首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rates of CO2/HCO-3 exchange, catalyzed by human carbonic anhydrase I (or B) at chemical equilibrium, were estimated from the nuclear magnetic resonance linewidths of 13C-labeled substrates. The results show that the maximal exchange rate constant is independent of pH in the range 5.7-8.0, whereas the apparent substrate dissociation constant depends on pH. Exchange proceeds rapidly in the absence of added buffers, and the addition of buffers has negligible effects on exchange rates. Exchange is equally rapid with 1H2O or 2H2O as solvents. Chloride ions inhibit CO2/HCO-3 exchange competitively. The maximal exchange rates obtained with human carbonic anhydrase I are 50 times slower than those obtained with human isoenzyme II (or C). From a comparison of the exchange kinetics with the steady-state kinetics of CO2 hydration and HCO-3 dehydration it is tentatively concluded that the transfer of H+ between active site and medium proceeds with rates of similar magnitudes in the two isoenzymes, whereas the central catalytic step, the interconversion of enzyme-bound CO2 and HCO-3, is much slower in isoenzyme I than in isoenzyme II.  相似文献   

2.
The origin of the nuclear magnetic resonance (NMR)-measurable ATP in equilibrium Pi exchange and whether it can be used to determine net oxidative ATP synthesis rates in the intact myocardium were examined by detailed measurements of ATP in equilibrium Pi exchange rates in both directions as a function of the myocardial oxygen consumption rate (MVO2) in (1) glucose-perfused, isovolumic rat hearts with normal glycolytic activity and (2) pyruvate-perfused hearts where glycolytic activity was reduced or eliminated either by depletion of their endogenous glycogen or by use of the inhibitor iodoacetate. In glucose-perfused hearts, the Pi----ATP rate measured by the conventional two-site saturation transfer (CST) technique remained constant while MVO2 was increased approximately 2-fold. When the glycolytic activity was reduced, the Pi----ATP rate decreased significantly, demonstrating the existence of a significant glycolytic contribution. Upon elimination of the glycolytic component, the measured Pi----ATP rates displayed a linear dependence on MVO (micromoles of O consumption rate) with a slope of 2.36 +/- 0.15 (N = 8, standard error of the mean). This linear relationship is expected if the rate determined by CST is the net rate of ATP synthesis by the oxidative phosphorylation process, in which case the slope must equal the P:O ratio. The ATP----Pi rates and rate:MVO ratios measured by the multiple-site saturation transfer method at two MVO2 levels were equal to the corresponding Pi----ATP rates and rate:MVO ratios obtained in the absence of a glycolytic contribution. The following conclusions are drawn from these studies: (1) unless the glycolytic contribution to the ATP in equilibrium Pi exchange is inhibited or is specifically shown not to exist, the myocardial Pi in equilibrium ATP exchange due to oxidative phosphorylation cannot be studied by NMR; (2) at moderate MVO2 levels, the reaction catalyzed by the two glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase is near equilibrium; (3) the ATP synthesis by the mitochondrial H+-ATPase occurs unidirectionally (i.e., the reaction is far out of equilibrium); (4) the "operative" P:O ratio in the intact myocardium under our conditions is significantly less than the canonically accepted value of 3.  相似文献   

3.
We have measured the pH dependence of the kinetics of CO2 hydration catalyzed by carbonic anhydrase III from the skeletal muscle of the cat. Two methods were used: an initial velocity study in which the change in absorbance of a pH indicator was measured in a stopped flow spectrophotometer, and an equilibrium study in which the rate of exchange of 18O between CO2 and H2O was measured with a mass spectrometer. We have found that the steady state constants kCO2 cat and KCO2 m are independent of pH within experimental error in the range of pH 5.0 to 8.5; the rate of release from the enzyme of the oxygen abstracted from substrate HCO-3 in the dehydration is also independent of pH in this range. This behavior is very different from that observed for carbonic anhydrase II for which kCO2 cat and the rate of release of substrate oxygen are very pH-dependent. The rate of interconversion of CO2 and HCO-3 at equilibrium catalyzed by carbonic anhydrase III is not altered when the solvent is changed from H2O to 98% D2O and 2% H2O. Thus, the interconversion probably proceeds without proton transfer in its rate-limiting steps, similar to isozymes I and II.  相似文献   

