首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Edaphic diatoms inhabiting the sediments beneath dwarf Spartina alterniflora Loisel. and S. patens (Ait.) Muhl. in Great Bay salt marsh, Tuckerton, New Jersey were collected from 24 September 1974 through 20 August 1975. Of the 91 taxa encountered, 8 were endemic to the dwarf S. alterniflora habitat and 42 endemic to the S. patens habitat. The edaphic diatom community associated with S. patens was comprised of a much greater number of taxa and possessed higher values for species diversity (H') and evenness (J') than the community associated with dwarf S. alterniflora. The salinity of the marsh surface showed a completely opposite trend, being greatly reduced at the S. patens habitat. A highly significant relationship (P < 0.001) between the number of diatom taxa and marsh surface salinity at the S. patens habitat was demonstrated by a least squares regression. This finding led to the conclusion that the dissimilarity in the structure of the two edaphic diatom communities was primarily due to the very low marsh surface salinities at the S. patens habitat from January through June, and that this sustained. low-salinity regime allowed a very large number of taxa to coexist only in the S. patens community. Comparison of the diatom flora of Great Bay salt marsh with that of a Delaware marsh studied previously by the author showed that 67.0% of the 91 taxa encountered in New Jersey also occur on the Delaware marsh.  相似文献   

2.
The relative importance of sexual and clonal reproduction for population growth in clonal plants is highly variable. Clonal reproduction is often more important than sexual reproduction but there is considerable interspecific variation and the importance of the two reproductive modes can change with environmental conditions. We carried out a demographic study on the woodland strawberry (Fragaria vesca), a widespread clonal herb, at 12 sites in Switzerland during 2 years. Study sites were selected in two different habitats, i.e., forest and forest edge. We used periodic matrix models to estimate annual population growth rates and carried out prospective analyses to identify life cycle components that influence population growth rates most. Retrospective analyses were applied to study how the two different habitats affected population dynamics. Furthermore, we tested whether trade-offs between sexual and clonal reproduction occurred. There were large differences in annual population growth rates between sites and large within-site differences between years. Results of the prospective analyses clearly indicate that clonal reproduction is the dominant reproductive pathway whereas sexual reproduction is rather insignificant for population growth. Compared to forest habitats, forest edge habitats had higher population growth rates in the first year but smaller growth rates in the second year. We attribute these differing habitat effects to different water availabilities during consecutive years. No trade-offs between sexual and clonal reproduction were found. In conclusion, population growth of F. vesca relies heavily on clonal reproduction. Furthermore, reproduction and survival rates of F. vesca depend highly on spatio-temporal variation of environmental conditions.  相似文献   

3.
Specialist species are more vulnerable to environmental change than generalist species. For species with ontogenetic niche shifts, specialization may occur at a particular life stage making those stages more susceptible to environmental change. In the salt marshes in the northeast U.S., accelerated sea level rise is shifting vegetation patterns from flood‐intolerant species such as Spartina patens to the flood‐tolerant Spartina alterniflora. We tested the potential impact of this change on the coffee bean snail, Melampus bidentatus, a numerically dominant benthic invertebrate with an ontogenetic niche shift. From a survey of eight marshes throughout the northeast U.S., small snails were found primarily in S. patens habitats, and large snails were found primarily in stunted S. alterniflora habitats. When transplanted into stunted S. alterniflora, small snails suffered significantly higher mortality relative to those in S. patens habitats; adult snail survivorship was similar between habitats. Because other habitats were not interchangeable with S. patens for young snails, these results suggest that Melampus is an ontogenetic specialist where young snails are habitat specialists and adult snails are habitat generalists. Temperature was significantly higher and relative humidity significantly lower in stunted S. alterniflora than in S. patens. These data suggest that thermal and desiccation stress restricted young snails to S. patens habitat, which has high stem density and a layer of thatch that protects snails from environmental stress. Other authors predict that if salt marshes in the northeast U.S. are unable to migrate landward, sea level rise will eliminate S. patens habitats. We suggest that if a salt marsh loses its S. patens habitats, it will also lose its coffee bean snails. Our results demonstrate the need to consider individual life stages when determining a species’ vulnerability to global change.  相似文献   

