首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The appearance of two electric potentials in the aorta is explained by the blood pulse and the remote steps of atherosclerosis are elucidated from the physical point of view. When the first C-C-2W is deposited in the intimamedia, the primary cause of their retention is the stress-induced polarization of the membrane. C-C-2W possesses a permanent dipole moment which may be reversed by the field produced by the radial expansion/contraction of the arteries.The initial C-C-2W increases the polarization of the aorta walls, favoring accumulation of more oriented material on top of the first. C-C-2W is also ferroelectric and constitutes a polar continuum with the membranes. By the time fatty streaks appear, the entire aorta wall is ferroelectric and energy has been stored in the walls under the form of residual polarization. This storage gradually destroys the wall, leading to aneurism. The biological significance of the new theory is summarized in Table 2.  相似文献   

2.
The cell walls of Fusarium sulphureum have a microfibrillar component that is randomly arranged. X-ray-diffraction diagrams of the microfibrils are consistent with a high degree of crystallinity and show that they are chitin. The chitin microfibrils of the peripheral walls envelop the hyphal apex and extend across the septae. During the first 8h in culture, the conversion of conidial cells to chlamydospores is evidenced by a swelling of the cells and the original microfibrils remain randomly arranged. Within 24h new wall material is deposited as the cells expand and the wall thickens. The new microfibrils are indistinguishable from those of the original conidial cells. After 3 days in culture, the chlamydospores are fully developed and have the characteristic thick wall which is a continuous layer of randomly arranged microfibrils. Chlamydospores maintained in a conversion medium for 8 days have microfibrils identical with those in 3-day-old cultures; thus a further change in the microfibril orientation did not occur during that period. Alkaline hydrolysis of the walls removes most of the electron-dense staining constituents from the inner wall layer and leaves the outer wall layer intact. This treatment also reveals some of the wall microfibrils. An additional treatment of the walls with HAc/H2O2 completely removes the wall components that react positively to heavy metal stains. The results are discussed in relation to the structure of other fungal cell walls.  相似文献   

3.
An endotoxin-liberating strain of Neisseria meningitidis plasmolysed extensively after 2 h of exposure to 100 times MIC values of benzypenicillin. The peptidoglycan layer could be demonstrated after 2 h of treatment in places where the cytoplasm still was close to the cell wall. After 20 h, however, this layer was complete undetectable. In untreated cells the peptidoglycan layer could more easily be found in older cultures than in very young cultures. An increased adhesiveness and aggregation to other bacterial cells and to cell wall material could be observed after 2 h of penicillin treatment, and more pronouncedly after 20 h. A high yield of free cell wall material could be demonstrated after 2 h of penicillin treatment. This corresponded well to an increased content of free endotoxin in the filtrates from the cell cultures treated with penicillin, compared to untreated controls. After 20 h of treatment, free cell wall material had formed large aggregates or was adherent to the cell walls of ghost cells. The corresponding endotoxin analysis showed a reduced content of filtrable endotoxin. Possible implications of the structural changes in relation to penicillin treatment of patients are discussed.  相似文献   

4.
Cell walls of Chlorococcum oleofadens Trainor & Bold were examined ultrastructurally and chemically. The wall of zoospores has a uniform 30 nm width and a regular lamellar pattern. Zoospores and young vegetative cell walk exhibit periodicities, consisting of 20 nm ridges on the outer layer. Vegetative cell walls have a variable thickness of Up to 800 nm and are composed of multiple layers of electron dense material. Further, vegetative walk contain a microfibrillar material composed predominantly of glucose and presumed to be cellulose. Except for this cellulose, vegetative cell wall chemistry is very similar to that of Chlamydomemas being composed of glycoprotein rich in hydroxyproline. The hydroxyproline in Chlorococcum walls is linked glycosidically to a mixture of hetrooligosaccharides composed of arabinose and galactose, and in one instance, an unknown 6-deoxyhexose. Altogether, the glycoprotein complex accounts for at least 52% of the wall. The amino acid composition of the walls is stikingly similar to those of widely different plant species. Indirect evidence indicates zoospore cell walls are also chemically similar to those of Chlamydomonas, and like them, are cellulose free. Thus a major chemical difference between zoospore and vegetative cell walk of Chlorococcum is the presence of cellulose in the latter. The contribution of this microfibrillar cellulose to the physical properties of the vegetative wall is discussed.  相似文献   

