首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toll-like receptor 4 (TLR4) is a signaling receptor for lipopolysaccharide (LPS), but its interaction with MD-2 is required for efficient responses to LPS. Previous studies with deletion mutants indicate a critical role of the amino-terminal TLR4 region in interaction with MD-2. However, it is uncertain which region in the TLR4 molecule directly binds to MD-2. The purpose of this study was to determine a critical stretch of primary sequence in the TLR4 region that directly binds MD-2 and is critical for LPS signaling. The synthetic TLR4 peptide corresponding to the TLR4 region Glu(24)-Lys(47) directly binds to recombinant soluble MD-2 (sMD-2). The TLR4 peptide inhibited the binding of a recombinant soluble form of the extracellular TLR4 domain (sTLR4) to sMD-2 and significantly attenuated LPS-induced NF-kappaB activation and IL-8 secretion in wild type TLR4-transfected cells. Reduction and S-carboxymethylation of sTLR4 abrogated its association with sMD-2. The TLR4 mutants, TLR4(C29A), TLR4(C40A), and TLR4(C29A,C40A), were neither co-precipitated with MD-2 nor expressed on the cell surface and failed to transmit LPS signaling. These results demonstrate that the TLR4 region Glu(24)-Lys(47) is a site for MD-2 binding and that Cys(29) and Cys(40) within this region are critical residues for MD-2 binding and LPS signaling.  相似文献   

2.
In this study, we sought the possibility of a new therapeutic strategy for dampening endotoxin-induced inflammation using soluble form of extracellular rTLR4 domain (sTLR4) and soluble form of rMD-2 (sMD-2). Addition of sTLR4 plus sMD-2 was significantly effective in inhibiting LPS-elicited IL-8 release from U937 cells and NF-kappaB activation in the cells transfected with TLR4 and MD-2 when compared with a single treatment with sTLR4 or sMD-2. Thus, we investigated the role of the extracellular TLR4 domain in interaction of lipid A with MD-2. Biotinylated sTLR4 failed to coprecipitate [(3)H]lipid A when it was sedimented with streptavidin-agarose, demonstrating that the extracellular TLR4 domain does not directly bind lipid A by itself. The amounts of lipid A coprecipitated with sMD-2 significantly increased when coincubated with sTLR4, and sTLR4 increased the affinity of lipid A for the binding to sMD-2. Soluble CD14 is required for the sTLR4-stimulated increase of lipid A binding to sMD-2. We also found that addition of sTLR4 plus sMD-2 inhibited the binding of Alexa-conjugated LPS to the cells expressing TLR4 and MD-2. Murine lungs that had received sTLR4 plus sMD-2 with LPS did not show any findings indicative of interstitial edema, neutrophil flux, and hemorrhage. Co-instillation of sTLR4 plus sMD-2, but not sTLR4 or sMD-2 alone, significantly decreased neutrophil infiltration and TNF-alpha levels in bronchoalveolar lavage fluids from LPS-treated mice. This study provides novel usage of sTLR4 and sMD-2 as an antagonist against endotoxin-induced pulmonary inflammation.  相似文献   

