首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas aeruginosa is a Gram-negative, environmental bacterium with versatile metabolic capabilities. P. aeruginosa is an opportunistic bacterial pathogen which establishes chronic pulmonary infections in patients with cystic fibrosis (CF). The overproduction of a capsular polysaccharide called alginate, also known as mucoidy, promotes the formation of mucoid biofilms which are more resistant than planktonic cells to antibiotic chemotherapy and host defenses. Additionally, the conversion from the nonmucoid to mucoid phenotype is a clinical marker for the onset of chronic infection in CF. Alginate overproduction by P. aeruginosa is an endergonic process which heavily taxes cellular energy. Therefore, alginate production is highly regulated in P. aeruginosa. To better understand alginate regulation, we describe a protocol using the mini-himar1 transposon mutagenesis for the identification of novel alginate regulators in a prototypic strain PAO1. The procedure consists of two basic steps. First, we transferred the mini-himar1 transposon (pFAC) from host E. coli SM10/λpir into recipient P. aeruginosa PAO1 via biparental conjugation to create a high-density insertion mutant library, which were selected on Pseudomonas isolation agar plates supplemented with gentamycin. Secondly, we screened and isolated the mucoid colonies to map the insertion site through inverse PCR using DNA primers pointing outward from the gentamycin cassette and DNA sequencing. Using this protocol, we have identified two novel alginate regulators, mucE (PA4033) and kinB (PA5484), in strain PAO1 with a wild-type mucA encoding the anti-sigma factor MucA for the master alginate regulator AlgU (AlgT, σ22). This high-throughput mutagenesis protocol can be modified for the identification of other virulence-related genes causing change in colony morphology.  相似文献   

2.
3.
In Pseudomonas aeruginosa, alginate overproduction, also known as mucoidy, is negatively regulated by the transmembrane protein MucA, which sequesters the alternative sigma factor AlgU. MucA is degraded via a proteolysis pathway that frees AlgU from sequestration, activating alginate biosynthesis. Initiation of this pathway normally requires two signals: peptide sequences in unassembled outer‐membrane proteins (OMPs) activate the AlgW protease, and unassembled lipopolysaccharides bind periplasmic MucB, releasing MucA and facilitating its proteolysis by activated AlgW. To search for novel alginate regulators, we screened a transposon library in the non‐mucoid reference strain PAO1, and identified a mutant that confers mucoidy through overexpression of a protein encoded by the c haperone‐u sher p athway gene cupB5. CupB5‐dependent mucoidy occurs through the AlgU pathway and can be reversed by overexpression of MucA or MucB. In the presence of activating OMP peptides, peptides corresponding to a region of CupB5 needed for mucoidy further stimulated AlgW cleavage of MucA in vitro. Moreover, the CupB5 peptide allowed OMP‐activated AlgW cleavage of MucA in the presence of the MucB inhibitor. These results support a novel mechanism for conversion to mucoidy in which the proteolytic activity of AlgW and its ability to compete with MucB for MucA is mediated by independent peptide signals.  相似文献   

4.
The alternative sigma factor AlgU (Pseudomonas aeruginosa sigma E) is required for full resistance of P. aeruginosa to oxidative stress and extreme temperatures. AlgU also controls conversion of P. aeruginosa to the mucoid, alginate-overproducing phenotype associated with lethal infections in cystic fibrosis patients. Mutations that cause conversion to mucoidy in cystic fibrosis isolates occur frequently in mucA, the second gene within the algU mucABCD gene cluster. Here we analyze the biochemical basis of conversion to mucoidy. MucA was shown to act as an anti-sigma factor by binding to AlgU and inhibiting its activity. MucB, another negative regulator of AlgU, was localized in the periplasm. MucB exerts its function from this compartment, since deletion of the leader peptide and the cytoplasmic location of MucB abrogated its ability to inhibit mucoidy. These data support a model in which a multicomponent system, encompassing an anti-delta factor and elements in the periplasmic compartment, modulates activity of AlgU. Since factors controlling AlgU are conserved in other gram-negative bacteria, the processes controlling conversion to mucoidy in P. aeruginosa may be applicable to the regulation of AlgU (sigma E) equivalents in other organisms.  相似文献   