4.
The (Ca2+ + Mg2+)-ATPase from erythrocyte ghosts catalyzed the hydrolysis of ATP together with the synthesis of ATP or ATP in equilibrium 'Pi exchange. The modulation of the ATPase reaction cycle was controlled by high- and low-affinity calcium-binding sites asymmetrically located on the enzyme. Calmodulin accelerated the reaction cycle in both directions, stimulating the overall turnover of the enzyme. Calcium transport was achieved utilizing optimal conditions for the expression of the ATP in equilibrium Pi exchange system.  相似文献   

5.
The effects of human carbonic anhydrase C on the 13C nuclear magnetic resonance spectra of equilibrium mixtures of 13CO2 and NaH13CO3 were measured at 67.89 MHz. Enzyme-catalyzed CO2-HCO-3 exchange rates were estimated from the linewidths of the resonances. The results show that: (a) the maximal exchange rates are larger than the maximal turnover rates; (b) the exchange is equally rapid with 1H2O or with 2H2O as solvents; (c) the exchange is equally rapid in the presence or in the absence of added buffers; (d) the apparent substrate binding is weaker than predicted if steady-state Km values are assumed to represent substrate dissociation constants. The main conclusion concerning the catalytic mechanism of the enzyme is that the proton-transfer processes which limit turnover rates in the steady state are not directly involved in CO2-HCO-3 exchange. In addition, the results suggest that CO2-HCO-3 interconversion takes place by a nucleophilic mechanism, such as a reversible reaction of zinc-coordinated OH- with CO2.  相似文献   

6.
(13)C NMR monitored the dynamics of exchange from specific hydrogens of hepatic [2-(13)C]glutamate and [3-(13)C]aspartate with deuterons from intracellular heavy water providing information on alpha-ketoglutarate/glutamate exchange and subcellular compartmentation. Mouse livers were perfused with [3-(13)C]alanine in buffer containing or not 50% (2)H(2)O for increasing periods of time (1 min < t < 30 min). Liver extracts prepared at the end of the perfusions were analyzed by high resolution (13)C NMR (150.13 MHz) with (1)H decoupling only and with simultaneous (1)H and (2)H decoupling. (13)C-(2)H couplings and (2)H-induced isotopic shifts observed in the glutamate C2 resonance, allowed to estimate the apparent rate constants (forward, reverse; min(-1)) for (i) the reversible exchange of [2-(13)C]glutamate H2 as catalyzed mainly by aspartate aminotransferase (0.32, 0.56), (ii) the reversible exchange of [2-(13)C]glutamate H3(proS) as catalyzed by NAD(P) isocitrate dehydrogenase (0.1, 0.05), and (iii) the irreversible exchanges of glutamate H3(proR) and H3(proS) as catalyzed by the sequential activities of mitochondrial aconitase and NAD isocitrate dehydrogenase of the tricarboxylic acid cycle (0.035), respectively. A similar approach allowed to determine the rates of (1)H-(2)H exchange for the H2 (0.4, 0.5) or H3(proR) (0.3, 0.2) or the H2 and H3(proS) hydrogens (0.20, 0.23) of [3-(13)C]aspartate isotopomers. The ubiquitous subcellular localization of (1)H-(2)H exchange enzymes and the exclusive mitochondrial localization of pyruvate carboxylase and the tricarboxylic acid cycle resulted in distinctive kinetics of deuteration in the H2 and either or both H3 hydrogens of [2-(13)C]glutamate and [3-(13)C]aspartate, allowing to follow glutamate and aspartate trafficking through cytosol and mitochondria.  相似文献   