4.
The recent invasion of clonal grasses to novel habitats poses a threat to biodiversity in various habitats. Elymus athericus, a clonal grass of north-western European salt marshes, is currently increasing in abundance and invading new habitats. In this study, we analyzed controlling factors for seedling establishment of E. athericus in frequently flooded low marsh habitats. Here, biotic and abiotic conditions are very different from the conditions of the parental sites with established populations higher up in the marsh. Hence, we hypothesized that seedling establishment at the expanding low marsh edge would depend on the parental origin (either through maternal effects or heritable local adaptation). We further hypothesized that seedling origin interacts with biotic factors such as herbivory and competition as well as with abiotic factors like inundation frequency. We tested the dependence of seedling survival, growth and vegetative reproduction on these factors in a factorial transplant experiment on Schiermonnikoog. Survival was high, with 77% of the planted seedling surviving until the end of the experiment. Biotic factors had a much stronger effect on seedling growth and mortality than parental origin and were independent of inundation. However, parental origin strongly interacted with herbivory and competition, with seedlings performing better under the conditions that resembled their parental site.We conclude that seedlings of E. athericus, a species that was previously thought to occur only in mid- to high marsh elevation, can establish at a frequently inundated low-marsh sites. Long term survival and further invasion will primarily depend on biotic factors in interaction with seed origin. Our results suggest that next to herbivory, limitation of seeds adapted to colonizing conditions is likely to slow down range expansion.  相似文献   

5.
Over the last century, Phragmites australis (common reed) has been expanding rapidly from the marsh–upland boundary into Spartina patens (salt hay)-dominated high marsh communities of the eastern US coast. Whereas direct and indirect human disturbances and changes in hydrology or salinity are likely to influence rates of spread at the landscape scale, the susceptibility of specific plant communities to invasion also influence rates of Phragmites expansion at the local scale. I measured microscale (0.25 m2) spatial patterns of culms (emerging buds and mature stems) in October 1993 at both expanding and stable boundaries of Phragmites populations within a S. patens-dominant matrix. In both expanding and stable plots, Phragmites culms were observed more frequently than expected on hummocks that were created by S. patens tussock-forming root structure. Culm density within a plot was correlated with the percent hummock cover within a plot. Further, Phragmites culms, particularly mature stems, were concentrated along the perimeter of the hummocks. Because the culms were not evenly distributed between hummocks and hollows, I suggest that invasion rates of Phragmites are limited in S. patens communities by microscale differences in hummock availability. The pattern of emergence suggests that expanding rhizomes of Phragmites encounter both competition with S. patens roots on the hummocks and physiological stressors (salinity, anoxia, sulfide concentrations) in the hollows.  相似文献   

6.
Foundation species structure environments and create refuge from environmental stress. In New England high salt marsh, the grass Spartina patens is a foundation species that reduces salinity, anoxia, desiccation, and thermal stresses through canopy shading and root proliferation. In a factorial S. patens-removal and warming field experiment, foundation species removal strongly impacted every aspect of the community, reiterating the important role of the foundation species S. patens in the high marsh. Given this central role, we hypothesized that facilitation by the foundation species would be even more important under warmer conditions by ameliorating more severe thermal stress. However, the ecological role of S. patens was unaffected by experimental warming, and, independent of the presence of the foundation species, warming had only weak effects on the salt marsh ecological community. Only the foundation species itself responded strongly to warming, by significantly increasing aboveground production in warmed plots. Apparently, amelioration of thermal stress is not as important for salt marsh ecosystem function as S. patens’ moderation of salinity and desiccation stresses. From these experimental results, we anticipate that climate change-associated thermal stress will not greatly affect S. patens-dominated high marsh communities. In contrast, foundation species loss, an emergent conservation issue in Atlantic salt marshes, represents a critical threat to salt marsh ecosystem function.  相似文献   

