resistance to the transgenic crop was slowed significantly.  相似文献   

12.
S-ethyldipropylthiocarbamate (EPTC) applied as a soil treatment or over-the-top spray on cabbage plants (Brassica oleracea L.) caused the leaves to turn ‘glossy’ for as long as 30 days. EPTC-induced glossy plants were damaged significantly less than untreated plants by diamondback moth,Plutella xylostella (L.), imported cabbage worm,Pieris rapae (L.), and cabbage looper,Trichoplusia ni (Hbn.). Reductions in damage were equivalent to those obtained from treatment with permethrin. When used in combination with permethrin, EPTC provided additive control of damage by these pests. Our calculations show EPTC-induced resistance to be cost-effective. This use of EPTC has several limitations, however. Younger plants (<9 leaves) were killed or injured by the herbicide. The growth of older plants was not affected, but plants did not become glossy for ca. 10 days after they were treated with EPTC. The crop must be protected with insecticides until the plants are mature enough to treat with EPTC, and until treated plants become glossy. In addition, since the glossy trait is only effective against first instar larvae, populations of later instars on glossy plants must be reduced with an application of insecticide. Finally, EPTC formulations are water-soluble and can be washed away from the plants by heavy rains and irrigation, which may make this use of EPTC impractical in some situations. Where its use is practical, and the indicated precautions are taken, EPTC-induced resistance could reduce dependence on chemical insecticides and reduce selection for insecticide resistance in diamondback moth.  相似文献   

13.
14.
The genomics of insecticide resistance   总被引:4,自引:0,他引:4  
Genomic technologies are revealing several mechanisms of insecticide resistance involving enhanced detoxification or reduced target-site sensitivity that had previously defied molecular analyses. Genome projects are also revealing some potentially far-reaching consequences for pest-insect genomes of the rapid accumulation of multiple resistance mutations in very short periods of evolutionary time.  相似文献   

15.
Experimental selection for insecticide resistance   总被引:3,自引:0,他引:3  
  相似文献   

16.
Abstract:  Effect of exposure to the organophosphorus insecticide – fenitrothion [O,O-dimethyl-O-(4-nitro-3-methyl)phenyl] – on four generations of Spodoptera exigua Hübner (Lep., Noctuidae) larvae, with regard to the mortality and structure of the chorion of eggs laid was tested. Generations varied in the total mortality rate, although all of them showed some survival rate. The third and the fourth generations showed the lowest mortality among tested ones. Exposure to fenitrothion caused malformations in eggs. The chorion revealed cracks and diminutions of the outer layer. The quality and quantity of malformations increased proportional to the duration of exposure, e.g. the second exposed generation reveald more prominent changes than the first one. Malformations were observed in the next generations, which were not exposed to pesticide. The follicular cells, which are responsible for the structure and sculpture of the eggshell, must have inherited the malforming mechanism. Most probably, malformation takes place during the late development of eggs in the ovarioles.  相似文献   

17.
18.
A microtitre-plate assay which distinguishes propoxur-resistant from susceptibles Anopheles albimanus Weidemann was used to test for linkage between the genes for propoxur- and dieldrin-resistance. The adult progeny of a backcross between a doubly-resistant colony and a fully susceptible colony were exposed in conventional test kits to the standard discriminating dose of dieldrin, and kept in the insectary overnight. Both live and dead insects were then assayed individually for propoxur-resistance. The results showed that heterozygotes for propoxur-resistance could be reliably distinguished from susceptibles whether or not they had been killed up to 24 h previously by dieldrin treatment. In this way all the backcross progeny could be scored at both resistance loci, and all four genotypic classes identified. Resistant and susceptible alleles at the two loci were inherited independently, demonstrating the absence of linkage. The usual method of testing for linkage between resistance genes is inefficient and open to bias, because insects have to be exposed to each insecticide in turn, and only half of them can be scored at both loci. The method shown here avoids these drawbacks.  相似文献   

19.
Insect sodium channels and insecticide resistance   总被引:1,自引:0,他引:1  
Voltage-gated sodium channels are essential for the generation and propagation of action potentials (i.e., electrical impulses) in excitable cells. Although most of our knowledge about sodium channels is derived from decades of studies of mammalian isoforms, research on insect sodium channels is revealing both common and unique aspects of sodium channel biology. In particular, our understanding of the molecular dynamics and pharmacology of insect sodium channels has advanced greatly in recent years, thanks to successful functional expression of insect sodium channels in Xenopus oocytes and intensive efforts to elucidate the molecular basis of insect resistance to insecticides that target sodium channels. In this review, I discuss recent literature on insect sodium channels with emphases on the prominent role of alternative splicing and RNA editing in the generation of functionally diverse sodium channels in insects and the current understanding of the interactions between insect sodium channels and insecticides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号