首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
G protein-coupled receptors (GPCRs) mediate the ability of a diverse array of extracellular stimuli to control intracellular signaling. Many GPCRs are phosphorylated by G protein-coupled receptor kinases (GRKs), a process that mediates agonist-specific desensitization in many cells. Although GRK binding to activated GPCRs results in kinase activation and receptor phosphorylation, relatively little is known about the mechanism of GRK/GPCR interaction or how this interaction results in kinase activation. Here, we used the alpha2A-adrenergic receptor (alpha(2A)AR) as a model to study GRK/receptor interaction because GRK2 phosphorylation of four adjacent serines within the large third intracellular loop of this receptor is known to mediate desensitization. Various domains of the alpha(2A)AR were expressed as glutathione S-transferase fusion proteins and tested for the ability to bind purified GRK2. The second and third intracellular loops of the alpha(2A)AR directly interacted with GRK2, whereas the first intracellular loop and C-terminal domain did not. Truncation mutagenesis identified three discrete regions within the third loop that contributed to GRK2 binding, the membrane proximal N- and C-terminal regions as well as a central region adjacent to the phosphorylation sites. Site-directed mutagenesis revealed a critical role for specific basic residues within these regions in mediating GRK2 interaction with the alpha(2A)AR. Mutation of these residues within the holo-alpha(2A)AR diminished GRK2-promoted phosphorylation of the receptor as well as the ability of the kinase to be activated by receptor binding. These studies provide new insight into the mechanism of interaction and activation of GRK2 by GPCRs and suggest that GRK2 binding is critical not only for receptor phosphorylation but also for full activity of the kinase.  相似文献   

2.
G-protein-coupled-receptor kinase 2 (GRK2) plays a key role in the modulation of G-protein-coupled-receptor (GPCR) signaling by both phosphorylating agonist-occupied GPCRs and by directly binding to activated Galphaq subunits, inhibiting downstream effectors activation. The GRK2/Galphaq interaction involves the N-terminal region of the kinase that displays homology to regulators of G-protein signaling (RGS) proteins. We have previously reported that upon GPCR stimulation, GRK2 can be phosphorylated by c-Src on tyrosine residues that are present in the RGS-homology (RH) region of this kinase. Here, we demonstrate that c-Src kinase activity increases the interaction between GRK2 and Galphaq. Tyrosine phosphorylation of GRK2 appears to be critically involved in the modulation of this interaction since the stimulatory effect of c-Src is not observed with a GRK2 mutant with impaired tyrosine phosphorylation (GRK2 Y13,86,92F), whereas a mutant that mimics GRK2 tyrosine phosphorylation in these residues displays an increased interaction with Galphaq. As evidence for a physiological role of this modulatory mechanism, activation of the muscarinic receptor M1, a Galphaq-coupled receptor, promotes an increase in GRK2/Galphaq co-immunoprecipitation that parallels the enhanced GRK2 phosphorylation on tyrosine residues. Moreover, c-Src activation enhances inhibition of the Galphaq/phospholipase Cbeta signaling pathway in intact cells, in a GRK2-tyrosine-phosphorylation-dependent manner. Our results suggest a feedback mechanism by which phosphorylation of GRK2 by c-Src increases both GRK2 kinase activity towards GPCRs and its specific interaction with Galphaq subunits, leading to a more rapid switch off of Galphaq-mediated signaling.  相似文献   

3.
The sst2A receptor is expressed in the endocrine, gastrointestinal, and neuronal systems as well as in many hormone-sensitive tumors. This receptor is rapidly internalized and phosphorylated in growth hormone-R2 pituitary cells following somatostatin binding (Hipkin, R. W., Friedman, J., Clark, R. B., Eppler, C. M., and Schonbrunn, A. (1997) J. Biol. Chem. 272, 13869-13876). The protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), also stimulates sst2A phosphorylation. Here we examine the mechanisms and consequences of PMA and agonist-induced sst2A phosphorylation. Like somatostatin, both PMA and bombesin increased sst2A receptor phosphorylation within 2 min. The PKC inhibitor GF109203X blocked PMA- and bombesin- stimulated sst2A phosphorylation, whereas stimulation by the somatostatin analog SMS 201-995 was unaffected. Agonist and PMA each stimulated phosphorylation in two receptor domains, the third intracellular loop and the C-terminal tail. Functionally, PMA dramatically increased the internalization of the sst2A receptor-ligand complex. This PMA stimulation was blocked by GF109203X, whereas basal internalization was unaffected. However, neither basal nor PMA-stimulated internalization was altered by pertussis toxin, whereas both were blocked by hypertonic sucrose. Therefore PKC activation and agonist binding stimulate sst2A phosphorylation by distinct mechanisms, and PKC potentiates internalization of the sst2A receptor via clathrin-coated pits. Thus, hormonal stimulation of PKC-coupled receptors may provide a mechanism for regulating the inhibitory actions of somatostatin in target tissue.  相似文献   