7.
Elevated CO2 and nitrogen (N) addition directly affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level, but it remains unknown how these global change drivers modify marsh plant response to sea level rise. Here we manipulated factorial combinations of CO2 concentration (two levels), N availability (two levels) and relative sea level (six levels) using in situ mesocosms containing a tidal marsh community composed of a sedge, Schoenoplectus americanus, and a grass, Spartina patens. Our objective is to determine, if elevated CO2 and N alter the growth and persistence of these plants in coastal ecosystems facing rising sea levels. After two growing seasons, we found that N addition enhanced plant growth particularly at sea levels where plants were most stressed by flooding (114% stimulation in the + 10 cm treatment), and N effects were generally larger in combination with elevated CO2 (288% stimulation). N fertilization shifted the optimal productivity of S. patens to a higher sea level, but did not confer S. patens an enhanced ability to tolerate sea level rise. S. americanus responded strongly to N only in the higher sea level treatments that excluded S. patens. Interestingly, addition of N, which has been suggested to accelerate marsh loss, may afford some marsh plants, such as the widespread sedge, S. americanus, the enhanced ability to tolerate inundation. However, if chronic N pollution reduces the availability of propagules of S. americanus or other flood‐tolerant species on the landscape scale, this shift in species dominance could render tidal marshes more susceptible to marsh collapse.  相似文献   

8.
Tidal flow to salt marshes throughout the northeastern United States is often restricted by roads, dikes, impoundments, and inadequately sized culverts or bridge openings, resulting in altered ecological structure and function. In this study we evaluated the response of vegetation and nekton (fishes and decapod crustaceans) to restoration of full tidal flow to a portion of the Sachuest Point salt marsh, Middletown, Rhode Island. A before, after, control, impact study design was used, including evaluations of the tide‐restricted marsh, the same marsh after reintroduction of tidal flow (i.e., tide‐restored marsh), and an unrestricted control marsh. Before tidal restoration vegetation of the 3.7‐ha tide‐restricted marsh was dominated by Phragmites australis and was significantly different from the adjacent 6.3‐ha Spartina‐dominated unrestricted control marsh (analysis of similarities randomization test, p < 0.001). After one growing season vegetation of the tide‐restored marsh had changed from its pre‐restoration condition (analysis of similarities randomization test, p < 0.005). Although not similar to the unrestricted control marsh, Spartina patens and S. alterniflora abundance increased and abundance and height of Phragmites significantly declined, suggesting a convergence toward typical New England salt marsh vegetation. Before restoration shallow water habitat (creeks and pools) of the unrestricted control marsh supported a greater density of nekton compared with the tide‐restricted marsh (analysis of variance, p < 0.001), but after one season of restored tidal flow nekton density was equivalent. A similar trend was documented for nekton species richness. Nekton density and species richness from marsh surface samples were similar between the tide‐restored marsh and unrestricted control marsh. Fundulus heteroclitus and Palaemonetes pugio were the numerically dominant fish and decapod species in all sampled habitats. This study provides an example of a quantitative approach for assessing the response of vegetation and nekton to tidal restoration.  相似文献   

9.
Kanno  Hiroshi  Seiwa  Kenji 《Plant Ecology》2004,170(1):43-53
In the forest understorey, shrubs usually reproduce vegetatively rather than sexually, but the relative contribution of these two reproductive modes may vary with temporal changes in environmental conditions (e.g., light, substrates of forest floor) that are closely related to forest dynamics. To evaluate the occasional changes in reproductive modes of the clonal understorey shrub Hydrangea paniculata, the reproductive characteristics (i.e., flowering, seedling establishment, vegetative propagation, reproductive size and age) were investigated in four different developmental stages in a Japanese beech forest (early gap, EG; late gap, LG; building, BU; mature, MA). Flowering individuals occurred only in EG and LG, and a much greater number of seedlings was observed in both EG and LG than in BU and MA, mainly because canopy gaps provided sufficient light for flowering and suitable substrates (fallen trees and exposed mineral-soil) for seedling establishment. The flowering individuals originated from plants that had persisted in the shaded understorey until gap formation. In contrast to sexual reproduction, clonal fragmentation increased with forest development in the order LG, EG, BU, MA. This is because, in later stages of forest dynamics (BU and MA), large individuals, some of which had previously flowered in gap stages, were layered on the forest floor and subsequently produced a substantial number of clonal fragments by separation of the buried branches from the main stems which had decayed. This resulted in a large number of clonal fragments originating from a single mother plant. These results suggest that the reproductive modes of H. paniculata is strongly influenced by the changes in environmental conditions with respect to the dynamics of canopy trees. Reproduction from seed in gap stages, despite their short period, provide new genets in established populations, whereas vegetative propagation via fragmentation in closed-canopy stages enhance the stability of the population until the next disturbance.  相似文献   

