首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Britto JA  Chan JC  Evans RD  Hayward RD  Jones BM 《Plastic and reconstructive surgery》2001,107(6):1331-8; discussion 1339-45
The Apert hand is characterized by metaphyseal fusions of the metacarpals and distal phalanges, symphalangism, and soft-tissue syndactyly. More subtle skeletal anomalies of the limb characterize Pfeiffer and Crouzon syndromes. Different mutations in the fibroblast growth factor receptor 2 (FGFR2) gene cause these syndromes, and offer the opportunity to relate genotype to phenotype. The expression of FGFR1 and of the Bek and KGFR isoforms of FGFR2 has, therefore, been studied in human hand development at 12 weeks by in situ hybridization. FGFRs are differentially expressed in the mesenchyme and skeletal elements during endochondral ossification of the developing human hand. KGFR expression characterizes the metaphyseal periosteum and interphalangeal joints. FGFR1 is preferentially expressed in the diaphyses, whereas FGFR2-Bek expression characterizes metaphyseal and diaphyseal elements, and the interdigital mesenchyme. Apert metaphyseal synostosis and symphalangism reflect KGFR expression, which has independently been quantitatively related ex vivo to the severity of clinical digital presentations in these syndromes. Studies in avian development implicate FGF signaling in preventing interdigital apoptosis and maintaining the interdigital mesenchyme. Herein is proposed that in human FGFR syndromes the balance of signaling by means of KGFR and Bek in digital development determines the clinical severity of soft-tissue and bony syndactyly.  相似文献   

3.
Vertebrate limb outgrowth is driven by a positive feedback loop that involves Sonic hedgehog (Shh) and Gremlin1 (Grem1) in the posterior limb bud mesenchyme and Fibroblast growth factors (Fgfs) in the overlying epithelium. Proper spatio-temporal control of these signaling activities is required to avoid limb malformations such as polydactyly. Here we show that, in Tbx2-deficient hindlimbs, Shh/Fgf4 signaling is prolonged, resulting in increased limb bud size and duplication of digit 4. In turn, limb-specific Tbx2 overexpression leads to premature termination of this signaling loop with smaller limbs and reduced digit number as phenotypic manifestation. We show that Tbx2 directly represses Grem1 in distal regions of the posterior limb mesenchyme allowing Bone morphogenetic protein (Bmp) signaling to abrogate Fgf4/9/17 expression in the overlying epithelium. Since Tbx2 itself is a target of Bmp signaling, our data identify a growth-inhibiting positive feedback loop (Bmp/Tbx2/Grem1). We propose that proliferative expansion of Tbx2-expressing cells mediates self-termination of limb bud outgrowth due to their refractoriness to Grem1 induction.  相似文献   

4.
The apical ectodermal ridge (AER) is a transient embryonic structure essential for the induction, patterning and outgrowth of the vertebrate limb. However, the mechanism of AER function in limb skeletal patterning has remained unclear. In this study, we genetically ablated the AER by conditionally removing FGFR2 function and found that distal limb development failed in mutant mice. We showed that FGFR2 promotes survival of AER cells and interacts with Wnt/beta-catenin signaling during AER maintenance. Interestingly, cell proliferation and survival were not significantly reduced in the distal mesenchyme of mutant limb buds. We established Hoxa13 expression as an early marker of distal limb progenitors and discovered a dynamic morphogenetic process of distal limb development. We found that premature AER loss in mutant limb buds delayed generation of autopod progenitors, which in turn failed to reach a threshold number required to form a normal autopod. Taken together, we have uncovered a novel mechanism, whereby the AER regulates the number of autopod progenitors by determining the onset of their generation.  相似文献   

5.
6.
Zhu X  Zhu H  Zhang L  Huang S  Cao J  Ma G  Feng G  He L  Yang Y  Guo X 《Developmental biology》2012,365(2):328-338
Wnt proteins are diffusible morphogens that play multiple roles during vertebrate limb development. However, the complexity of Wnt signaling cascades and their overlapping expression prevent us from dissecting their function in limb patterning and tissue morphogenesis. Depletion of the Wntless (Wls) gene, which is required for the secretion of various Wnts, makes it possible to genetically dissect the overall effect of Wnts in limb development. In this study, the Wls gene was conditionally depleted in limb mesenchyme and ectoderm. The loss of mesenchymal Wls prevented the differentiation of distal mesenchyme and arrested limb outgrowth, most likely by affecting Wnt5a function. Meanwhile, the deletion of ectodermal Wls resulted in agenesis of distal limb tissue and premature regression of the distal mesenchyme. These observations suggested that Wnts from the two germ layers differentially regulate the pool of undifferentiated distal limb mesenchyme cells. Cellular behavior analysis revealed that ectodermal Wnts sustain mesenchymal cell proliferation and survival in a manner distinct from Fgf. Ectodermal Wnts were also shown for the first time to be essential for distal tendon/ligament induction, myoblast migration and dermis formation in the limb. These findings provide a comprehensive view of the role of Wnts in limb patterning and tissue morphogenesis.  相似文献   