4.
The extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) activates Ca(2+) influx independent of the release of intracellular Ca(2+) stores. The latter can be negatively regulated by protein kinase C (PKC) through phosphorylation of Thr-888 of the CaR. In this study, we substituted Thr-888 with various amino acid residues or a stop codon to understand how PKC phosphorylation of the CaR inhibits receptor-mediated release of intracellular Ca(2+) stores. Substitutions of Thr-888 with hydrophobic and hydrophilic amino acid residues had various effects on CaR-mediated release of intracellular Ca(2+) stores as well as activation of Ca(2+) influx. Several point mutations, such as T888D, had marked negative effects on CaR-mediated release of intracellular Ca(2+) stores but not on phorbol myristate acetate-insensitive activation of Ca(2+) influx. Presumably, the negatively charged aspartate mimics phospho-threonine. Interestingly, truncating the receptor at 888 had an even more pronounced negative effect on CaR-elicited release of intracellular Ca(2+) stores without significantly affecting CaR-mediated activation of Ca(2+) influx. Therefore, truncation at position 888 of the CaR affects the activity of the receptor in a manner that resembles PKC phosphorylation of the CaR. This in turn suggests that PKC phosphorylation of the CaR prevents G protein subtypes from interacting with the region of the receptor critical for releasing Ca(2+) stores, which is missing in the truncated receptor.  相似文献   

5.
The alpha(2A)-adrenergic receptor (AR) undergoes rapid agonist-promoted desensitization due to phosphorylation by G protein-coupled receptor kinases (GRKs) 2 and 3 at serines in the third intracellular loop of the receptor. In contrast, the alpha(2C)AR fails to display such desensitization or phosphorylation, which has been presumed to be due to this receptor lacking GRK phosphorylation sites. However, the alpha(2C)AR has multiple serines and threonines in putative favorable motifs within its third intracellular loop. We considered that the conformation of the third intracellular loop imposed by agonists binding to the transmembrane-spanning domains could be the basis of this subtype-specific property, rather than the presence or absence of phosphoacceptors per se. To address this, alpha(2A)/alpha(2C) third loop chimeric receptors were constructed. In whole cell phosphorylation studies, the alpha(2A) with the alpha(2C) third loop receptor underwent agonist-promoted phosphorylation while the alpha(2C) with the alpha(2A) third loop receptor did not, indicating that the agonist interaction with the parent receptor backbone establishes the phosphorylation phenotype. We postulated then that agonists with diverse structures that distinctly interact with alpha(2)AR should display different degrees of phosphorylation independent of receptor activation. Indeed, several full and partial agonists were identified, which evoked phosphorylation that was not related to intrinsic activity as established by [(35)S]guanosine 5'-3-O-(thio)triphosphate binding. Taken together, it appears that phosphorylation of the alpha(2)AR evoked by agonist is highly sensitive to the conformation of the third intracellular loop induced/stabilized by agonist to such an extent that these properties dictate the extent of phosphorylation of the loop when phosphoacceptors are present, and are the basis for subtype-specific phosphorylation.  相似文献   

