首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interferon-alpha in tumor immunity and immunotherapy   总被引:8,自引:0,他引:8  
Interferon-alpha (IFN-alpha) is a pleiotropic cytokine belonging to type I IFN, currently used in cancer patients. Early studies in mouse tumor models have shown the importance of host immune mechanisms in the generation of a long-lasting antitumor response to type I IFN. Recent studies have underscored new immunomodulatory effects of IFN-alpha, including activities on T and dendritic cells, which may explain IFN-induced tumor immunity. Reports on new immune correlates in cancer patients responding to IFN-alpha represent additional evidence on the importance of the interactions of IFN-alpha with the immune system for the generation of durable antitumor response. This knowledge, together with results from studies on genetically modified tumor cells expressing IFN-alpha, suggest novel strategies for using these cytokines in cancer immunotherapy and in particular the use of IFN-alpha as an immune adjuvant for the development of cancer vaccines.  相似文献   

2.
Daily treatment of mice with fms-like tyrosine kinase 3 ligand (Flt3L) leads to a significant increase in the number of dendritic cells and induces antitumor immunity. Here, we show that Flt3L and CD40 ligand (CD40L) synergize in the generation of immune responses against two poorly immunogenic tumors, leading to complete tumor rejection in a high proportion of mice. Rechallenge of the Flt3L + CD40L-treated mice with the immunizing tumor resulted in complete inhibition of tumor growth, indicating that these animals had developed long-lasting antitumor immunity. In addition, we demonstrate that endogenous CD40L plays a critical role in antitumor immunity, since blockade of CD40-CD40L interactions in vivo prevents the generation of antitumor immunity in therapeutic and vaccination protocols. Dendritic cells generated in mice treated with Flt3L alone or in combination with CD40L were equally potent in stimulating allogeneic T cells and expressed similar levels of MHC class II, CD80, and CD86. However, mice treated with Flt3L + CD40L had significantly more dendritic cells than mice treated with either of the cytokines alone, suggesting that CD40L promotes the proliferation and/or survival of dendritic cells generated by Flt3L treatment. Dendritic cells generated in this manner are likely to be involved in the priming of antitumor immune responses.  相似文献   

3.
The identification of tumor specific antigens has provided important advance in tumor immunology. It is now established that specific cytotoxic T lymphocytes (CTL) and natural killer cells infiltrate tumor tissues and are effector cells able to control tumor growth. However, such a natural antitumor immunity has limited effects in cancer patients. Failure of host defenses against tumor is consecutive to several mechanisms which are becoming targets to design new immunotherapeutic approaches. CTL are critical components of the immune response to human tumors and induction of strong CTL responses is the goal of most current vaccine strategies. Effectiveness of cytokine therapy, cancer vaccines and injection of cells improving cellular immunity have been established in tumor grafted murine models. Clinical trials are underway. To day, interest is particularly focused on cell therapy: injected cells are either "ready to use" effector cells (lymphocytes) or antigen presenting cells able to induce a protective immune reaction in vivo (dendritic cells). The challenge ahead lie in the careful optimization of the most promising strategies in clinical situation.  相似文献   

4.
Surgical treatment of colorectal cancer is associated with postoperative immunosuppression, which might facilitate dissemination of tumor cells and outgrowth of minimal residual disease/(micro) metastases. Minimal residual disease has been shown to be of prognostic relevance in colorectal cancer. Therefore, stimulation of (anti-tumor) immune responses may be beneficial in the prevention of metastases formation. Important anti-tumor effector cells, which serve this function, are natural killer (NK) cells, CD8+ lymphocytes (CTL), dendritic cells (DC) and macrophages. In this review the immunomodulating properties of IFN-alpha are discussed, with a particular focus on perioperative stimulation of immune function in cancer patients. IFN-alpha is known to enhance innate immune functions such as stimulation of NK cells, transition from innate to adaptive responses (activation of DC) and regulating of CD8+ CTL activity and memory. Moreover, it exerts direct antitumor effects by regulating apoptosis and cell cycle. In several clinical trials, perioperative administration of IFN-alpha has indeed been shown to improve T cell responsiveness, prevent impairment of NK cell cytotoxicity and increase expression of activation markers on NK, T and NKT cells. In a clinical pilot study we showed in colorectal cancer patients that received perioperative IFN-alpha enhanced activation markers on T cells and NK cells, combined with better-preserved T cell function as indicated by phytohemaggluttinin skin tests. In the liver of these patients significantly more CD8+ T cells were found. In conclusion, IFN-alpha provides an effective adjuvant in several forms of cancer and improves several postoperative immune functions in perioperative administration. However, larger clinical trials are necessary to investigate effects on disease-free and overall survival.  相似文献   