5.
A beta-glucanase (Z-glucanase) from Zymolyase was freed from a protease (Z-protease) by affinity chromatography on alpha 2-macroglobulin-Sepharose columns and used to solubilize proteins from isolated cell walls of Saccharomyces cerevisiae. The cell wall proteins were labeled with 125I and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The bulk of the labeled material had very low mobility. Its mannoprotein nature was demonstrated by precipitation with specific antibodies and by conversion to a band with an average molecular weight of 94,000 after incubation with endo-beta-N-acetylglucosaminidase. The intact mannoproteins were hydrolyzed by Z-protease, but were resistant to the enzyme when the carbohydrate was first removed by endo-beta-N-acetylglucosaminidase. In intact cells, lysis of cell walls by Z-glucanase required a previous incubation with z-protease, which led to solubilization of most of the 125I-labeled proteins. Other proteases that did not attack the cell wall mannoproteins were unable to substitute for Z-protease. The specific effect of Z-protease is consistent with the notion that mannoproteins form a surface layer of the cell wall that penetrates the wall to some depth and shields glucans from attack by Z-glucanase. Mannoproteins, however, do not appear to cover the inner face of the cell wall, because isolated cell walls, in contrast to intact cells, were completely solubilized by Z-glucanase in the absence of protease. The function of mannoproteins in determining cell wall porosity was highlighted by the finding that horseradish peroxidase (Mr, 40,000) causes lysis of cells that had been treated with Z-protease. Depletion of mannoproteins by Z-protease also resulted in the disappearance of a darkly stained surface layer of the cell wall, as observed by electron microscopy. Other agents that facilitate cell lysis by Z-glucanase, such as 2-mercaptoethanol, digitonin, and high concentrations of salts, caused little or no solubilization of mannoprotein. We assume that they perturb and loosen the structure of the mannoprotein network, thereby increasing its porosity. The implications of our results for the construction of the yeast cell wall and the anchoring of mannoprotein to the cell are discussed.  相似文献   

6.
Phoretic stages of the exuviotrophic apostome Gymnodinioides pacifica were examined using transmission and scanning electron microscopy (TEM and SEM). TEM revealed that the mature cyst wall possesses 2 or 3 layers differing by the presence or absence of the third inner layer. This inner layer may represent a different form of the middle wall material. The inner cyst layer is approximately 0.15 microm thick and has striations with a periodicity of approximately 19 nm. The middle cyst layer has a variable thickness and the outer dense layer is approximately 0.1 microm thick. The 3 layered cyst wall had a thickness of 0.3-0.7 microm and averaged 0.5 microm. Advanced phoront stages were enclosed by fully formed cyst walls or by cyst walls thinned to approximately 0.1 microm, as the phoronts prepared to excyst prior to host ecdysis. Additionally, we report the fine structure of the rosette, trichocysts, nuclei, food plaquettes, oral fiber, and other cytoplasmic inclusions. SEM revealed an outer cyst wall layer connected to the secreted peduncle material, which was observed to extend over a wide (15 microm) area on the host setae. Cysts were usually attached at their posterior ends or, less frequently, along their side.  相似文献   