6.
Clathrin is a major component of clathrin-coated pits and serves as a binding scaffold for endocytic machinery through the binding of a specific sequence known as the clathrin-binding motif. This motif is also found in cellular signaling proteins other than endocytic components, including G protein-coupled receptor kinase 2 (GRK2), which phosphorylates G protein-coupled receptors and promotes uncoupling of receptor-G protein interaction. However, the functions of clathrin in the regulation of GRK2 are unknown. Here we demonstrated that overexpression of GRK2 mutated at the clathrin-binding motif with alanine (GRK2-5A) results in inhibition of phosphorylation and internalization of the beta2-adrenergic receptor (beta2AR). However, the interaction of beta2AR with GRK2-5A is the same as that of wild type GRK2 as determined by bioluminescence resonance energy transfer. Furthermore, GRK2-5A phosphorylates rhodopsin essentially to the same extent as wild type GRK2 in vitro. Depletion of the clathrin heavy chain using small interference RNA inhibits agonist-induced phosphorylation and internalization of beta2AR. Thus, clathrin works as a regulator of GRK2 in cells. These results indicate that clathrin is a novel player in cellular functions in addition to being a component of endocytosis.  相似文献   

7.
MRP2, a member of the ABC protein superfamily, functions as an ATP-dependent export pump for anionic conjugates in the apical membranes of epithelial cells. It has been reported that the trafficking of MRP2 is modulated by PKC. Adjacent to the C-terminal PDZ binding motif, which may be involved in the targeting of MRP2, we found a potential PKC phosphorylation site (Ser(1542)). Therefore, we examined the interaction of MRP2 and its phosphorylation-mimicking mutants with different PDZ proteins (EBP50, E3KARP, PDZK1, IKEPP, beta2-syntrophin, and SAP-97). The binding of these PDZ proteins to CFTR and ABCA1, other ABC proteins, possessing PDZ binding motif, was also studied. We observed a strong binding of apically localized PDZ proteins to both MRP2 and CFTR, whereas beta2-syntrophin exhibited binding only to ABCA1. The phosphorylation-mimicking MRP2 mutant and a phosphorylated C-terminal MRP2 peptide showed significantly increased binding to IKEPP, EBP50, and both individual PDZ domains of EBP50. Our results suggest that phosphorylation of the MRP2 PDZ binding motif has a profound effect on the PDZ binding of MRP2.  相似文献   

8.
Desensitization of the beta-adrenergic receptor, a receptor which is coupled to the stimulation of adenylate cyclase, may be regulated via phosphorylation by a unique protein kinase. This recently discovered enzyme, known as the beta-adrenergic receptor kinase, only phosphorylates the agonist-occupied form of the beta-adrenergic receptor. To assess whether receptors coupled to the inhibition of adenylate cyclase might also be substrates, we examined the effects of beta-adrenergic receptor kinase on the partially purified human platelet alpha 2-adrenergic receptor. Phosphorylation of the reconstituted alpha 2-adrenergic receptor was dependent on agonist occupancy and was completely blocked by coincubation with alpha 2-antagonists. The time course of phosphorylation of the alpha 2-adrenergic receptor was virtually identical to that observed with the beta-adrenergic receptor with maximum stoichiometries of 7-8 mol of phosphate/mol of receptor in each case. In contrast, the alpha 1-adrenergic receptor, which is coupled to stimulation of phosphatidylinositol hydrolysis, is not a substrate for the beta-adrenergic receptor kinase. These results suggest that receptors coupled to either stimulation or inhibition of adenylate cyclase may be regulated by an agonist-dependent phosphorylation mediated by the beta-adrenergic receptor kinase.  相似文献   

9.
The studies reported here address the molecular events underlying the interactions of arrestins with the M(2) muscarinic acetylcholine receptor (mAChR). In particular, we focused on the role of receptor phosphorylation in this process. Agonist-dependent phosphorylation of the M(2) mAChR can occur at clusters of serines and threonines at positions 286-290 (site P1) or 307-311 (site P2) in the third intracellular loop (Pals-Rylaarsdam, R., and Hosey, M. M. (1997) J. Biol. Chem. 272, 14152-14158). Phosphorylation at either P1 or P2 can support agonist-dependent internalization. However, phosphorylation at P2 is required for receptor interaction with arrestins (Pals-Rylaarsdam, R., Gurevich, V. V., Lee, K. B., Ptasienski, J. A., Benovic, J. L., and Hosey, M. M. (1997) J. Biol. Chem. 272, 23682-26389). The present study investigated the role of acidic amino acids between P1 and P2 in regulating receptor phosphorylation, internalization, and receptor/arrestin interactions. Mutation of the acidic amino acids at positions 298-300 (site A1) and/or 304-305 (site A2) to alanines had significant effects on agonist-dependent phosphorylation. P2 was identified as the preferred site of agonist-dependent phosphorylation, and full phosphorylation at P2 required the acidic amino acids at A1 or their neutral counterparts. In contrast, phosphorylation at site P1 was dependent on site A2. In addition, sites A1 and A2 significantly affected the ability of the wild type and P1 and P2 mutant receptors to internalization and to interact with arrestin2. Substitution of asparagine and glutamine for the aspartates and glutamates at sites A1 or A2 did not influence receptor phosphorylation but did influence arrestin interaction with the receptor. We propose that the amino acids at sites A1 and A2 play important roles in agonist-dependent phosphorylation at sites P2 and P1, respectively, and also play an important role in arrestin interactions with the M(2) mAChR.  相似文献   