5.
6.
7.
8.
9.
A variety of stress situations may affect the activity and survival of plant-beneficial pseudomonads added to soil to control root diseases. This study focused on the roles of the sigma factor AlgU (synonyms, AlgT, RpoE, and ς22) and the anti-sigma factor MucA in stress adaptation of the biocontrol agent Pseudomonas fluorescens CHA0. The algU-mucA-mucB gene cluster of strain CHA0 was similar to that of the pathogens Pseudomonas aeruginosa and Pseudomonas syringae. Strain CHA0 is naturally nonmucoid, whereas a mucA deletion mutant or algU-overexpressing strains were highly mucoid due to exopolysaccharide overproduction. Mucoidy strictly depended on the global regulator GacA. An algU deletion mutant was significantly more sensitive to osmotic stress than the wild-type CHA0 strain and the mucA mutant were. Expression of an algU-lacZ reporter fusion was induced severalfold in the wild type and in the mucA mutant upon exposure to osmotic stress, whereas a lower, noninducible level of expression was observed in the algU mutant. Overexpression of algU did not enhance tolerance towards osmotic stress. AlgU was found to be essential for tolerance of P. fluorescens towards desiccation stress in a sterile vermiculite-sand mixture and in a natural sandy loam soil. The size of the population of the algU mutant declined much more rapidly than the size of the wild-type population at soil water contents below 5%. In contrast to its role in pathogenic pseudomonads, AlgU did not contribute to tolerance of P. fluorescens towards oxidative and heat stress. In conclusion, AlgU is a crucial determinant in the adaptation of P. fluorescens to dry conditions and hyperosmolarity, two major stress factors that limit bacterial survival in the environment.  相似文献   

10.
In Pseudomonas aeruginosa, conversion to the mucoid phenotype marks the onset of an irreversible state of the infection in Cystic Fibrosis (CF) patients. The main pathway for mucoid conversion is mutagenesis of the mucA gene, frequently due to −1 bp deletions in a simple sequence repeat (SSR) of 5 Gs (G5-SSR426). We have recently observed that this mucA mutation is particularly accentuated in Mismatch Repair System (MRS)-deficient cells grown in vitro. Interestingly, previous reports have shown a high prevalence of hypermutable MRS-deficient strains occurring naturally in CF chronic lung infections. Here, we used mucA as a forward mutation model to systematically evaluate the role of G5-SSR426 in conversion to mucoidy in a MRS-deficient background, with this being the first analysis combining SSR-dependent localized hypermutability and the acquisition of a particular virulence/persistence trait in P. aeruginosa. In this study, mucA alleles were engineered with different contents of G:C SSRs, and tested for their effect on the mucoid conversion frequency and mucA mutational spectra in a mutS-deficient strain of P. aeruginosa. Importantly, deletion of G5-SSR426 severely reduced the emergence frequency of mucoid variants, with no preferential site of mutagenesis within mucA. Moreover, although mutagenesis in mucA was not totally removed, this was no longer the main pathway for mucoid conversion, suggesting that G5-SSR426 biased mutations towards mucA. Mutagenesis in mucA was restored by the addition of a new SSR (C6-SSR431), and even synergistically increased when G5-SSR426 and C6-SSR431 were present simultaneously, with the mucA mutations being restricted to −1 bp deletions within any of both G:C SSRs. These results confirm a critical role for G5-SSR426 enhancing the mutagenic process of mucA in MRS-deficient cells, and shed light on another mechanism, the SSR- localized hypermutability, contributing to mucoid conversion in P. aeruginosa.  相似文献   