7.
The capacity of various ATPase preparations from beef heart mitochondria to catalyze exchange of phosphate oxygens with water has been evaluated. Oligomycin-sensitive ATPase preparations retain a capacity for considerable intermediate Pi equilibrium HOH exchange per Pi formed during ATP hydrolysis at relatively high ATP concentration (5 mM). Submitochondrial particles prepared by an ammonia-Sephadex procedure with 5 mM ATP showed more rapid ATPase, less oligomycin sensitivity, and less capacity for intermediate exchange. With these particles, intermediate Pi equilibrium HOH exchange per Pi formed was increased as ATP concentration was decreased. The purified, soluble ATPase from mitochondria catalyzed little or no intermediate Pi equilibrium HOH exchange at 5 mM ATP but showed pronounced increase in capacity for such exchange as ATP concentration was lowered. The ATPase also showed a weak catalysis of an ADP-stimulated medium Pi equilibrium HOH exchange. The results support the alternating catalytic site model for ATP synthesis or cleavage. They also demonstrate that a transmembrane protonmotive force is not necessary for oxygen exchange reactions. At lower ATP concentrations, ADP and Pi formed at a catalytic site appear to remain bound and continue to allow exchange of Pi oxygens until ATP binds at another site on the enzyme.  相似文献   

8.
T J Williams  R W Henkens 《Biochemistry》1985,24(10):2459-2462
Using 13C NMR spectroscopy, we have further investigated the binding of HCO3- in the active site of an artificial form of human carbonic anhydrase I in which the native zinc is replaced by Co(II). The Co(II) enzyme, unlike all other metal-substituted derivatives, has functional properties closely similar to those of the native zinc enzyme. By measuring the spin-lattice relaxation rate and the line width for both the CO2 and HCO3- at two field strengths, we have determined both the paramagnetic effects that reflect substrate binding and the exchange effects due to catalysis at chemical equilibrium. The following are the results at 14 degrees C and pH 6.3 (1) HCO3- is bound in the active site of the catalytically competent enzyme with the 13C of the HCO3- located 3.22 +/- 0.02 A from the Co(II); (2) the apparent equilibrium dissociation constant for the bound HCO3- is 7.6 +/- 1.5 mM, determined by using the paramagnetic effects on the line widths, and 10 +/- 2 mM, determined by using the exchange effects; (3) the lifetime of HCO3- bound to the metal is (4.4 +/- 0.4) X 10(-5) s; (4) the overall catalyzed CO2 in equilibrium HCO3- exchange rate constant of the Co(II) enzyme is (9.6 +/- 0.4) X 10(3) s-1; (5) the electron spin relaxation time of the Co(II), determined by using paramagnetic effects on the bound HCO3-, is (1.1 +/- 0.1) X 10(-11) s. The data did not provide any direct information on the binding of CO2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We have found that when the ATP hydrolysis activity of beef heart mitochondrial adenosine triphosphatase (F1) is eliminated by either cold treatment or chemical modification, the enzyme attains the ability to catalyze the Pi in equilibrium ATP exchange reaction. The ATP hydrolysis activity of isolated F1 was lost upon chemical modification by phenyglyoxal, butanedione, or 7-chloro-4-nitrobenzene-2-oxa-1,3-diazole. The F1 thus chemically modified was able to catalyze an ADP-dependent Pi in equilibrium ATP exchange reaction. In addition F1 that had been cold-treated to eliminate ATP hydrolysis activity, also catalyzed the Pi in equilibrium ATP exchange reaction. The Pi in equilibrium ATP exchange catalyzed by modified F1 was shown to be totally inhibited by the F1-specific antibiotic efrapeptin. We have previously shown that isolated beef heart mitochondrial ATPase will catalyze the formation of a transition state analog of the ATP synthesis reaction (Bossard, M. J., Vik, T. A., and Schuster, S. M. (1980) J. Biol. Chem. 255, 5342-5346). While the F1-catalyzed ATP hydrolysis activity was lost rapidly upon chemical modification or cold treatment, the ability of the enzyme to produce Pi . adenosine 5'-diphosphate (chromium(III) salt) from phosphate and monodentate adenosine 5'-diphosphate (chromium(III) salt) was unimpaired. The implications of these data with regard to the mechanism of ATP synthesis are discussed.  相似文献   