10.
Insulin receptor substrate-1 (IRS-1) was recently identified as a novel upstream substrate for the insulin-activated protein kinase C (PKC)-zeta. This interaction down-regulates insulin signal transduction under hyper-insulinemic conditions. To clarify the molecular mechanism of this feedback loop, we sought to identify the PKC-zeta phosphorylation sites of IRS-1 and to investigate their biological significance. Upon incubation of recombinant IRS-1 fragments with PKC-zeta, we identified Ser(318) of rat IRS-1 (Ser(323) in human IRS-1) as the major in vitro phosphorylation site (confirmed by mutation of Ser(318) to alanine). To monitor phosphorylation of Ser(318) in cellular extracts, we prepared a polyclonal phosphosite-specific antibody. The biological significance was studied in baby hamster kidney cells stably expressing the insulin receptor (BHK(IR)). Using the phospho-Ser(318)-specific antibody we observed that insulin stimulates phosphorylation of Ser(318) in IRS-1, which is mediated, at least partially, by PKC-zeta. Moreover, we found that the previously described insulin-stimulated, PKC-zeta-mediated inhibition of the interaction of IRS-1 with the insulin receptor and the reduced tyrosine phosphorylation of IRS-1 was abrogated by mutation of IRS-1 Ser(318) to alanine. These results, generated in BHK(IR) cells, suggest that phosphorylation of Ser(318) by PKC-zeta might contribute to the inhibitory effect of prolonged hyperinsulinemia on IRS-1 function.  相似文献   

11.
Here we demonstrate that phosphorylation of the sphingosine 1-phosphate (SSP) receptor "endothelial differentiation gene 1" (EDG1 or S1P(1)) receptor is increased in response to either SSP or phorbol 12-myristate 13-acetate (PMA) exposure but not lysophosphatidic acid. Phosphoamino acid analysis demonstrated that SSP stimulated the accumulation of phosphoserine and phosphothreonine but not phosphotyrosine. An inhibitor of PMA-stimulated EDG1 phosphorylation failed to block SSP-stimulated phosphorylation. Additionally, removal of 12 amino acids from the carboxyl terminus of EDG1 specifically reduced SSP- but not PMA-stimulated phosphorylation, suggesting that SSP and PMA increase EDG1 phosphorylation via distinct mechanisms. In vitro assays revealed that G-protein-coupled receptor kinase 2 may be at least partially responsible for SSP-stimulated EDG1 phosphorylation observed in intact cells. In addition, phosphorylation by PMA and SSP were associated with a loss of EDG1 from the cell surface by distinct mechanisms. Removal of 12 residues from the carboxyl terminus of EDG1 completely inhibited SSP-mediated internalization, suggesting that this domain dictates susceptibility to receptor internalization while retaining sensitivity to SSP-stimulated phosphorylation. Thus, we conclude that (a) EDG1 phosphorylation and internalization are controlled via independent mechanisms by agonist occupation of the receptor and protein kinase C activation, and (b) although determinants within the receptor's carboxyl-terminal tail conferring EDG1 sensitivity to agonist-mediated internalization and G-protein-coupled receptor kinase phosphorylation exhibit a degree of overlap, the two phenomena are separable.  相似文献   