5.
Two-deoxy-D-glucose (2-DG), an inhibitor of glycolysis differentially enhances the radiation and chemotherapeutic drug induced cell death in cancer cells in vitro, while the local tumor control (tumor regression) following systemic administration of 2-DG and focal irradiation of the tumor results in both complete (cure) and partial response in a fraction of the tumor bearing mice. In the present studies, we investigated the effects of systemically administered 2-DG and focal irradiation of the tumor on the immune system in Ehrlich ascites tumor (EAT) bearing Strain “A” mice. Markers of different immune cells were analyzed by immune-flow cytometry and secretary cytokines by ELISA, besides monitoring tumor growth. Increase in the expression of innate (NK and monocytes) and adaptive CD4+cells, and a decrease in B cells (CD19) have been observed after the combined treatment, suggestive of activation of anti-tumor immune response. Interestingly, immature dendritic cells were found to be down regulated, while their functional markers CD86 and MHC II were up regulated in the remaining dendritic cells following the combination treatment. Similarly, decrease in the CD4+ naïve cells with concomitant increase in activated CD4+ cells corroborated the immune activation. Further, a shift from Th2 and Th17 to Th1 besides a decrease in inflammatory cytokines was also observed in the animals showing complete response (cure; tumor free survival). This shift was also complimented by respective antibody class switching followed by the combined treatment. The immune activation or alteration in the homeostasis favoring antitumor immune response may be due to depletion in T regulatory cells (CD4+CD25+FoxP3+). Altogether, these results suggest that early differential immune activation is responsible for the heterogenous response to the combined treatment. Taken together, these studies for the first time provided insight into the additional mechanisms underlying radio-sensitization by 2-DG in vivo by unraveling its potential as an immune-modulator besides direct effects on the tumor.  相似文献   

6.
Oncolytic viruses can exert their antitumor activity via direct oncolysis or activation of antitumor immunity. Although reovirus is currently under clinical investigation for the treatment of localized or disseminated cancer, any potential immune contribution to its efficacy has not been addressed. This is the first study to investigate the ability of reovirus to activate human dendritic cells (DC), key regulators of both innate and adaptive immune responses. Reovirus induced DC maturation and stimulated the production of the proinflammatory cytokines IFN-alpha, TNF-alpha, IL-12p70, and IL-6. Activation of DC by reovirus was not dependent on viral replication, while cytokine production (but not phenotypic maturation) was inhibited by blockade of PKR and NF-kappaB signaling. Upon coculture with autologous NK cells, reovirus-activated DC up-regulated IFN-gamma production and increased NK cytolytic activity. Moreover, short-term coculture of reovirus-activated DC with autologous T cells also enhanced T cell cytokine secretion (IL-2 and IFN-gamma) and induced non-Ag restricted tumor cell killing. These data demonstrate for the first time that reovirus directly activates human DC and that reovirus-activated DC stimulate innate killing by not only NK cells, but also T cells, suggesting a novel potential role for T cells in oncolytic virus-induced local tumor cell death. Hence reovirus recognition by DC may trigger innate effector mechanisms to complement the virus's direct cytotoxicity, potentially enhancing the efficacy of reovirus as a therapeutic agent.  相似文献   