11.
Alginate overproduction by Pseudomonas aeruginosa, also known as mucoidy, is associated with chronic endobronchial infections in cystic fibrosis. Alginate biosynthesis is initiated by the extracytoplasmic function sigma factor (σ(22); AlgU/AlgT). In the wild-type (wt) nonmucoid strains, such as PAO1, AlgU is sequestered to the cytoplasmic membrane by the anti-sigma factor MucA that inhibits alginate production. One mechanism underlying the conversion to mucoidy is mutation of mucA. However, the mucoid conversion can occur in wt mucA strains via the degradation of MucA by activated intramembrane proteases AlgW and/or MucP. Previously, we reported that the deletion of the sensor kinase KinB in PAO1 induces an AlgW-dependent proteolysis of MucA, resulting in alginate overproduction. This type of mucoid induction requires the alternate sigma factor RpoN (σ(54)). To determine the RpoN-dependent KinB regulon, microarray and proteomic analyses were performed on a mucoid kinB mutant and an isogenic nonmucoid kinB rpoN double mutant. In the kinB mutant of PAO1, RpoN controlled the expression of approximately 20% of the genome. In addition to alginate biosynthetic and regulatory genes, KinB and RpoN also control a large number of genes including those involved in carbohydrate metabolism, quorum sensing, iron regulation, rhamnolipid production, and motility. In an acute pneumonia murine infection model, BALB/c mice exhibited increased survival when challenged with the kinB mutant relative to survival with PAO1 challenge. Together, these data strongly suggest that KinB regulates virulence factors important for the development of acute pneumonia and conversion to mucoidy.  相似文献   

12.
13.
Pseudomonas aeruginosa is the dominant pathogen causing chronic respiratory infections in cystic fibrosis (CF). After an initial phase characterized by intermittent infections, a chronic colonization is established in CF upon the conversion of P. aeruginosa to the mucoid, exopolysaccharide alginate-overproducing phenotype. The emergence of mucoid P. aeruginosa in CF is associated with respiratory decline and poor prognosis. The switch to mucoidy in most CF isolates is caused by mutations in the mucA gene encoding an anti-sigma factor. The mutations in mucA result in the activation of the alternative sigma factor AlgU, the P. aeruginosa ortholog of Escherichia coli extreme stress sigma factor sigma(E). Because of the global nature of the regulators of mucoidy, we have hypothesized that other genes, in addition to those specific for alginate production, must be induced upon conversion to mucoidy, and their production may contribute to the pathogenesis in CF. Here we applied microarray analysis to identify on the whole-genome scale those genes that are coinduced with the AlgU sigmulon upon conversion to mucoidy. Gene expression profiles of AlgU-dependent conversion to mucoidy revealed coinduction of a specific subset of known virulence determinants (the major protease elastase gene, alkaline metalloproteinase gene aprA, and the protease secretion factor genes aprE and aprF) or toxic factors (cyanide synthase) that may have implications for disease in CF. Analysis of promoter regions of the most highly induced genes (>40-fold, P < or = 10(-4)) revealed a previously unrecognized, putative AlgU promoter upstream of the osmotically inducible gene osmE. This newly identified AlgU-dependent promoter of osmE was confirmed by mapping the mRNA 5' end by primer extension. The recognition of genes induced in mucoid P. aeruginosa, other than those associated with alginate biosynthesis, reported here revealed the identity of previously unappreciated factors potentially contributing to the morbidity and mortality caused by mucoid P. aeruginosa in CF.  相似文献   

14.
15.
16.
17.
Seeding dispersal is an active detachment exhibit in aging Pseudomonas aeruginosa biofilm. Yet, effect factors of this process in the biofilm of clinical isolated mucoid P. aeruginosa strain remain to be better characterized. In our previous work, one mucoid P. earuginosa strain PA17 was isolated from a patient with recurrent pulmonary infection. In this study, confocal scanning laser microscope combined with LIVE/DEAD viability staining revealed that PA17 biofilm exhibited earlier seeding dispersal than non-mucoid PAO1. We further compared the motility and the expression of motility-associated gene during biofilm development between PA17 and PAO1. PA17 was found to be impaired in all three kinds of motility compared to PAO1. Moreover, we investigated the expression of rhamnolipid-associated genes in PA17 and PAO1 biofilm. The expression of these genes was in accordance with the process of seeding dispersal. Our results indicated that rhamnolipid but not motility is associated with the initiation of seeding dispersal of PA17 biofilm.  相似文献   