12.
gamma-Aminobutyric acid (GABA) is the primary neurotransmitter that is responsible for the fast inhibitory synaptic transmission in the central nervous system. A major post-translational mechanism that can rapidly regulate GABAAR function is receptor phosphorylation. This study was designed to test the effect of endogenous calcium and calmodulin-dependent kinase II (CaM kinase II) activation on both allosteric modulator binding and GABAA receptor subunit phosphorylation. Endogenous CaM kinase II activity was stimulated, and GABAA receptors were subsequently analyzed for bothallosteric modulator binding properties and immunoprecipitated and analyzed for subunit phosphorylation levels. A significant increase in allosteric-modulator binding of the GABAAR was observed under conditions maximal for CaM kinase II activation. In addition, CaM kinase II activation resulted in a direct increase in phosphorylation of the GABAA receptor alpha1 subunit. The data suggest that the CaM kinase II-dependent phosphorylation of the GABAA receptor alpha1 subunit modulated allosteric modulator binding to the GABAA receptor.  相似文献   

13.
Mutations in the receptor tyrosine kinase Ror2 account for Brachydactyly type B and Robinow Syndrome. We have identified two novel factors interacting with the Ror2 intracellular domain. TAK1 (TGF-beta activated kinase 1), a MAP3K, interacts with Ror2 and phosphorylates its intracellular carboxyterminal serine/thronine/proline-rich (STP) domain. This TAK1-dependent phosphorylation of Ror2 induces phosphorylation of tyrosine-residues including a MAPK-like TGY-motif. The TAK1-dependent phosphorylation is enhanced by a second cytosolic factor, PRTB, which interacts with Ror2 and with TAK1 as well. The TAK1-dependent Tyr-phosphorylation of Ror2 is not mediated by the Ror2 tyrosine kinase domain and seems predominantly triggered by cytosolic kinases. Wnt-ligand binding differentially controls the Ror2/TAK1 interaction. Wnt1-binding displaces TAK1 from Ror2 while Wnt3a and Wnt5a are unable to do so thus modifying TAK1's capacity to cause phosphorylation of Ror2. Ror2 seems to act as a Wnt co-receptor enhancing Wnt-dependent canonical pathways while Tyr- and Ser/Thr-phosphorylation of Ror2 negatively controls the efficiency of these pathways. We propose that the level of the Wnt-ligand-regulated phosphorylation by cytosolic factors determines whether Ror2 acts as a stimulator or as an inhibitor of canonical Wnt-signalling.  相似文献   

14.
Agonist activation of the δ-opioid receptor leads to internalization via Gβγ recruitment of G protein coupled receptor kinase-2, which phosphorylates the receptor at several sites, including Ser363, allowing β-arrestin binding and localization to clathrin coated pits. Using human embryonic kidney cells expressing a δ-opioid receptor we tested the hypothesis that prevention of receptor coupling to G protein by treatment with pertussis toxin (PTX) will block these processes. PTX treatment did not reduce phosphorylation of δ-opioid receptor Ser363 in response to the agonist [ d -Pen2, d -Pen5]enkephalin, or recruitment of β-arrestin 2-green fluorescent protein to the membrane and only slowed, but did not prevent, [ d -Pen2, d -Pen5]enkephalin-induced internalization. Similarly, PTX treatment only partially prevented the ability of the δ-opioid peptide agonists deltorphin II and [Met5]enkephalin and the non-peptide agonist BW373U86 to induce receptor internalization. No internalization was seen with morphine, oxymorphindole or the putative δ1-opioid agonist TAN-67 in the presence or absence of PTX, even though TAN-67 showed a strong activation of G protein, as measured by guanosine-5'-O-(3-[35S]thio)triphosphate binding. The ability of an agonist to stimulate phosphorylation at Ser363 was predictive of its capacity to induce internalization. The results suggest a role for G protein in δ-opioid receptor internalization, but show that alternative G protein independent pathways exist.  相似文献   

15.