7.
The generation of the paraxial skeleton requires that commitment and differentiation of skeletal progenitors is precisely coordinated during limb outgrowth. Several signaling molecules have been identified that are important in specifying the pattern of these skeletal primordia. Very little is known, however, about the mechanisms regulating the differentiation of limb mesenchyme into chondrocytes. Overexpression of RARalpha in transgenic animals interferes with chondrogenesis and leads to appendicular skeletal defects (Cash, D.E., C.B. Bock, K. Schughart, E. Linney, and T.M. Underhill. 1997. J. Cell Biol. 136:445-457). Further analysis of these animals shows that expression of the transgene in chondroprogenitors maintains a prechondrogenic phenotype and prevents chondroblast differentiation even in the presence of BMPs, which are known stimulators of cartilage formation. Moreover, an RAR antagonist accelerates chondroblast differentiation as demonstrated by the emergence of collagen type II-expressing cells much earlier than in control or BMP-treated cultures. Addition of Noggin to limb mesenchyme cultures inhibits cartilage formation and the appearance of precartilaginous condensations. In contrast, abrogation of retinoid signaling is sufficient to induce the expression of the chondroblastic phenotype in the presence of Noggin. These findings show that BMP and RAR-signaling pathways appear to operate independently to coordinate skeletal development, and that retinoid signaling can function in a BMP-independent manner to induce cartilage formation. Thus, retinoid signaling appears to play a novel and unexpected role in skeletogenesis by regulating the emergence of chondroblasts from skeletal progenitors.  相似文献   

8.
Pan Y  Liu Z  Shen J  Kopan R 《Developmental biology》2005,286(2):472-482
Spontaneous and engineered mutations in the Notch ligand Jagged2 produced the Syndactylism phenotype (Jiang, R.L., Lan, Y., Chapman, H.D., Shawber, C., Norton, C.R., Serreze, D.V., Weinmaster, G., Gridley, T., 1998. Defects in limb, craniofacial, and thymic Development in Jagged2 mutant mice. Genes Dev. 12, 1046-1057; Sidow, A., Bulotsky, M.S., Kerrebrock, A.W., Bronson, R.T., Daly, M.J., Reeve, M.P., Hawkins, T.L., Birren, B.W., Jaenisch, R., Lander, E.S., 1997. Serrate2 is disrupted in the mouse limb-development mutant syndactylism. Nature 389, 722-725). Given that additional ligands may be expressed in the developing limb bud, it was possible that loss of Jagged2 disabled only part of Notch function in the limb. In addition, it is not clear from the expression pattern of Jagged2 in the apical ectodermal ridge (AER) whether the ectodermal or mesenchymal compartment of the limb bud receives the Jagged2 signal. To elucidate the requirement for the Notch pathway in limb development, we have analyzed single and compound Notch receptor mutants as well as gamma-secretase-deficient limbs. Floxed alleles were removed either from the developing limb bud ectoderm (using Msx2-Cre) or from the mesenchyme (using Prx1-Cre). Our results confirm that Jagged2 loss describes the contribution of the entire Notch pathway to the mouse limb development and revealed that both Notch1 and 2 are required in the ectoderm to receive the Jagged2 signal. Interestingly, our allelic series allowed us to determine that Notch receives this signal at an early stage in the developmental process and that memory of this event is retained by the mesenchyme, where Notch signaling appears to be dispensable. Thus, Notch signaling plays a non-autonomous role in digit septation.  相似文献   

9.
Summary 1. Undifferentiated fore limb blastemas were denuded of their epidermis and grafted to the flank musculature; each transplant consisted of four such blastemas. Outgrowth of the mesenchyme and subsequent digit formation were prevented by covering the transplants with whole flank skin with its dermis intact. 2. Notwithstanding the absence of digits, 26 out of the 36 differentiated transplants formed one or two oblong, stout cartilages resembling proximal skeletal elements of the limb. Considering that four blastemas had been grafted in random orientation, this indicates considerable intrinsic morphogenetic capacities of the blastemal mesenchyme in the absence of organizing influences of the epidermis. 3. Thus, although permanent contact with wound epidermis has previously been shown to be necessary for blastemal mesenchyme to form distal limb structures, such contact is not required for the formation of proximal skeletal elements. The implications of this finding for regional organization in the regenerating limb are discussed.On leave from Department of Zoology, Faculty of Science, Alexandria University, Alexandria. Egypt.  相似文献   