7.
Modern cancer therapies often involve the combination of tumor-directed cytotoxic strategies and generation of a host antitumor immune response. The latter is unleashed by immunotherapies that activate the immune system generating a more immunostimulatory tumor microenvironment and a stronger tumor antigen-specific immune response. Studying the interaction between antitumor cytotoxic therapies, dying cancer cells, and the innate and adaptive immune system requires appropriate experimental tumor models in mice. In this review, we discuss the immunostimulatory and immunosuppressive properties of cancer cell lines commonly used in immunogenic cell death (ICD) studies being apoptosis or necroptosis. We will especially focus on the antigenic component of immunogenicity. While in several cancer cell lines the epitopes of endogenously expressed tumor antigens are known, these intrinsic epitopes are rarely determined in experimental apoptotic or necroptotic ICD settings. Instead by far the most ICD research studies investigate the antigenic response against exogenously expressed model antigens such as ovalbumin or retroviral epitopes (e.g., AH1). In this review, we will argue that the immune response against endogenous tumor antigens and the immunopeptidome profile of cancer cell lines affect the eventual biological readouts in the typical prophylactic tumor vaccination type of experiments used in ICD research, and we will propose additional methods involving immunopeptidome profiling, major histocompatibility complex molecule expression, and identification of tumor-infiltrating immune cells to document intrinsic immunogenicity following different cell death modalities.Subject terms: Cancer models, Antigen-presenting cells, Immune cell death  相似文献   

8.
Dendritic cells and cytokines in immune rejection of cancer   总被引:2,自引:0,他引:2  
Dendritic cells (DCs) play a crucial role in linking innate and adaptive immunity and, thus, in the generation of a protective immune response against both infectious diseases and tumors. The ability of DCs to prime and expand an immune response is regulated by signals acting through soluble mediators, mainly cytokines and chemokines. Understanding how cytokines influence DC functions and orchestrate the interactions of DCs with other immune cells is strictly instrumental to the progress in cancer immunotherapy. Herein, we will illustrate how certain cytokines and immune stimulating molecules can induce and sustain the antitumor immune response by acting on DCs. We will also discuss these cytokine-DC interactions in the light of clinical results in cancer patients.  相似文献   

9.
10.
Liang CM  Zhong CP  Sun RX  Liu BB  Huang C  Qin J  Zhou S  Shan J  Liu YK  Ye SL 《Journal of virology》2007,81(17):9502-9511
Development of an effective antitumor immune response depends on the appropriate interaction of effector and target cells. Thus, the expression of chemokines within the tumor may induce a more potent antitumor immune response. Secondary lymphoid tissue chemokine (SLC) is known to play a critical role in establishing a functional microenvironment in secondary lymphoid tissues. Its capacity to attract dendritic cells (DCs) and colocalize them with T cells makes it a good therapeutic candidate against cancer. In this study, we used SLC as a treatment for tumors established from a murine hepatocellular carcinoma model. SLC was encoded by recombinant adeno-associated virus (rAAV), a system chosen for the low host immunity and high efficiency of transduction, enabling long-term expression of the gene of interest. As a result, rAAV-SLC induced a significant delay of tumor progression, which was paralleled by a profound infiltration of DCs and activated CD4(+) T cells and CD8(+) T cells (CD3(+) CD69(+) cells) into the tumor site. In addition, rAAV-SLC treatment was also found to reduce tumor growth in nude mice, most likely due to inhibition of neoangiogenesis. In conclusion, local expression of SLC by rAAV represents a promising approach to induce immune-mediated regression of malignant tumors.  相似文献   