3.
The purpose of the current study was to examine the binding of pulmonary surfactant protein A (SP-A) to TLR4 and MD-2, which are critical signaling receptors for lipopolysaccharides (LPSs). The direct binding of SP-A to the recombinant soluble form of extracellular TLR4 domain (sTLR4) and MD-2 was detected using solid-phase binding, immunoprecipitation, and BIAcore. SP-A bound to sTLR4 and MD-2 in a Ca2+-dependent manner, and an anti-SP-A monoclonal antibody whose epitope lies in the region Thr184-Gly194 blocked the SP-A binding to sTLR4 and MD-2, indicating the involvement of the carbohydrate recognition domain (CRD) in the binding. SP-A avidly bound to the deglycosylated forms of sTLR4 and MD-2, suggesting a protein/protein interaction. In addition, SP-A attenuated cell surface binding of smooth LPS and smooth LPS-induced NF-kappaB activation in TLR4/MD-2-expressing cells. To know the role of oligomerization in the interaction of SP-A with TLR4 and MD-2, the collagenase-resistant fragment (CRF), which consisted of CRD plus neck domain of SP-A, was isolated. CRF assembled as a trimer, whereas SP-A assembled as a higher order oligomer. Although CRD was suggested to be involved in the binding, CRF exhibited approximately 600- and 155-fold higher KD for the binding to TLR4 and MD-2, respectively, when compared with SP-A. Consistently significantly higher molar concentrations of CRF were required to inhibit smooth LPS-induced NF-kappaB activation and tumor necrosis factor-alpha secretion. These results demonstrate for the first time the direct interaction between SP-A and TLR4/MD-2 and suggest the importance of supratrimeric oligomerization in the immunomodulatory function of SP-A.  相似文献   

4.
Toll-like receptor 4 (TLR4) is a signaling receptor for lipopolysaccharide (LPS) but requires MD-2, a molecule associated with the extracellular TLR4 domain, to respond efficiently to LPS. The purpose of this study was to determine the critical stretch of primary sequence in the TLR4 region involved in MD-2 recognition. TLR4 and TLR4/2a chimera consisting of the TLR4 region Met(1)-Phe(54) and the TLR2 region Ala(53)-Ser(784) were coprecipitated with MD-2, but the deletion mutant TLR4(Delta E24-P34) in which the TLR4 region Glu(24)-Pro(34) was deleted failed to coprecipitate. In agreement with the MD-2 binding, LPS-conjugated beads sedimented TLR4 and TLR4/2a chimera but not TLR2 with MD-2. TLR4(Delta E24-P34) barely coprecipitated with LPS-beads. The cells that had been cotransfected with TLR4(Delta E24-P34) and MD-2 did not induce NF-kappa B activation in response to LPS. These results clearly demonstrate that the amino-terminal TLR4 region of Glu(24)-Pro(34) is critical for MD-2 binding and LPS signaling.  相似文献   

5.
Regulatory roles for MD-2 and TLR4 in ligand-induced receptor clustering   总被引:2,自引:0,他引:2  
LPS, a principal membrane component in Gram-negative bacteria, is recognized by a receptor complex consisting of TLR4 and MD-2. MD-2 is an extracellular molecule that is associated with the extracellular domain of TLR4 and has a critical role in LPS recognition. MD-2 directly interacts with LPS, and the region from Phe(119) to Lys(132) (Arg(132) in mice) has been shown to be important for interaction between LPS and TLR4/MD-2. With mouse MD-2 mutants, we show in this study that Gly(59) was found to be a novel critical amino acid for LPS binding outside the region 119-132. LPS signaling is thought to be triggered by ligand-induced TLR4 clustering, which is also regulated by MD-2. Little is known, however, about a region or an amino acid in the MD-2 molecule that regulates ligand-induced receptor clustering. MD-2 mutants substituting alanine for Phe(126) or Gly(129) impaired LPS-induced TLR4 clustering, but not LPS binding to TLR4/MD-2, demonstrating that ligand-induced receptor clustering is differentially regulated by MD-2 from ligand binding. We further show that dissociation of ligand-induced receptor clustering and of ligand-receptor interaction occurs in a manner dependent on TLR4 signaling and requires endosomal acidification. These results support a principal role for MD-2 in LPS recognition.  相似文献   