Background  

The follicle-stimulating hormone receptor (FSH-R) is a seven transmembrane spanning receptor (7TMR) which plays a crucial role in male and female reproduction. Upon FSH stimulation, the FSH-R activates the extracellular signal-regulated kinases (ERK). However, the mechanisms whereby the agonist-stimulated FSH-R activates ERK are poorly understood. In order to activate ERK, some 7 TMRs require beta-arrestin-and dynamin-dependent internalization to occur, whereas some others do not. In the present study, we examined the ability of the FSH-activated FSH-R to induce ERK phosphorylation, in conditions where its beta-arrestin- and dynamin-mediated internalization was impaired.  相似文献   

16.
The activation of six target enzymes by calmodulin phosphorylated on Tyr99 (PCaM) and the binding affinities of their respective calmodulin binding domains were tested. The six enzymes were: myosin light chain kinase (MLCK), 3'-5'-cyclic nucleotide phosphodiesterase (PDE), plasma membrane (PM) Ca2+-ATPase, Ca2+-CaM dependent protein phosphatase 2B (calcineurin), neuronal nitric oxide synthase (NOS) and type II Ca2+-calmodulin dependent protein kinase (CaM kinase II). In general, tyrosine phosphorylation led to an increase in the activatory properties of calmodulin (CaM). For plasma membrane (PM) Ca2+-ATPase, PDE and CaM kinase II, the primary effect was a decrease in the concentration at which half maximal velocity was attained (Kact). In contrast, for calcineurin and NOS phosphorylation of CaM significantly increased the Vmax. For MLCK, however, neither Vmax nor Kact were affected by tyrosine phosphorylation. Direct determination by fluorescence techniques of the dissociation constants with synthetic peptides corresponding to the CaM-binding domain of the six analysed enzymes revealed that phosphorylation of Tyr99 on CaM generally increased its affinity for the peptides.  相似文献   

17.
18.
19.
GRK2 is a member of the G protein-coupled receptor kinase (GRK) family, which phosphorylates the activated form of a variety of G protein-coupled receptors (GPCR) and plays an important role in GPCR modulation. It has been recently reported that stimulation of the mitogen-activated protein kinase cascade by GPCRs involves tyrosine phosphorylation of docking proteins mediated by members of the Src tyrosine kinase family. In this report, we have investigated the possible role of c-Src in modulating GRK2 function. We demonstrate that c-Src can directly phosphorylate GRK2 on tyrosine residues, as shown by in vitro experiments with purified proteins. The phosphorylation reaction exhibits an apparent K(m) for GRK2 of 12 nM, thus suggesting a physiological relevance in living cells. Consistently, overexpression of the constitutively active c-Src Y527F mutant in COS-7 cells leads to tyrosine phosphorylation of co-expressed GRK2. In addition, GRK2 can be detected in phosphotyrosine immunoprecipitates from HEK-293 cells transiently transfected with this Src mutant. Interestingly, phosphotyrosine immunoblots reveal a rapid and transient increase in GRK2 phosphorylation upon agonist stimulation of beta(2)-adrenergic receptors co-transfected with GRK2 and wild type c-Src in COS-7 cells. This tyrosine phosphorylation is maximal within 5 min of isoproterenol stimulation and reaches values of approximately 5-fold over basal conditions. Furthermore, GRK2 phosphorylation on tyrosine residues promotes an increased kinase activity toward its substrates. Our results suggest that GRK2 phosphorylation by c-Src is inherent to GPCR activation and put forward a new mechanism for the regulation of GPCR signaling.  相似文献   

20.
Syntaxin-1 is a key component of the synaptic vesicle docking/fusion machinery that binds with VAMP/synaptobrevin and SNAP-25 to form the SNARE complex. Modulation of syntaxin binding properties by protein kinases could be critical to control of neurotransmitter release. Using yeast two-hybrid selection with syntaxin-1A as bait, we have isolated a cDNA encoding the C-terminal domain of death-associated protein (DAP) kinase, a calcium/calmodulin-dependent serine/threonine protein kinase. Expression of DAP kinase in adult rat brain is restricted to particular neuronal subpopulations, including the hippocampus and cerebral cortex. Biochemical studies demonstrate that DAP kinase binds to and phosphorylates syntaxin-1 at serine 188. This phosphorylation event occurs both in vitro and in vivo in a Ca2+-dependent manner. Syntaxin-1A phosphorylation by DAP kinase or its S188D mutant, which mimics a state of complete phosphorylation, significantly decreases syntaxin binding to Munc18-1, a syntaxin-binding protein that regulates SNARE complex formation and is required for synaptic vesicle docking. Our results suggest that syntaxin is a DAP kinase substrate and provide a novel signal transduction pathway by which syntaxin function could be regulated in response to intracellular [Ca2+] and synaptic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号