10.
The haying of salt marshes, a traditional activity since colonial times in New England, still occurs in about 400 ha of marsh in the Plum Island Sound estuary in northeastern Massachusetts. We took advantage of this haying activity to investigate how the periodic large-scale removal of aboveground biomass affects a number of marsh processes. Hayed marshes were no different from adjacent reference marshes in plant species density (species per area) and end-of-year aboveground biomass, but did differ in vegetation composition. Spartina patens was more abundant in hayed marshes than S. alterniflora, and the reverse was true in reference marshes. The differences in relative covers of these plant species were not associated with any differences between hayed and reference marshes in the elevations of the marsh platform. Instead it suggested that S. patens was more tolerant of haying than S. alterniflora. Spartina patens had higher stem densities in hayed marshes than it did in reference marshes, suggesting that periodic cutting stimulated tillering of this species. Although we predicted that haying would stimulate benthic chlorophyll production by opening up the canopy, we found differences to be inconsistent, possibly due to the relatively rapid regrowth of S. patens and to grazing by invertebrates on the algae. The pulmonate snail, Melampus bidendatus was depleted in its δ13C content in the hayed marsh compared to the reference, suggesting a diet shift to benthic algae in hayed marshes. The stable isotope ratios of a number of other consumer species were not affected by haying activity. Migratory shorebirds cue in to recently hayed marshes and may contribute to short term declines in some invertebrate species, however, the number of taxa per unit area of marsh surface invertebrates and their overall abundances were unaffected by haying over the long term. Haying had no impact on nutrient concentrations in creeks just downstream from hayed plots, but the sediments of hayed marshes were lower in total N and P compared to references. In sum, haying appeared to affect plant species composition but had only short-term affects on consumer organisms. This contrasts with many grassland ecosystems, where an intermediate level of disturbance, such as by grazing, increases species diversity and may stimulate productivity. From a management perspective, periodic mowing could be a way to maintain S. patens habitats and the suite of species with which they are associated.  相似文献   

11.
Ruber  E.  Gilbert  A.  Montagna  P A.  Gillis  G.  Cummings  E. 《Hydrobiologia》1994,292(1):497-503
Populations of microcrustaceans were studied for 24 months in two New Jersey high salt marsh impoundments, and in three separate 14 month studies of high salt marsh pools in northeastern Massachusetts.In Massachusetts high marsh pools, dominants were all harpacticoids: Amphiascus pallidus, Cletocamptus deitersi, Harpacticus chelifer, Mesochra lilljeborgii, Metis jousseaumei, and Nitokra lacustris. The cyclopoids Apocyclops spartinus, Halicyclops sp. and the calanoid Eurytemora affinis were also numerically important. While there was extensive overlap, dominants varied to some extent from year to year and among the three studies. The New Jersey saline impoundment fauna showed extreme dominance (low equitability) in the first summer, somewhat less in the second and much less in the third. Total microcrustacean densities also declined each year. Variation in Apocyclops spartinus densities was the major factor, as this species comprised in three consecutive summers, 95, 85 and 51% of the total zooplankton at one station. Diversity as species richness was highest in a New Jersey freshwater impoundment which compared well with South Carolina salt marsh values. Impoundment diversity which was very low, and comparable with that found in a New Jersey Spartina patens marsh, increased each year becoming progressively more like that found in the Massachusetts pools.Vegetation changed significantly in the New Jersey impoundments over the three years. Spartina patens died-off in the first summer, while S. alterniflora gradually declined each year. A visit to the site twenty years later showed all emergent vegetation to be gone. These successional zooplankton and vegetation changes, together with the possible consequences of interrupted marsh-bay exchanges should be considered before undertaking any coastal mosquito control involving permanent flooding.  相似文献   

12.
Summary Seed predation can be an important determinant of plant success, but has received little attention in wetland plant communities. Here, we examine the role of flower and seed predators in limiting the seed production of the dominant perennial plants in a salt marsh plant community. Of the four perennial investigated, direct ovule loss to consumers ranged from 51 to 80%, resulting in seed set reductions ranging from 50% to over 20-fold. Most losses were due to generalist grazing by the grasshopper, Conocephalus spartinae. More species-specific losses were inflicted by planthoppers, and microlepidopteran and dipteran larval seed parasites.Insect abundance and consumer pressure on flowers and seeds increased over the early summer, peaked in the middle of July, and declined through August, and this temporal pattern was reflected in the natural consumer damage incurred by each of the marsh perennials. Juncus gerardi flowers earlier than other marsh perennials and largely escapes heavy consumer losses. Spartina patens and Distichlis spicata flower in the middle of the summer during the peak consumer activity and incur extremely heavy seed losses. Spartina alterniflora flowers late in the summer as consumer pressure is subsiding, which appears to minimize its seed loss. In addition to destroying seeds directly, consumers also markedly reduce the frequency and affect the timing of sexual expression in these plants. In particular, predation drastically reduces the frequency of male flowers, which could lead to pollen limitation of seed set.Intense flower and seed predation on these marsh perennials may be an important determinant of the success of marsh plant populations as well as a potent selective force on their flowering phenologies and reproductive effort.  相似文献   