6.
脂多糖(LPS)的识别和信号转导是宿主发生防御反应的关键,Toll样受体4(TLR4)与髓样分化蛋白-2(MD-2)形成复合物在LPS的识别及其信号转导中发挥了重要作用.研究TLR4与MD-2结合的功能结构域,对于深入了解LPS信号转导机制及其内毒素休克的防治具有重要意义.运用基于强度的三通道荧光共振能量转移技术(FRET)及基因突变和转染技术,研究了活细胞TLR4与MD-2作用的结构域.结果表明:N端Glu24~Met41缺失使TLR4与MD-2结合能力明显下降;LPS刺激后TLR4聚合迅速增加,而缺失Glu24~Met41的TLR4不能聚合.上述结果提示,TLR4的Glu24~Met41不仅是结合MD-2的区域,并且还参与了LPS刺激后TLR4的聚合作用.  相似文献   

7.
Pulmonary surfactant protein D (SP-D), a member of the collectin group of innate immune proteins, plays important roles in lipopolysaccharide (LPS) recognition. We have previously shown that surfactant protein A (SP-A), a homologous collectin, interacts with Toll-like receptor (TLR) 2, resulting in alteration of TLR2-mediated signaling. In this study, we found that natural and recombinant SP-Ds exhibited specific binding to the extracellular domains of soluble forms of recombinant TLR2 (sTLR2) and TLR4 (sTLR4). Binding was concentration- and Ca2+-dependent, and SP-D bound to N-glycosidase F-treated sTLRs on ligand blots. Anti-SP-D monoclonal antibody 7A10 blocked binding of SP-D to sTLR2 and sTLR4, but there was no inhibitory effect of monoclonal 7C6. Epitope mapping with recombinant proteins consisting of the carbohydrate recognition domain (CRD) and the neck domain plus CRD (NCRD) localized binding sites for 7A10 and 7C6 to sequential epitopes associated with the CRD and the neck domain, respectively. Interactions with 7A10 but not 7C6 were blocked by prior binding of the NCRD to sTLRs. Although antibody 7A10 significantly inhibited the binding of SP-D to its major surfactant-associated ligand, phosphatidylinositol (PI), and Escherichia coli Rc LPS, 7C6 enhanced binding to both molecules. An SP-D(E321Q, N323D) mutant with altered carbohydrate specificity exhibited attenuated PI binding but showed an increased level of binding to sTLRs. Thus, human SP-D binds the extracellular domains of TLR2 and TLR4 through its CRD by a mechanism different from its binding to PI and LPS.  相似文献   

8.
MD-2, a glycoprotein that is essential for the innate response to lipopolysaccharide (LPS), binds to both LPS and the extracellular domain of Toll-like receptor 4 (TLR4). Following synthesis, MD-2 is either secreted directly into the medium as a soluble, active protein, or binds directly to TLR4 in the endoplasmic reticulum before migrating to the cell surface. Here we investigate the function of the secreted form of MD-2. We show that secreted MD-2 irreversibly loses activity over a 24-h period at physiological temperature. LPS, but not lipid A, prevents this loss in activity by forming a stable complex with MD-2, in a CD14-dependent process. Once formed, the stable MD-2.LPS complex activates TLR4 in the absence of CD14 or free LPS indicating that the activating ligand of TLR4 is the MD-2.LPS complex. Finally we show that the MD-2.LPS complex, but not LPS alone, induces epithelial cells, which express TLR4 but not MD-2, to secrete interleukin-6 and interleukin-8. We propose that the soluble MD-2.LPS complex plays a crucial role in the LPS response by activating epithelial and other TLR4(+)/MD-2(-) cells in the inflammatory microenvironment.  相似文献   

9.

Background

We have previously shown that lung collectins, surfactant protein A (SP-A) and surfactant protein D, interact with Toll-like receptor (TLR) 2, TLR4, or MD-2. Bindings of lung collectins to TLR2 and TLR4/MD-2 result in the alterations of signaling through these receptors, suggesting the immunomodulatory functions of lung collectins. Mannose binding lectin (MBL) is another collectin molecule which has structural homology to SP-A. The interaction between MBL and TLRs has not yet been determined.

Methods

We prepared recombinant MBL, and analyzed its bindings to recombinant soluble forms of TLR4 (sTLR4) and MD-2.