10.
The vertebrate limbs develop through coordinated series of inductive, growth and patterning events. Fibroblast Growth Factor receptor 2b (FGFR2b) signaling controls the induction of the Apical Ectodermal Ridge (AER) but its putative roles in limb outgrowth and patterning, as well as in AER morphology and cell behavior have remained unclear. We have investigated these roles through graded and reversible expression of soluble dominant-negative FGFR2b molecules at various times during mouse limb development, using a doxycycline/transactivator/tet(O)-responsive system. Transient attenuation (≤24 hours) of FGFR2b-ligands signaling at E8.5, prior to limb bud induction, leads mostly to the loss or truncation of proximal skeletal elements with less severe impact on distal elements. Attenuation from E9.5 onwards, however, has an irreversible effect on the stability of the AER, resulting in a progressive loss of distal limb skeletal elements. The primary consequences of FGFR2b-ligands attenuation is a transient loss of cell adhesion and down-regulation of P63, β1-integrin and E-cadherin, and a permanent loss of cellular β-catenin organization and WNT signaling within the AER. Combined, these effects lead to the progressive transformation of the AER cells from pluristratified to squamous epithelial-like cells within 24 hours of doxycycline administration. These findings show that FGFR2b-ligands signaling has critical stage-specific roles in maintaining the AER during limb development.  相似文献   

11.
Wnt signaling pathways are regulated both at the intracellular and extracellular levels. During embryogenesis, the in vivo effects of the secreted frizzled-related protein (Sfrp) family of Wnt inhibitors are poorly understood. Here, we show that inactivation of Sfrp2 results in subtle limb defects in mice with mesomelic shortening and consistent shortening of all autopodal elements that is clinically manifested as brachydactyly. In addition, there is soft-tissue syndactyly of the hindlimb. The brachydactyly is caused by decreased chondrocyte proliferation and delayed differentiation in distal limb chondrogenic elements. These data suggest that Sfrp2 can regulate both chondrogenesis and regression of interdigital mesenchyme in distal limb. Sfrp2 can also repress canonical Wnt signaling by Wnt1, Wnt9a, and Wnt4 in vitro. Sfrp2-/- and TOPGAL/Sfrp2-/- mice have a mild increase in beta-catenin and beta-galactosidase staining, respectively, in some phalangeal elements. This however does not exclude a potential concurrent effect on non-canonical Wnt signaling in the growth plate. In combination with what is known about BMP and Wnt signaling in human brachydactylies, our data establish a critical role for Sfrp2 in proper distal limb formation and suggest SFPR2 could be a novel candidate gene for human brachy-syndactyly defects.  相似文献   

12.
Rosen MB  Chernoff N 《Teratology》2002,65(4):180-190
BACKGROUND: 5-Aza-2'-deoxycytidine (dAZA), causes hindlimb phocomelia in CD-1 mice. Studies in our laboratory have examined the hypothesis that compound- induced changes in gene expression may uniquely affect hindlimb pattern formation. The present study tests the hypothesis that dAZA causes limb dysplasia by inducing cytotoxicity among rapidly proliferating cells in the limb bud mesenchyme. METHODS: Pregnant CD-1 mice were given a teratogenic dose of dAZA (i.p.) at different times on GD 10 and fetuses evaluated for skeletal development in both sets of limbs by standard methods. Using general histology and BrdU immunohistochemistry, limb mesenchymal cell death and cell proliferation were then assessed in embryos at various times post dosing, shortly after initial limb bud outgrowth. The effect of dAZA on early limb chondrogenesis was also studied using Northern analysis of scleraxis and Alcian blue staining of whole mount limb buds. RESULTS: Compound related hindlimb defects were not restricted to a specific set of skeletal elements but consisted of a range of temporally related limb anomalies. Modest defects of the radius were observed as well. These results are consistent with a general insult to the limb mesenchyme. Mesenchymal cell death and reduced cell proliferation were also observed in both sets of limbs. The timing and location of these effects indicate a role for cytotoxicity in the etiology of dAZA induced limb defects. These effects also agree with the greater teratogenicity of dAZA in the hindlimb because they were more pronounced in that limb. The expression of scleraxis, a marker of early chondrogenesis, was reduced 12 hr after dAZA exposure, a time coincident with maximal cell death, as was the subsequent emergence of Alcian blue stained long bone anlagen. CONCLUSIONS: These findings support the hypothesis that cytotoxic changes in the limb bud mesenchyme during early limb outgrowth can induce the proximal limb truncations characteristic of phocomelia after dAZA administration.  相似文献   