7.
Brian C. Monk 《Planta》1988,176(4):441-450
The cell walls of Chlamydomonas gametes are multilayered structures supported on frameworks of polypeptides extending from the plasma membrane. The wall-polypeptide catalogue reported by Monk et al. (1983, Planta 158, 517–533) and extended by U.W. Goodenough et al. (1986, J. Cell Biol. 103, 405–417) was re-evaluated by comparative analysis of mechanically isolated cell walls purified from several strains. The extracellular locus of wall polypeptides was verified by in vivo iodogen-catalysed iodination and by autolysin-mediated elimination of the bulk of these polypeptides from the cell surface. Three (w15, w16, w17) and possibly four (w14) polypeptides were located to the most exterior aspect of the wall because of their susceptibility to Enzymobeadcatalysed iodination and their retention by a cell-wall-less mutant. The composition of shed walls stabilised with ethylenediaminetetraacetic acid during natural mating and kinetic analysis of the dissolution of walls purified from a bald-2 mutant demonstrated the rapid and specific destruction of polypeptide w3. Differential solubilisation of wall polypeptides occurred after loss of w3. Wall dissolution, characterised by the generation of fishbone structures from the W2 layer, gave as many as four additional polypeptides. Charged detergents and sodium perchlorate extracted a comparable range of polypeptides at room temperature from mechanically isolated walls, i.e. components of the W4–W6 layers, hot sodium dodecyl sulphate solubilised framework polypeptides, while reducing agent was required to solubilise the W2 layer. A model of wall structure is presented.Abbreviations DTE dithioerythritol - EDTA ethylenediaminetetraacetic acid - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

8.
The SEM was used to study the development of respiratory structures in successive stages in relation to the overall changes occurring in the scorpions. Book lung development is a slow process, starting with spiracles and a sac‐like atrium in the early embryo and continuing lamellar formation to 150 or more in the adult. In the embryo, the primordial epithelial cells become aligned in a planar pattern as they secrete granules of material that aggregate spontaneously to form the cuticular walls of the lamellae. A blade‐like structure is formed consisting of cells sandwiched within the two cuticle walls they secreted. These cells are in the primordial air channel. The adjacent hemolymph channel is nearly devoid of cells, but cross‐bridges develop and help stabilize the cuticle walls and maintain the width of the channel. The cells in the primordial air channel undergo cytolysis, leaving it open for air except for cuticular cross‐bridges. Development continues in the newborn (first instars); the air channels of some lamellae still contain cells and are not yet functional for gas exchange. The first instars are weak and relatively inactive. They climb up on the mother's dorsum until the first molt (about 8 days). With the cuticular walls of the lamellae in place, cells adhering to the wall in the hemolymph channel produce a thin, new tissue layer (epithelium) on the lamellar wall facing the hemolymph channel. This layer has many discontinuities as though it is slowly developing. Formation of the tissue layer and cytolysis of the cells in the air channels continue through the first molt in which little book lung cuticle is shed as exuvium. The air channels of the second instars (foraging nymphs) are now cell free and open for air passage except for the cross‐bridges. The tissue layer is still incomplete and continues to be formed. It may provide the hypodermal primordium for cuticle replacement in later molts, but development was not studied beyond the second instar except for comparison with book lungs in the adult. The blade‐like lamellae in the adult are larger and more numerous than in the second instar, but in the anterior book lung the shape of the cuticle wall and cross‐bridges and the widths of the air and hemolymph channels are about the same as in the second instar. The air channels in the posterior part of the lamellae have distinctive, vein‐like space‐holders. The similarity of the adult anterior lamellae with those in the second instar suggests retention of this part through the 4–5 molts to maturation, and/or cell processes like those in the embryo are repeated, but this needs to be examined in further studies of cell and cuticle changes before and during the molts. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
MARCHANT  R. 《Annals of botany》1966,30(4):821-830
The conidial and germ-tube walls of Fusarium culmorum (W. G.Smith) Sacc. have been examined by various chemical and electron-microscopetechniques. On the basis of these results and hypothesis isproposed for the organization of these walls. Microchemicaltests indicate the presence of chitin in the walls and suggestthat the mucilaginous layer around the conidium is mainly composedof xylan. Chemical analyses of isolated wall material confirmthe presence of chitin constituents in the wall, and a rylanlayer around the conidium. Furthermore, the wall contains apolypeptide moiety which has a different amino acid compositionfrom the rest of the protein of the cell. Electron microscopestudies of replicas and sections of conidia, germ tubes, andhyphae reveal a layered structure for the wall. The centrallayer is non-microfibrillar and is overlaid on both sides witha layer of randomly orientated microfibrils. The mucilaginouslayer of the conidium obscures the microfibrillar structurebeneath it unless the mucilage is removed by hydrolysis. Theproblem of hyphal growth is discussed on the basis of the structureof germ-tube tips and mature hyphae observed.  相似文献   