Results

MBL bound to sTLR4 and MD-2. The interactions were Ca2+-dependent and inhibited by mannose or monoclonal antibody against the carbohydrate-recognition domain of MBL. Treatment of sTLR4 or MD-2 by peptide N-glycosidase F significantly decreased the binding of MBL. SP-A bound to deglycosylated sTLR4, and this property did not change in chimeric molecules of SP-A/MBL in which Glu195–Phe228 or Thr174–Gly194 of SP-A were replaced with the corresponding MBL sequences.

General Significance

These results suggested that MBL binds to TLR4 and MD-2 through the carbohydrate-recognition domain, and that oligosaccharide moieties of TLR4 and MD-2 are important for recognition by MBL. Since our previous studies indicated that lung collectins bind to the peptide portions of TLRs, MBL and lung collectins interact with TLRs by different mechanisms. These direct interactions between MBL and TLR4 or MD-2 suggest that MBL may modulate cellular responses by altering signals through TLRs.  相似文献   

10.
We analysed the lipopolysaccharide (LPS)-recognition mechanism in cells expressing TLR4 and CD14 but lacking MD-2. When TLR4 and CD14 were transiently expressed in HEK293 cells, cell-surface expression of TLR4 was observed, although the expression level was lower than that in cells coexpressing MD-2. We found that membrane CD14-TLR4 complexes were formed in these cells in response to LPS stimulation even in the absence of MD-2 expression, although NF-kappaB-dependent reporter activity was not induced. A strong activation of NF-kappaB was observed when these cells were stimulated with LPS followed by soluble MD-2 in this order, even when excess LPS was removed after formation of the CD14-TLR4 complex by washing cells prior to sMD-2 addition. From these results, we propose an additional LPS-recognition mechanism. In cells expressing TLR4 and CD14 but lacking MD-2, LPS is first transferred to membrane CD14 with the aid of LPS binding protein, which leads to the formation of the TLR4-CD14 complex. Then, the binding of soluble MD-2 to this complex triggers the transmembrane signal transduction. Cells expressing TLR4 and CD14 but lacking MD-2, such as airway epithelial cells, may be activated in response to LPS by this mechanism.  相似文献   

11.
Toll-like receptor 4 and MD-2 form a receptor for lipopolysaccharide (LPS), a major constituent of Gram-negative bacteria. MD-2 is a 20-25-kDa extracellular glycoprotein that binds to Tolllike receptor 4 (TLR4) and LPS and is a critical part of the LPS receptor. Here we have shown that the level of MD-2 expression regulates TLR4 activation by LPS. Using site-directed mutagenesis, we have found that glycosylation has no effect on MD-2 function as a membrane receptor for LPS. We used alanine-scanning mutagenesis to identify regions of human MD-2 that are important for TLR4 and LPS binding. We found that mutation in the N-terminal 46 amino acids of MD-2 did not substantially diminish LPS activation of Chinese hamster ovary (CHO) cells co-transfected with TLR4 and mutant MD-2. The residues 46-50 were important for LPS activation but not LPS binding. The residues 79-83, 121-124, and 125-129 are identified as important in LPS activation but not surface expression of membrane MD-2. The function of soluble MD-2 is somewhat more sensitive to mutation than membrane MD-2. Our results suggest that the 46-50 and 127-131 regions of soluble MD-2 bind to TLR4. The region 79-120 is not involved in LPS binding but affects monomerization of soluble MD-2 as well as TLR4 binding. We define the LPS binding region of monomeric soluble MD-2 as a cluster of basic residues 125-131. Studies on both membrane and soluble MD-2 suggest that domains of MD-2 for TLR4 and LPS binding are separate as well as overlapping. By mapping these regions on a three-dimensional model, we show the likely binding regions of MD-2 to TLR4 and LPS.  相似文献   