10.
Phosphate and phosphate-containing buffers of physiological interest such as ATP and 3-phosphoglycerate were found to enhance catalysis by human carbonic anhydrase III (HCA III). Addition of phosphate caused an increase in both the catalyzed rate of hydration of CO2 at steady state measured by stopped-flow spectrophotometry and the exchange of 18O between CO2 and water at chemical equilibrium measured by mass spectrometry. The results are consistent with a mechanism in which phosphate enhances the transfer of protons between zinc-bound water at the active site and solution. Site-directed mutations to replace lysine 64 and arginine 67 in the active-site cavity resulted in greater enhancement by phosphate when compared with wild-type HCA III and showed that these basic residues are not essential as a binding site for phosphate. Phosphate did not enhance catalysis by HCA II.  相似文献   

11.
G D Henry  J H Weiner  B D Sykes 《Biochemistry》1987,26(12):3626-3634
Hydrogen-exchange rates have been measured for individual assigned amide protons in M13 coat protein, a 50-residue integral membrane protein, using a 13C nuclear magnetic resonance (NMR) equilibrium isotope shift technique. The locations of the more rapidly exchanging amides have been determined. In D2O solutions, a peptide carbonyl resonance undergoes a small upfield isotope shift (0.08-0.09 ppm) from its position in H2O solutions; in 1:1 H2O/D2O mixtures, the carbonyl line shape is determined by the exchange rate at the adjacent nitrogen atom. M13 coat protein was labeled biosynthetically with 13C at the peptide carbonyls of alanine, glycine, phenylalanine, proline, and lysine, and the exchange rates of 12 assigned amide protons in the hydrophilic regions were measured as a function of pH by using the isotope shift method. This equilibrium technique is sensitive to the more rapidly exchanging protons which are difficult to measure by classical exchange-out experiments. In proteins, structural factors, notably H bonding, can decrease the exchange rate of an amide proton by many orders of magnitude from that observed in the freely exposed amides of model peptides such as poly(DL-alanine). With corrections for sequence-related inductive effects [Molday, R. S., Englander, S. W., & Kallen, R. G. (1972) Biochemistry 11, 150-158], the retardation of amide exchange in sodium dodecyl sulfate solubilized coat protein has been calculated with respect to poly(DL-alanine). The most rapidly exchanging protons, which are retarded very little or not at all, are shown to occur at the N- and C-termini of the molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The tandem conversion process involving nitrile hydratase- and amidase-producing microorganisms has potential for use in the treatment of acetonitrile-containing wastes. In that process, the acetamide hydrolysis step catalyzed by amidase is very slow compared with the acetonitrile hydration step catalyzed by nitrile hydratase, and a small amount of acetamide remains in the resulting solution. This study aimed to improve the efficiency of the acetamide hydrolysis step. An amidase-producing microorganism, Rhodococcus sp. S13-4, was newly obtained, whose use enabled rapid acetamide degradation. Though residual acetamide was still detected, it was successfully reduced by the addition of cation/anion mixed ion exchange resin or calcium hydroxide after the acetamide hydrolysis reaction using Rhodococcus sp. S13-4 cells. This result implies that acetamide hydrolysis and acetamide formation are in equilibrium. The incubation of Rhodococcus sp. S13-4 cells with high concentrations of ammonium acetate produced acetamide. The purified amidase from Rhodococcus sp. S13-4 revealed the acetamide formation activity (specific activity of 30.6 U/mg protein). This suggests that the amidase-catalyzed amide formation may cause the remaining of acetamide in the acetonitrile conversion process.  相似文献   

13.
Using (1)H NMR spectroscopy, the base-pair opening dynamics of an antiparallel foldback DNA triplex and the corresponding duplex has been characterized via catalyzed imino proton exchange. The triplex system was found to be in an equilibrium between a duplex and a triplex form. The exchange rate between the two forms (i.e., the on/off-rate of the third strand) was measured to be 5 s(-1) at 1 degrees C, and the base-pair dynamics of both forms were investigated separately. Both Watson-Crick and reverse Hoogsteen base pairs were found to have base-pair lifetimes in the order of milliseconds. The stability of the Watson-Crick base pairs was, however, substantially increased in the presence of the third strand. In the DNA triplex, the opening dynamics of the reverse Hoogsteen base pairs was significantly faster than the dynamics of the Watson-Crick pairs. We were able to conclude that, for both Watson-Crick and reverse Hoogsteen base pairs, spontaneous and individual opening from within the closed base triplet is the dominating opening pathway.  相似文献   