10.
The ultrastructure of the calcareous red coralline alga Lithothrix aspergillum Gray and the development of the various tissue types has been studied. The sub-apical meristematic tissue alternately produces genicular or intergenicular cells. The genicular cells rapidly elongate and their cell walls thicken and become denser as more fibrillar wall material is laid down within the cell wall. These cells contain little cytoplasm and few organelles. The inter genicular cells which elongate only slightly during development have a small vacuole and many free starch grains in the cytoplasm. The peripheral cells in each inter genicular layer remain meristematic and form a cortical cell layer over the genicular cells. These cortical cells and the apical meristematic cells are covered by small epidermal cells which have extensive cell wall ingrowths between the chloroplasts. The inter genicular cells are calcified. Although the CaCO3 is laid down within the cell walls, there is always a thin layer of CaCO3-free organic cell wall material between the plasmalemma and the CaCO3 impregnated wall. Only the distal tips of the genicular cells are calcified. In old genicular tissues of Lithothrix, secondary deposits of CaCO3 of unknown crystallography are also found in the spaces between the cell walls. Thus there appear to be at least two mechanisms of calcification in this alga.  相似文献   

11.
Cells ofCryptococcus neoformans fixed by the TAPO-acrolein-osmium method show a highly electron-dense capsule with fibrillar and granular structures and a wall organized in two main layers. The outer layer is electrontransparent and contains a variable amount of low to medium-density material, especially abundant in actively growing cells. The inner wall layer shows a lamellar aspect and in the majority of the cells may further be divided into two sub-layers mainly on the basis of lamellar compactness. The wall of the bud, since its early appearance, is also formed by an inner dark lamellar layer and an outer, electron-transparent one. While the former is seen as a direct continuation of the corresponding innermost part of the parent wall, the latter orginates from the inside of the lamellar wall and grows out with the emerging bud through a rupture of the lateral parental wall. Capsular material always covers the wall of the bud even if its amount is very reduced in the early stages of the budding.  相似文献   

12.
Abstract Scanning electron microscopy of calcified walls in two species of the cyclostome bryozoan Hornera has revealed previously undescribed details of skeletal morphology and growth. The calcitic interior walls of both H. robusta MacGillivray and H. squamosa Hutton have a laminated structure. Walls are extended at distal growing edges where the formation of new crystallites is concentrated and wall fabric is nacreous or semi-nacreous. New crystallites are seeded on the surface of existing crystallites as six-sided rhombs. At the centres of the rhombs in H. robusta there are often three ‘spikes' which point towards alternate sides of the rhomb. Screw dislocations resulting in spiral overgrowths are also common at these distal wall edges. Wall thickening occurs further proximally where walls develop a regularly foliated structure of imbricated laths growing towards the colony base. Although often thought to be ubiquitous in cyclostomes, the division of walls into three layers (an inner, primary layer flanked on both sides by secondary layers) is absent in Hornera. Wall ultrastructure contrasts strongly with the lamellar–fibrous–lamellar structure recently described from cinctiporid cyclostomes. The c-axes of the crystallites are orientated perpendicular to the wall surface in Hornera, unlike cinctiporids in which they are orientated within the plane of the wall. Apparent similarities in ultrastructure suggest that Hornera may provide a good model for wall growth in extinct trepostome bryozoans.  相似文献   