12.
The detection of Gram-negative LPS depends upon the proper function of the TLR4-MD-2 receptor complex in immune cells. TLR4 is the signal transduction component of the LPS receptor, whereas MD-2 is the endotoxin-binding unit. MD-2 appears to activate TLR4 when bound to TLR4 and ligated by LPS. Only the monomeric form of MD-2 was found to bind LPS and only monomeric MD-2 interacts with TLR4. Monomeric MD-2 binds TLR4 with an apparent Kd of 12 nM; this binding avidity was unaltered in the presence of endotoxin. E5564, an LPS antagonist, appears to inhibit cellular activation by competitively preventing the binding of LPS to MD-2. Depletion of endogenous soluble MD-2 from human serum, with an immobilized TLR4 fusion protein, abrogated TLR4-mediated LPS responses. By determining the concentration of added-back MD-2 that restored normal LPS responsiveness, the concentration of MD-2 was estimated to be approximately 50 nM. Similarly, purified TLR4-Fc fusion protein, when added to the supernatants of TLR4-expressing cells in culture, inhibited the interaction of MD-2 with TLR4, thus preventing LPS stimulation. The ability to inhibit the effects of LPS as a result of the binding of TLR4-Fc or E5564 to MD-2 highlights MD-2 as the logical target for drug therapies designed to pharmacologically intervene against endotoxin-induced disease.  相似文献   

13.
The expression of MD-2, which associates with Toll-like receptor (TLR) 4 on the cell surface, confers LPS and LPS-mimetic Taxol responsiveness on TLR4. Alanine-scanning mutagenesis was performed to identify the mouse MD-2 residues important for conferring LPS and Taxol responsiveness on mouse TLR4, and for forming the cell surface TLR4-MD-2 complex recognized by anti-TLR4-MD-2 Ab MTS510. Single alanine mutations were introduced into mouse MD-2 (residues 17-160), and the mutants were expressed in a human cell line expressing mouse TLR4. Mouse MD-2 mutants, in which a single alanine mutation was introduced at Cys37, Leu71, Leu78, Cys95, Tyr102, Cys105, Glu111, Val113, Ile117, Pro118, Phe119, Glu136, Ile138, Leu146, Cys148, or Thr152, showed dramatically reduced ability to form the cell surface mouse TLR4-mouse MD-2 complex recognized by MTS510, and the mutants also showed reduced ability to confer LPS and Taxol responsiveness. In contrast, mouse MD-2 mutants, in which a single alanine mutation was introduced at Tyr34, Tyr36, Gly59, Val82, Ile85, Phe126, Pro127, Gly129, Ile153, Ile154, and His155 showed normal ability to form the cell surface mouse TLR4-mouse MD-2 complex recognized by MTS510, but their ability to confer LPS and Taxol responsiveness was apparently reduced. These results suggest that the ability of MD-2 to form the cell surface mouse TLR4-mouse MD-2 complex recognized by MTS510 is essential for conferring LPS and Taxol responsiveness on TLR4, but not sufficient. In addition, the required residues at codon numbers 34, 85, 101, 122, and 153 for the ability of mouse MD-2 to confer LPS responsiveness are partly different from those for Taxol responsiveness.  相似文献   

14.
Kim HM  Park BS  Kim JI  Kim SE  Lee J  Oh SC  Enkhbayar P  Matsushima N  Lee H  Yoo OJ  Lee JO 《Cell》2007,130(5):906-917
TLR4 and MD-2 form a heterodimer that recognizes LPS (lipopolysaccharide) from Gram-negative bacteria. Eritoran is an analog of LPS that antagonizes its activity by binding to the TLR4-MD-2 complex. We determined the structure of the full-length ectodomain of the mouse TLR4 and MD-2 complex. We also produced a series of hybrids of human TLR4 and hagfish VLR and determined their structures with and without bound MD-2 and Eritoran. TLR4 is an atypical member of the LRR family and is composed of N-terminal, central, and C-terminal domains. The beta sheet of the central domain shows unusually small radii and large twist angles. MD-2 binds to the concave surface of the N-terminal and central domains. The interaction with Eritoran is mediated by a hydrophobic internal pocket in MD-2. Based on structural analysis and mutagenesis experiments on MD-2 and TLR4, we propose a model of TLR4-MD-2 dimerization induced by LPS.  相似文献   