11.
Oncolytic herpes simplex virus 1 (HSV-1) viruses armed with immunomodulatory transgenes have shown potential for enhanced antitumor therapy by overcoming tumor-based immune suppression and promoting antitumor effector cell development. Previously, we reported that the new oncolytic HSV-1 virus, OncSyn (OS), engineered to fuse tumor cells, prevented tumor growth and metastasis to distal organs in the 4T1/BALB/c immunocompetent breast cancer mouse model, suggesting the elicitation of antitumor immune responses (Israyelyan et al., Hum. Gen. Ther. 18:5, 2007, and Israyelyan et al., Virol. J. 5:68, 2008). The OSV virus was constructed by deleting the OS viral host shutoff gene (vhs; UL41) to further attenuate the virus and permit dendritic cell activation and antigen presentation. Subsequently, the OSVP virus was constructed by inserting into the OSV viral genome a murine 15-prostaglandin dehydrogenase (15-PGDH) expression cassette, designed to constitutively express 15-PGDH upon infection. 15-PGDH is a tumor suppressor protein and the primary enzyme responsible for the degradation of prostaglandin E2 (PGE2), which is known to promote tumor development. OSVP, OSV, and OS treatment of 4T1 tumors in BALB/c mice effectively reduced primary tumor growth and inhibited metastatic development of secondary tumors. OSVP was able to significantly inhibit the development and accumulation of 4T1 metastatic tumor cells in the lungs of treated mice. Ex vivo analysis of immune cells following treatment showed increased inflammatory cytokine production and the presence of mature dendritic cells for the OSVP, OSV, and OS viruses. A statistically significant decrease in splenic myeloid-derived suppressor cells (MDSC) was observed only for OSVP-treated mice. These results show that intratumoral oncolytic herpes is highly immunogenic and suggest that 15-PGDH expression by OSVP enhanced the antitumor immune response initiated by viral infection of primary tumor cells, leading to reduced development of pulmonary metastases. The availability of the OSVP genome as a bacterial artificial chromosome allows for the rapid insertion of additional immunomodulatory genes that could further assist in the induction of potent antitumor immune responses against primary and metastatic tumors.  相似文献   

12.
Despite their well-documented immunogenicity, malignant melanomas belong to the most aggressive tumor types. A potential explanation for this is the suboptimal activation of tumor infiltrating T cells. In order to boost immune responses against tumors, a variety of treatment modalities have been tested in animal models and in clinical setting. Antigen-nonspecific approaches (e.g., IFN-alpha and IL-2), as well as active specific immunotherapeutical modalities based on the use of autologous or allogeneic tumor cell-save been investigated in clinical trials of melanoma. The identification of melanoma-associated antigens has opened new avenues in antigen-specific immunotherapy. A promising alternative for the delivery of different forms of melanoma antigens is the application of dendritic cells, the most potent antigen presenting cells capable of eliciting efficient T-cell response. Beside active immunotherapy, immune response against melanoma antigens could be increased through the adoptive transfer of tumor infiltrating lymphocytes or antigen specific T-cell clones. The most important conclusion that can be drawn from the results of published immunotherapy studies is that these modalities are able to induce durable complete tumor regressions,mostly with reasonable toxicity; however, generally only in a minority of patients. This points to the importance of appropriate patient selection, with regard to the expression of the targeted antigens and HLA molecules, as well as to the general immunocompetence of the patients. A crucial and still unsolved question is monitoring immune activation during treatment, although there are promising new tools that could prove useful in this respect. The presence of tumor-reactive CTL in the circulation or in the tumors does not guarantee an efficient immune response. It is important to assess if these T cells are in an activated and functional state. Finally, in several single target antigen-based clinical studies a therapy-induced immunoselection of antigen-negative clones, leading to disease progression, was observed. This could be overcome with the use of antigen cocktails or whole tumor approaches. A better understanding of the mechanisms of action of immunotherapeutical modalities may enhance the success rate of these strategies.  相似文献   

13.
For active specific immunotherapy of cancer patients, we designed the autologous virus–modified tumor cell vaccine ATV-NDV. The rationale of this vaccine is to link multiple tumor-associated antigens (TAAs) from individual patient-derived tumor cells with multiple danger signals (DS) derived from virus infection (dsRNA, HN, IFN-). This allows activation of multiple innate immune responses (monocytes, dendritic cells, and NK cells) as well as adaptive immune responses (CD4 and CD8 memory T cells). Preexisting antitumor memory T cells from cancer patients could be activated by antitumor vaccination with ATV-NDV as seen by augmentation of antitumor memory delayed-type hypersensitivity (DTH) responses. In a variety of phase II vaccination studies, an optimal formulation of this vaccine could improve long-term survival beyond what is seen in conventional standard therapies. A new concept is presented which proposes that a certain threshold of antitumor immune memory plays an important role (1) in the control of residual tumor cells which remain after most therapies and (2) for long-term survival of treated cancer patients. This immune memory is T-cell based and most likely maintained by persisting TAAs from residual dormant tumor cells. Such immune memory was prominent in the bone marrow in animal tumor models as well as in cancer patients. Immunization with a tumor vaccine in which individual TAAs are combined with DS from virus infection appears to have a positive effect on antitumor immune memory and on patient survival.  相似文献   