13.
Extraction of a partially purified preparation of cell walls from Escherichia coli with the nonionic detergent Triton X-100 removed all cytoplasmic membrane contamination but did not affect the normal morphology of the cell wall. This Triton-treated preparation, termed the “Triton-insoluble cell wall,” contained all of the protein of the cell wall but only about half of the lipopolysaccharide and one-third of the phospholipid of the cell wall. This Triton-insoluble cell wall preparation was used as a starting material in an investigation of several further treatments. Reextraction of the Triton-insoluble cell wall with either Triton X-100 or ethylenediaminetetraacetic acid (EDTA) caused no further solubilization of protein. However, when the Triton-insoluble cell wall was extracted with a combination of Triton X-100 and EDTA, about half of the protein and all of the remaining lipopolysaccharide and phospholipid were solubilized. The material which remained insoluble after this combined Triton and EDTA extraction still retained some of the morphological features of the intact cell wall. Treatment of the Triton-insoluble cell wall with lysozyme resulted in a destruction of the peptidoglycan layer as seen in the electron microscope and in a release of diaminopimelic acid from the cell wall but did not solubilize any cell wall protein. Extraction of this lysozyme-treated preparation with a combination of Triton X-100 and EDTA again solubilized about half of the cell wall protein but resulted in a drastic change in the morphology of the Triton-EDTA-insoluble material. After this treatment, the insoluble material formed lamellar structures. These results are interpreted in terms of the types of noncovalent bonds involved in maintaining the organized structure of the cell wall and suggest that the main forces involved are hydrophobic protein-protein interactions between the cell wall proteins and to a lesser degree a stabilization of protein-protein and protein-lipopolysaccharide interactions by divalent cations. A model for the structure of the E. coli cell wall is presented.  相似文献   

14.
The ultrastructure of dividing rod-stage cells of Arthrobacter crystallopoietes was examined by electron microscopy. The cell walls consist of two layers. During cell division, the inner layer invaginates to form the septum. The outer layer does not participate in septum formation. After septum formation is completed, the two daughter cells remain attached by the outer layer of the cell wall. It appears that localized rupture of the outer layer during further wall growth is responsible for the phenomenon known as "snapping division" or "snapping postfission movement."  相似文献   

15.
HALL  J. L.; SEXTON  R. 《Annals of botany》1974,38(4):855-858
The sub-cellular localization of acid phosphatase and peroxidaseactivities has been studied by cytochemical procedures in cellsat the surface of the separation layer during the abscissionof leaves of Phaseolus vulgaris. Intense staining for both enzymeswas found in the cell walls, Golgi bodies and endoplasmic reticulum.The wall staining for acid phosphatase was chiefly associatedwith the middle lamellar region while staining for peroxidasewas found throughout the wall. These observations are discussedin relation to the possible involvement of these enzymes inthe changes occurring in the wall during abscission and to therole of the Golgi bodies in the separation process.  相似文献   

16.
The formation of wall ingrowths increases plasma membrane surface areas of transfer cells involved in membrane transport of nutrients in plants. Construction of these ingrowths provides intriguing and diverse examples of localized wall deposition. Flange wall ingrowths resemble secondary wall thickenings of tracheary elements in morphology and probable mechanisms of deposition. By contrast, reticulate wall ingrowths, deposited as discrete papillate projections, branch and fuse to create a fenestrated wall labyrinth representing a novel form of localized wall deposition. Papillate wall ingrowths are initiated as patches of disorganized cellulosic material and are compositionally similar to primary walls, except for a surrounding layer of callose and enhanced levels of arabinogalactan proteins at the ingrowth/membrane interface. How this unusual form of localized wall deposition is constructed is unknown but may involve constraining cellulose-synthesizing rosette complexes at their growing tips.  相似文献   

17.
Cell walls (LOG walls) were isolated from cultures of Streptococcus faecalis ATCC 9790 in the exponential phase of growth. These walls were either allowed to undergo autolytic dissolution (in the presence or absence of trypsin) or wall autolysis was inactivated with sodium dodecylsulfate (SDS walls). Inactivated walls were treated either with lysozyme or with isolated, partially purified S. faecalis autolysin. During wall lysis, samples were removed, negatively stained with phosphotungstate, and examined in the electron microscope. Both lysozyme and isolated autolysin appeared to act over the entire surface of SDS walls. After partial dissolution, a fibrous network over the surface was revealed. Lysozyme digestion revealed the presence of prominent, highly-contrasted equatorial and subequatorial bands around the walls. After trichloroacetic acid extraction, the bands were seen less frequently and less distinctly in the partially lysozyme digested walls, suggesting that the bands contained nonpeptidoglycan polymers. In the absence of trypsin (which activates a latent form of the autolysin), autolysis of LOG walls appeared to start at the equatorial bands and to proceed back towards the apex of the coccus. Ribbons of wall material coming off the wide edge of the nearly hemispherical wall fragments were observed. Activation of latent autolysis resulted in lytic action over the entire wall surface. The results are consistent with the previously postulated location of active autolysin at the areas of new wall synthesis and the random location of latent autolysin in LOG walls.  相似文献   