15.
TLR2 recognizes a bacterial lipopeptide through direct binding   总被引:4,自引:0,他引:4  
The TLRs play an important role in the initiation of cellular innate immune responses to a wide range of bacterial products, including LPS and lipoproteins. Although rapid progress has been made on signaling functions of activated TLRs, the molecular mechanisms that lead to TLR activation are still poorly understood. We report in this study that the extracellular domain of TLR2 interacts directly with synthetic bacterial lipopeptide (sBLP), a potent analog of bacterial lipoproteins. Using fluorescently labeled sBLP complexed to soluble recombinant CD14 (rsCD14), we observed specific binding of sBLP to the surface of cells expressing TLR2 transgenes and to a recombinant soluble form of the TLR2 ectodomain. TLR2-mediated binding of sBLP at the cell surface did not require prior induction of intracellular signals. In addition, using a chimeric TLR2/TLR4 construct, we showed that the leucine-rich region of TLR2 carries the specificity for binding of the agonist and for initiating signaling. Specific binding of fluorescent sBLP to purified sTLR2 required sCD14. However, sCD14 was not part of the complex formed by soluble TLR2 and sBLP. Together, these data provide evidence that TLR2 recognizes sBLP through direct binding.  相似文献   

16.
Lipopolysaccharide (LPS), the Gram-negative bacterial outer membrane glycolipid, induces sepsis through its interaction with myeloid differentiation protein-2 (MD-2) and Toll-like receptor 4 (TLR4). To block interaction between LPS/MD-2 complex and TLR4, we designed and generated soluble fusion proteins capable of binding MD-2, dubbed TLR4 decoy receptor (TOY) using ‘the Hybrid leucine-rich repeats (LRR) technique’. TOY contains the MD-2 binding ectodomain of TLR4, the LRR motif of hagfish variable lymphocyte receptor (VLR), and the Fc domain of IgG1 to make it soluble, productive, and functional. TOY exhibited strong binding to MD-2, but not to the extracellular matrix (ECM), resulting in a favorable pharmacokinetic profile in vivo. TOY significantly extended the lifespan, when administered in either preventive or therapeutic manners, in both the LPS- and cecal ligation/puncture-induced sepsis models in mice. TOY markedly attenuated LPS-triggered NF-κB activation, secretion of proinflammatory cytokines, and thrombus formation in multiple organs. Taken together, the targeting strategy for sequestration of LPS/MD-2 complex using the decoy receptor TOY is effective in treating LPS- and bacteria-induced sepsis; furthermore, the strategy used in TOY development can be applied to the generation of other novel decoy receptor proteins.  相似文献   

17.
Kinetics of binding of LPS to recombinant CD14, TLR4, and MD-2 proteins   总被引:2,自引:0,他引:2  
TLR4 together with CD14 and MD-2 forms a pattern recognition receptor that plays an initiating role in the innate immune response to Gram-negative bacteria. Here, we employed the surface plasmon resonance technique to investigate the kinetics of binding of LPS to recombinant CD14, MD-2 and TLR4 proteins produced in insect cells. The dissociation constants (KD) of LPS for immobilized CD14 and MD-2 were 8.7 microM, and 2.3 microM, respectively. The association rate constant (Kon) of LPS for MD-2 was 5.61 x 10(3) M-1S-1, and the dissociation rate constant (Koff) was 1.28 10 2 S 1, revealing slow association and fast dissociation with an affinity constant KD of 2.33 x 10-6 M at 25 degreesC. These affinities are consistent with the current view that CD14 conveys LPS to the TLR4/MD-2 complex.  相似文献   