18.
Elastase is a major virulence factor in Pseudomonas aeruginosa that is believed to cause extensive tissue damage during infection in the human host. Elastase is secreted in non-mucoid P. aeruginosa. It is known that secretion of most virulence factors such as elastase, lipase, exotoxin A, etc., in P. aeruginosa is greatly reduced in alginate-secreting mucoid cells isolated from the lungs of cystic fibrosis (CF) patients. We have previously reported that in mucoid P. aeruginosaan intracellular protease cleaves the 16 kDa form of nucleoside diphosphate kinase (Ndk) to a truncated 12 kDa form. This smaller form is membrane associated and has been observed to form complexes with specific proteins to predominantly generate GTP, an important molecule in alginate synthesis. The main aim of this study was to purify and characterize this protease. The protease was purified by hydrophobic interaction chromatography of the crude extract of mucoid P. aeruginosa 8821, a CF isolate. Further analysis using a gelatin containing SDS–polyacrylamide gel detected the presence of a 103 kDa protease, which when boiled, migrated as a 33 kDa protein on a SDS–polyacrylamide gel. The first 10 amino acids from the N-terminus of the 33 kDa protease showed 100% identity to the mature form of elastase. An elastase-negative lasB ::Cm knock-out mutant in the mucoid 8821 background was constructed, and it showed a non-mucoid phenotype. This mutant showed the presence of only the 16 kDa form of Ndk both in the cytoplasm and membrane fractions. We present evidence for the retention of active elastase in the periplasm of mucoid P. aeruginosa and its role in the generation of the 12 kDa form of Ndk. Finally, we demonstrate that elastase, when overproduced in both mucoid and non-mucoid cells, stimulates alginate synthesis. This suggests that the genetic rearrangements that trigger mucoidy in P. aeruginosa also allow retention of elastase in the periplasm in an active oligomeric form that facilitates cleavage of 16 kDa Ndk to its 12 kDa form for the generation of GTP, required for alginate synthesis.  相似文献   

19.
20.
Acquisition of adaptive mutations is essential for microbial persistence during chronic infections. This is particularly evident during chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients. Thus far, mutagenesis has been attributed to the generation of reactive species by polymorphonucleocytes (PMN) and antibiotic treatment. However, our current studies of mutagenesis leading to P. aeruginosa mucoid conversion have revealed a potential new mutagen. Our findings confirmed the current view that reactive oxygen species can promote mucoidy in vitro, but revealed PMNs are proficient at inducing mucoid conversion in the absence of an oxidative burst. This led to the discovery that cationic antimicrobial peptides can be mutagenic and promote mucoidy. Of specific interest was the human cathelicidin LL-37, canonically known to disrupt bacterial membranes leading to cell death. An alternative role was revealed at sub-inhibitory concentrations, where LL-37 was found to induce mutations within the mucA gene encoding a negative regulator of mucoidy and to promote rifampin resistance in both P. aeruginosa and Escherichia coli. The mechanism of mutagenesis was found to be dependent upon sub-inhibitory concentrations of LL-37 entering the bacterial cytosol and binding to DNA. LL-37/DNA interactions then promote translesion DNA synthesis by the polymerase DinB, whose error-prone replication potentiates the mutations. A model of LL-37 bound to DNA was generated, which reveals amino termini α-helices of dimerized LL-37 bind the major groove of DNA, with numerous DNA contacts made by LL-37 basic residues. This demonstrates a mutagenic role for antimicrobials previously thought to be insusceptible to resistance by mutation, highlighting a need to further investigate their role in evolution and pathoadaptation in chronic infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号