14.
The ability of various cytokines to hamper tumor growth or to induce anti-tumor immune response has resulted in their study as antitumor agents in gene therapy approaches. In this review we will concentrate on the costimulation of antitumor immune responses using modification of various cell types by cytokine genes. Several strategies have emerged such as (i). modification of tumor cells with cytokine genes ex vivo (whole tumor cell vaccines), (ii). ex vivo modification of other cell types for cytokine gene delivery, (iii). delivery of cytokine genes into tumor microenvironment in vivo, (iv). modification of dendritic cells with cytokine genes ex vivo. Originally single cytokine genes were used. Subsequently, multiple cytokine genes were applied simultaneously, or in combination with other factors such as chemokines, membrane bound co-stimulatory molecules, or tumor associated antigens. In this review we discuss these strategies and their use in cancer treatment as well as the promises and limitations of cytokine based cancer gene therapy. Clinical trials, including our own experience, employing the above strategies are discussed.  相似文献   

15.
Although tumor progression involves processes such as tissue invasion that can activate inflammatory responses, the immune system largely ignores or tolerates disseminated cancers. The mechanisms that block initiation of immune responses during cancer development are poorly understood. We report here that constitutive activation of Stat-3, a common oncogenic signaling pathway, suppresses tumor expression of proinflammatory mediators. Blocking Stat-3 in tumor cells increases expression of proinflammatory cytokines and chemokines that activate innate immunity and dendritic cells, leading to tumor-specific T-cell responses. In addition, constitutive Stat-3 activity induces production of pleiotropic factors that inhibit dendritic cell functional maturation. Tumor-derived factors inhibit dendritic cell maturation through Stat-3 activation in progenitor cells. Thus, inhibition of antitumor immunity involves a cascade of Stat-3 activation propagating from tumor to dendritic cells. We propose that tumor Stat-3 activity can mediate immune evasion by blocking both the production and sensing of inflammatory signals by multiple components of the immune system.  相似文献   

16.
Recent studies show that cancer cells are sometimes able to evade the host immunity in the tumor microenvironment. Cancer cells can express high levels of immune inhibitory signaling proteins. One of the most critical checkpoint pathways in this system is a tumor-induced immune suppression (immune checkpoint) mediated by the programmed cell death protein 1 (PD-1) and its ligand, programmed death ligand 1 (PD-L1). PD-1 is highly expressed by activated T cells, B cells, dendritic cells, and natural killer cells, whereas PD-L1 is expressed on several types of tumor cells. Many studies have shown that blocking the interaction between PD-1 and PD-L1 enhances the T-cell response and mediates antitumor activity. In this review, we highlight a brief overview of the molecular and biochemical events that are regulated by the PD-1 and PD-L1 interaction in various cancers.  相似文献   

17.
We have shown previously that IFN-gamma-inducing cytokines such as IL-12 can mediate potent antitumor effects against murine solid tumors. IL-27 is a newly described IL-12-related cytokine that potentiates various aspects of T and/or NK cell function. We hypothesized that IL-27 might also mediate potent antitumor activity in vivo. TBJ neuroblastoma cells engineered to overexpress IL-27 demonstrated markedly delayed growth compared with control mice, and complete durable tumor regression was observed in >90% of mice bearing either s.c. or orthotopic intra-adrenal tumors, and 40% of mice bearing induced metastatic disease. The majority of mice cured of their original TBJ-IL-27 tumors were resistant to tumor rechallenge. Furthermore, TBJ-IL-27 tumors were heavily infiltrated by CD8(+) T cells, and draining lymph node-derived lymphocytes from mice bearing s.c. TBJ-IL-27 tumors are primed to proliferate more readily when cultured ex vivo with anti-CD3/anti-CD28 compared with lymphocytes from mice bearing control tumors, and to secrete higher levels of IFN-gamma. In addition, marked enhancement of local IFN-gamma gene expression and potent up-regulation of cell surface MHC class I expression are noted within TBJ-IL-27 tumors compared with control tumors. Functionally, these alterations occur in conjunction with the generation of tumor-specific CTL reactivity in mice bearing TBJ-IL-27 tumors, and the induction of tumor regression via mechanisms that are critically dependent on CD8(+), but not CD4(+) T cells or NK cells. Collectively, these studies suggest that IL-27 could be used therapeutically to potentiate the host antitumor immune response in patients with malignancy.  相似文献   