18.
The receptor complex resulting from association of MD-2 and the ectodomain of Toll-like receptor 4 (TLR4) mediates lipopolysaccharide (LPS) signal transduction across the cell membrane. We prepared a tertiary structure model of MD-2, based on the known structures of homologous lipid-binding proteins. Analysis of circular dichroic spectra of purified bacterially expressed MD-2 indicates high content of beta-type secondary structure, in agreement with the structural model. Bacterially expressed MD-2 was able to confer LPS responsiveness to cells expressing TLR4 despite lacking glycosylation. We identified several clusters of basic residues on the surface of MD-2. Mutation of each of two clusters encompassing the residues Lys(89)-Arg(90)-Lys(91) and Lys(125)-Lys(125) significantly decreased the signal transduction of the respective MD-2 mutants either upon co-expression with TLR4 or upon addition as soluble protein into the supernatant of cells overexpressing TLR4. These basic clusters lie at the edge of the beta-sheet sandwich, which in cholesterol-binding protein connected to Niemann-Pick disease C2 (NPC2), dust mite allergen Der p2, and ganglioside GM2-activator protein form a hydrophobic pocket. In contrast, mutation of another basic cluster composed of Arg(69)-Lys(72), which according to the model lies further apart from the hydrophobic pocket only weakly decreased MD-2 activity. Furthermore, addition of the peptide, comprising the surface loop between Cys(95) and Cys(105), predicted by model, particularly in oxidized form, decreased LPS-induced production of tumor necrosis factor alpha and interleukin-8 upon application to monocytic cells and fibroblasts, respectively, supporting its involvement in LPS signaling. Our structural model of MD-2 is corroborated by biochemical analysis and contributes to the unraveling of molecular interactions in LPS recognition.  相似文献   

19.
TLRs recognize microbial products. Their subcellular distribution is optimized for microbial recognition. Little is known, however, about mechanisms regulating the subcellular distribution of TLRs. LPS is recognized by the receptor complex consisting of TLR4 and MD-2. Although MD-2, a coreceptor for TLR4, enhances cell surface expression of TLR4, an additional mechanism regulating TLR4 distribution has been suggested. We show here that PRAT4A, a novel protein associated with TLR4, regulates cell surface expression of TLR4. PRAT4A is associated with the immature form of TLR4 but not with MD-2 or TLR2. PRAT4A knockdown abolished LPS responsiveness in a cell line expressing TLR4/MD-2, probably due to the lack of cell surface TLR4. PRAT4A knockdown down-regulated cell surface TLR4/MD-2 on dendritic cells. These results demonstrate a novel mechanism regulating TLR4/MD-2 expression on the cell surface.  相似文献   

20.
MD-2 is an essential component of endotoxin (LPS) sensing, binding LPS independently and when bound to the ectodomain of the membrane receptor TLR4. Natural variation of proteins involved in the LPS-recognition cascade such as the LPS-binding protein, CD14, and TLR4, as well as proteins involved in intracellular signaling downstream of LPS binding, affect the cellular response to endotoxin and host defense against bacterial infections. We now describe the functional properties of two nonsynonymous coding polymorphisms of MD-2, G56R and P157S, documented in HapMap. As predicted from the MD-2 structure, the P157S mutation had little or no effect on MD-2 function. In contrast, the G56R mutation, located close to the LPS-binding pocket, significantly decreased cellular responsiveness to LPS. Soluble G56R MD-2 showed markedly reduced LPS binding that was to a large degree rescued by TLR4 coexpression or presence of TLR4 ectodomain. Thus, cells that express TLR4 without MD-2 and whose response to LPS depends on ectopically produced MD-2 were most affected by expression of the G56R variant of MD-2. Coexpression of wild-type and G56R MD-2 yielded an intermediate phenotype with responses to LPS diminished to a greater extent than that resulting from expression of the D299G TLR4 polymorphic variant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号