13.
14.
While the apical ectodermal ridge (AER) is well known for its required role in the development of distal parts of the limb and for its ability to stimulate limb duplications, the mechanism of its action is unknown. In this study we use a culture system previously developed by M. Globus and S. Vethamany-Globus (1976, Differentiation6, 91–96) in which an AER grafted onto a high-density cell culture of limb mesenchyme stimulates the formation of an outgrowth. Time-lapse movies taken during the outgrowth period demonstrated no cellular activities other than cell division. Both the mitotic index and labeling index in the mesenchyme were significantly elevated under the AER as compared to that without AER, indicating that the AER provides a growth-promoting stimulus which increases the proportion of dividing cells. On the other hand, nonridge ectoderm had no detectable effect on the mitotic index. Treatment of cultures with cytosine arabinoside both inhibited DNA synthesis and prevented AER-induced outgrowth. These results demonstrate a mitogenic capacity of AER tissue and suggest that mesenchymal outgrowth requires this activity. The mitogenic property of the AER is considered in relation to limb outgrowth in situ.  相似文献   

15.
16.
17.
18.
Requirement for ErbB2/ErbB signaling in developing cartilage and bone   总被引:2,自引:0,他引:2  
During endochondral ossification, the skeletal elements of vertebrate limbs form and elongate via coordinated control of chondrocyte and osteoblast differentiation and proliferation. The role of signaling by the ErbB family of receptor tyrosine kinases, which consists of ErbB1 (epidermal growth factor receptor or EGFR), ErbB2, ErbB3 and ErbB4, has been little studied during cartilage and bone development. Signaling by the ErbB network generates a diverse array of cellular responses via formation of ErbB dimers activated by distinct ligands that produce distinct signal outputs. Herstatin is a soluble ErbB2 receptor that acts in a dominant negative fashion to inhibit ErbB signaling by binding to endogenous ErbB receptors, preventing functional dimer formation. Here, we examine the effects of Herstatin on limb skeletal element development in transgenic mice, achieved via Prx1 promoter-driven expression in limb cartilage and bone. The limb skeletal elements of Prx1-Herstatin embryos are shortened, and chondrocyte maturation and osteoblast differentiation are delayed. In addition, proliferation by chondrocytes and periosteal cells of Prx1-Herstatin limb skeletal elements is markedly reduced. Our study identifies requirements for ErbB signaling in the maintenance of chondrocyte and osteoblast proliferation involved in the timely progression of chondrocyte maturation and periosteal osteoblast differentiation.  相似文献   

19.
Increasing evidence indicates that heparan sulfate (HS) is an integral component of many morphogen signaling pathways. However, its mechanisms of action appear to be diverse, depending on the type of morphogen and the developmental contexts. To define the function of HS in skeletal development, we conditionally ablated Ext1, which encodes an essential glycosyltransferase for HS synthesis, in limb bud mesenchyme using the Prx1-Cre transgene. These conditional Ext1 mutant mice display severe limb skeletal defects, including shortened and malformed limb bones, oligodactyly, and fusion of joints. In developing limb buds of mutant mice, chondrogenic differentiation of mesenchymal condensations is delayed and impaired, whereas the area of differentiation is diffusely expanded. Correspondingly, the distribution of both bone morphogenic protein (BMP) signaling domains and BMP2 immunoreactivity in the mutant limb mesenchyme is broadened and diffuse. In micromass cultures, chondrogenic differentiation of mutant chondrocytes is delayed, and the responsiveness to exogenous BMPs is attenuated. Moreover, the segregation of the pSmad1/5/8-expressing chondrocytes and fibronectin-expressing perichondrium-like cells surrounding chondrocyte nodules is disrupted in mutant micromass cultures. Together, our results show that HS is essential for patterning of limb skeletal elements and that BMP signaling is one of the major targets for the regulatory role of HS in this developmental context.  相似文献   

20.
《Organogenesis》2013,9(4):260-266
The limb is one of the premier models for studying how a simple embryonic anlage develops into complex three-dimensional form. One of the key issues in the limb field has been to determine how the limb becomes patterned along its proximal (shoulder/hip) to distal (digits) axis. For decades it has been known that the apical ectodermal ridge (AER) plays a crucial role in distal outgrowth and patterning of the vertebrate embryonic limb. Most studies have explored the relationship between the AER and the progressive assignment of cell fates to mesenchyme along the proximal to distal (PD) axis. Comparatively few, however, have examined the additional role of the AER to regulate distal outgrowth of the limb and how this growth may also influence pattern along the PD axis. Here, I will review key studies that explore the role of growth in limb development. In particular, I will focus on a recent flurry of papers that examine the role of the Wnt/planar cell polarity (PCP) pathway in regulating directed growth of the limb mesenchyme. Finally, I will discuss a potential mechanism that relates the AER to the Wnt/PCP pathway and how directed growth can play a role in shaping the limb along the PD axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号