18.

Background

Role of immune system in protecting the host from cancer is well established. Growing cancer however subverts immune response towards Th2 type and escape from antitumor mechanism of the host. Activation of both innate and Th1 type response is crucial for host antitumor activity. In our previous study it was found, that Mycobacterium indicus pranii (MIP) also known as M. w induces Th1 type response and activates macrophages in animal model of tuberculosis. Hence, we studied the immunotherapeutic potential of MIP in mouse tumor model and the underlying mechanisms for its antitumor activity.

Methodology and Principal Findings

Tumors were implanted by injecting B16F10 melanoma cells subcutaneously into C57BL/6 mice. Using the optimized dose and treatment regimes, anti-tumor efficacy of heat killed MIP was evaluated. In MIP treated group, tumor appeared in only 50–60% of mice, tumor growth was delayed and tumor volume was less as compared to control. MIP mediated immune activation was analysed in the tumor microenvironment, tumor draining lymph node and spleen. Induction of Th1 response and higher infiltration of immune cells in the tumor microenvironment was observed in MIP treated mice. A large fraction of these immune cells were in activated state as confirmed by phenotypic and functional analysis. Interestingly, percentage of Treg cells in the tumor milieu of treated mice was less. We also evaluated efficacy of MIP along with chemotherapy and found a better response as compared to chemotherapy alone.

Conclusion

MIP therapy is effective in protecting mice from tumor. It activates the immune cells, increases their infiltration in tumor, and abrogates tumor mediated immune suppression.  相似文献   

19.
An increasing number of studies have revealed an interaction between gut microbiota and tumors. The enrichment of specific bacteria strains in the intestines has been found to modulate tumor growth and influence the mechanisms of tumor treatment. Various bacteria are involved in modulating the effects of chemotherapeutic drugs currently used to treat patients with cancer, and they affect not only gastrointestinal tract tumors but also distant organ tumors. In addition, changes in the gut microbiota are known to be involved in the antitumor immune response as well as the modulation of the intestinal immune system. As a result, the gut microbiota plays an important role in modulating the efficacy of immune checkpoint inhibitors. Therefore, gut microbiota could be considered as an adjuvant treatment option with other cancer treatment or as another marker for predicting treatment response. In this review, we examine how gut microbiota affects cancer treatments.  相似文献   

20.
Development of new effective method for cancer therapy is one of the most important trends in the modern medicine. Along with surgery, chemotherapy and radiotherapy, induction of an immune response against the tumor cells is a promising approach for therapy of cancer, particularly metastatic, slowly dividing tumors and cancer stem cells. Induction of the antitumor T-cell immune response involves activation of antigen-presenting cells, which can efficiently present the cancer antigens and activate T-lymphocytes. The immune response may be activated by dendritic cells (DC) loaded with tumor antigens, such as tumor-specific proteins, tumor cell lysates, apoptotic or necrotic tumor cells, as well as nucleic acids encoding tumor antigens. Regardless of the selected source of the tumor antigen, preparation of mature DC is a principal step in the development of anticancer vaccines aimed at the induction of the cytotoxic T-cell immune response. Recently, various research groups have proposed several strategies for producing mature DC, differed by the set of agents used. It has been shown that the maturation strategy influences both their phenotype and the ability to induce the immune response. In this review we have analyzed the results of studies on the various strategies of preparation of mature DCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号