18.
Summary. Abaxial epidermal cells of developing faba bean (Vicia faba) cotyledons are modified to a transfer cell morphology and function. In contrast, the adaxial epidermal cells do not form transfer cells but can be induced to do so when excised cotyledons are cultured on an agar medium. The first fenestrated layer of wall ingrowths is apparent within 24 h of cotyledon exposure to culture medium. The time course of wall ingrowth formation was examined further. By 2 h following cotyledon excision, a 350 nm thick wall was deposited evenly over the outer periclinal walls of adaxial epidermal cells and densities of cytoplasmic vesicles increased. After 3 h in culture, 10% of epidermal cells contained small projections of wall material on their outer periclinal walls. Thereafter, this percentage rose sharply and reached a maximum of 90% by 15 h. Continuous culture of cotyledons on a medium containing 6-methyl purine (an inhibitor of RNA synthesis) completely blocked wall ingrowth formation. In contrast, if exposure to 6-methyl purine was delayed for 1 h at the start of the culture period, the adaxial epidermal cells were found to contain small wall ingrowths. Treating cotyledons for 1 h with 6-methyl purine at 15 h following cotyledon excision halted further wall ingrowth development. We conclude that transfer cell induction is rapid and that signalling and early events leading to wall ingrowth formation depend upon gene expression. In addition, these gene products have a high turnover rate. Correspondence and reprints: School of Environmental and Life Sciences, Biology Building, University of Newcastle, Callaghan, NSW 2308, Australia.  相似文献   

19.
The ultrastructural detail of spore development in Scutellospora heterogama is described. Although the main ontogenetic events are similar to those described from light microscopy, the complexity of wall layering is greater when examined at an ultrastructural level. The basic concept of a rigid spore wall enclosing two inner, flexible walls still holds true, but there are additional zones within these three walls distinguishable using electron microscopy, including an inner layer that is involved in the formation of the germination shield. The spore wall has three layers rather than the two reported previously. An outer, thin ornamented layer and an inner, thicker layer are both derived from the hyphal wall and present at all stages of development. These layers differentiate into the outer spore layer visible at the light microscope level. A third inner layer unique to the spore develops during spore swelling and rapidly expands before contracting back to form the second wall layer visible by light microscopy. The two inner flexible walls also are more complex than light microscopy suggests. The close association with the inner flexible walls with germination shield formation consolidates the preferred use of the term ‘germinal walls’ for these structures. A thin electron-dense layer separates the two germinal walls and is the region in which the germination shield forms. The inner germinal wall develops at least two sub-layers, one of which has an appearance similar to that of the expanding layer of the outer spore wall. An electron-dense layer is formed on the inner surface of the inner germinal wall as the germination shield develops, and this forms the wall surrounding the germination shield as well as the germination tube. At maturity, the outer germinal wall develops a thin, striate layer within its substructure.  相似文献   

20.
Summary In the seed coat ofGasteria verrucosa the deposition of phytomelan takes place during seed development in three stages. Phytomelan is a black cell wall material which is chemically very inert. First the radial walls and part of the transverse cell wall of the outer epidermis of the outer integument become thickened by exocytosis of dictyosome vesicles. Callose is deposited at the tangential plasma membrane against those walls. After the callose deposition about two thirds of the original cell volume is filled with callose. During the second stage the callose is broken down, probably into glucose monomers or small polymers. At the same time cellulose is deposited at the outer tangential plasma membrane, forming a wall between the dissolving callose and the plasma membrane. In the third phase small granules appear in the solution of dissolved callose. which grow out and finally fuse to form a block of phytomelan, consisting of spherical 15-nm units. Remarkable is the function of the callose: it determines the size of the phytomelan block, and it probably functions as carbohydrate source for the phytomelan synthesis and/or for the cellulose inner layer. In this study transmission electron microscopy and cryo scanning electron microscopy are used to study the three developmental stages of the formation of the phytomelan layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号