14.
D N Silverman  C K Tu 《Biochemistry》1986,25(26):8402-8408
The exchange of 18O from CO2 to H2O in aqueous solution is caused by the hydration-dehydration cycle and is catalyzed by the carbonic anhydrases. In our previous studies of 18O exchange at chemical equilibrium catalyzed by isozymes I and II of carbonic anhydrase, we observed simple first-order depletion of 18O from CO2 with the 18O distribution among the species C18O18O, C16O18O, and C16O16O described by the binomial expansion (i.e., a random distribution of 18O). Using membrane-inlet mass spectrometry, we have measured 18O exchange between CO2 and H2O catalyzed by native zinc-containing and cobalt(II)-substituted carbonic anhydrase III from bovine skeletal muscle near pH 7.5. The distributions of 18O in CO2 deviate from the binomial expansion and are accompanied by biphasic 18O-exchange patterns; moreover, we observed regions in which 18O loss from CO2 was faster than 18O loss from HCO3-. These data are interpreted in terms of a model that includes 18O loss from an enzyme-substrate or intermediate complex. We conclude that more than one 18O can be lost from CO2 per encounter with the active site of isozyme III, a process that requires scrambling of oxygens in a bicarbonate-enzyme complex and cycling between intermediate complexes. This suggests that the rate of dissociation of H2(18)O (or 18OH-) from isozyme III is comparable to or faster than substrate and product dissociation.  相似文献   

15.
When reactions take place with one of the reactants tied to protein matrix, movements along the reaction coordinate towards the transition state can become coupled to structural fluctuations of the protein matrix. This investigation aims to test the assumptions underlying the arguments supporting such a coupling. A coupling is allowed only if the activation barrier is high and broad enough as shown to be the case for the proton catalyzed isotope exchange at Trp-63 of lysozyme. In the present investigation the activation barrier for the same reaction has been lowered radically in an effort to show that the coupling, as measured by the dependence of rate on solution viscosity, will diminish and ideally vanish, despite the unchanged effects of cosolvents on the chemical activities of all the reactants. The isotope exchange rate at the indole nitrogen of the single tryptophan residue of human serum albumin was measured with UV. This residue is rigidly held to the protein surface and the solvent access, although restricted, corresponds to a partially exposed residue. As a consequence, the isotope exchange rates and the bimolecular quenching rate of fluorescence by acrylamide, also measured, are high. The experiments were carried out at pH 5.2 where the molecule is in the N-form and the exchange is catalyzed by OH- ions. The activation energy of the hydroxyl catalyzed reaction is 22 kJ lower than for the proton catalyzed process. Under these conditions the exchange rate is viscosity independent both in the case of glycerol and in ethylene glycol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
3-O-Methyl-d-glucose (3OMG) was recently suggested as an agent to image tumors using chemical exchange saturation transfer (CEST) MRI. To characterize the properties of 3OMG in solution, the anomeric equilibrium and the mutarotation rates of 3OMG were studied by 1H and 13C NMR. This information is essential in designing the in vivo CEST experiments. At room temperature, the ratio of α and β 3OMG anomers at equilibrium was 1:1.4, and the time to reach 95% equilibrium was 6 h. The chemical exchange rates between the hydroxyl protons of 3OMG and water, measured by CEST and spin lock at pH 6.14 and a temperature of 4 °C, were in the range of 360–670 s?1.  相似文献   

17.
Study of a delta-hydroxyketone-hemiketal equilibrium in the polyether antibiotic grisorixin was performed with 2D-NMR spectroscopy. The efficiency of 13C chemical exchange spectroscopy for the assignment of 1H and 13C resonances, in the 2 forms, was shown, making possible a conformational investigation of both forms. This equilibrium was observed for grisorixin in solvents of varying polarity, such as CD2Cl2, CDCl3, CD3CN, or CD3OD, but not in C6D12 or C6D6. Other related antibiotics with the same terminal heterocycle were described only in the closed hemiacetalic structure. The low ionic fluxes measured in a bulk chloroformic membrane for grisorixin were explained by this equilibrium, which competed unfavorably with the cation capture process at the water-chloroform interface. This equilibrium would not be present in a phospholipidic bilayer membrane containing the ionophore, published experimental results are taken into account. The peculiar tautomeric equilibrium observed for grisorixin could be linked to the specific axial stereochemistry of the C7-C8 bond, which creates tension in the globular conformation.  相似文献   

18.
The kinetic properties of the [3H]ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase [EC 3.6.1,3] were investigated, using NaI-treated microsomes from bovine brain, and the following results were obtained. 1. The rates of the Na+-dependent exchange reaction in the steady state were measured in a solution containing 45 micronM free Mg2+, 100 mMNaCl, 80 micronM ATP, and 160 micronM ADP at pH 6.5 and 4-5 degrees. The rate and amount of decrease in phosphorylated intermediate on adding ADP, i.e., the amount of ADP-sensitive EP, were measured while varying one of the reaction parameters and fixing the others mentioned above. Plots of the exchange rate and the amount of ADP-sensitive EP against the logarithm of free Mg2+ concentration gave bell-shaped curves with maximum values at 50-60 micronM free Mg2+. Plots of the exchange rate and the amount of ADP-sensitive EP against pH also gave bell-shaped curves with maximum values at pH 6.9-7. They both increased with increase in the concentration of NaCl to maximum values at 150-200 mM NaCl, and then decreased rapidly with increase in the NaCl concentration above 200 mM. The dependences of the exchange rate and the amount of ADP-sensitive EP on the concentration of ADP followed the Michaelis-Menten equation, and the Michaelis constants Km, for both were 43 micronM. The dependence of the exchange rate on the ATP concentration also followed the Michaelis-Menten equation, and the Km value was 30 micronM. The amount of ADP-sensitive EP increased with increase in the ATP concentration, and reached a maximum value at about 5 micronM ATP. 2. The N+-dependent [3H]ADP-ATP exchange reaction was started by adding [3H]ADP to EP at low Mg2+-concentration. The reaction consisted of a rapid initial phase and a slow steady phase. The amount of [3H]ATP formed during the rapid initial phase, i.e. the size of the ATP burst, was equal to that of ADP-sensitive EP, and was proportional to the rate in the steady state. At high Mg2+ concentration, the rate of Na+-dependent exchange in the steady state was almost zero, and EP did not show any ADP sensitivity. However, rapid formation of [3H]ATP was observed in the pre-steady state, and the size of the ATP burst increased with increase in the KCl concentration. From these findings, we concluded that an enzyme-ATP complex (E2ATP) formed at low Mg2+ concentration is in equilibrium with EP + ADP, that the rate-limiting step for the exchange reaction is the release of ATP from the enzyme-ATP complex, that the ADP-insensitive EP (formula: see text) produced at high Mg2+ concentration is in equilibrium with the enzyme-ATP complex, and that the equilibrium shifts towards the enzyme-ATP complex on adding KCl. Actually, the ratio of the size of the ATP burst to the amount of EP was equal to the reciprocal of the equilibrium constant of step (formula: see text), determined by a method previously reported by us.  相似文献   

19.
The refolding kinetics of bistable RNA sequences were studied in unperturbed equilibrium via (13)C exchange NMR spectroscopy. For this purpose a straightforward labeling technique was elaborated using a 2'-(13)C-methoxy uridine modification, which was prepared by a two-step synthesis and introduced into RNA using standard protocols. Using (13)C longitudinal exchange NMR spectroscopy the refolding kinetics of a 20 nt bistable RNA were characterized at temperatures between 298 and 310K, yielding the enthalpy and entropy differences between the conformers at equilibrium and the activation energy of the refolding process. The kinetics of a more stable 32 nt bistable RNA could be analyzed by the same approach at elevated temperatures, i.e. at 314 and 316 K. Finally, the dynamics of a multi-stable RNA able to fold into two hairpin- and a pseudo-knotted conformation was studied by (13)C relaxation dispersion NMR spectroscopy.  相似文献   

20.
We have measured the 13C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D2O at pD 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D2O at pD 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The 13C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. We have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the 13C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号