13.
Summary

Saxifraga hirculus, the yellow marsh saxifrage, is a rare protected species growing in baserich flushes. For conservation, better knowledge is needed on its performance and habitat preferences, hence three colonies in the Cabrach district of Aberdeenshire have been monitored closely over the past eleven years. Additionally observations are reported on flowering at a ‘recovery site’ to which saxifrage Plants have been transplanted.

At one of the natural colonies S. hirculus has clearly increased, at another there has been decline, and at the third so many inflorescences are removed by grazing that the trend could not be decided. The increase, as measured by flowering, was associated with moderately heavy grazing that maintained sward height at about 20–25 cm in summer. The decrease in saxifrage flowering was associated with light grazing and a sward of 35–40 cm height; however drought conditions in 2003 were perhaps responsible, affecting the water table of this colony more than the other colonies due to site topography.

At the third colony water voles (Arvicola amphibious) have been regularly present, and have clear impact on the vegetation around their holes. It is suggested that the voles eat the flowering shoots of the saxifrage.  相似文献   

14.
The loss of orchid habitats has increased the investment on orchid conservation efforts to reduce the risk of extinction of rare species. In northwestern Italy, orchids are among the most threatened of all plant groups in the region, but little is known about the biology of most of the less abundant taxa. In this study, we used light and scanning electron microscopy to characterize the morphology of the seeds of the threatened Orchis patens Desf., a declining species present in semi-natural habitats. We found a marked positive relationship between seed size and embryo size that may be not restricted to O. patens but also occur in other orchid species. The comparative analysis of the observed seed traits revealed hidden morphological affinities at the reproductive level among O. patens and the three subspecies of O. mascula, showing the potential of this approach to test the taxonomic relationships among the different taxa included in the genus Orchis.  相似文献   

15.
Studies evaluating flowering phenology and reproductive success are necessary when we want to direct a domestication project in a species with a potential productive value. We studied flowering phenology and reproductive success of Berberis darwinii growing under different light conditions in its native distribution area in the Andean Patagonian forests of Argentina. We test the hypothesis that plants grown under conditions of high-light availability exhibit advanced phenology and higher reproductive success than those grown under conditions of lower light availability. Phenology and reproductive success were determined in three contrasting light conditions at two forest sites, which were, canopy, gap and forest edge. Plants did not bloom under the forest canopy. Flowering and fruiting period lengths were similar in both sites and light conditions of gap and forest edge during spring and summer. Although gap plants had more racemes per shoot, racemes of edge plants had more flowers, fruits and a higher proportion of flowers producing ripe fruit. We show that B. darwinii reproduction studied in the Andean Patagonian forests is conditioned by the canopy openness. Regarding reproductive success, edge plants invest less resources in flower production than gap plants to have similar fruit production.  相似文献   

16.
Many species are shifting their ranges in response to the changing climate. In cases where such shifts lead to the colonization of a new ecosystem, it is critical to establish how the shifting species itself is impacted by novel environmental and biological interactions. Anthropogenic habitats that are analogous to the historic habitat of a shifting species may play a crucial role in the ability of that species to expand or persist in suboptimal colonized ecosystems. We tested if the anthropogenic habitat of docks, a likely mangrove analog, provides improved conditions for the range‐shifting mangrove tree crab Aratus pisonii within the colonized suboptimal salt marsh ecosystem. To test if docks provided an improved habitat, we compared the impact of the salt marsh and dock habitats on ecological and life history traits that influence the ability of this species to persist and expand into the salt marsh and compared these back to baselines in the historic mangrove ecosystem. Specifically, we examined behavior, physiology, foraging, and the thermal conditions of A. pisonii in each habitat. We found that docks provide a more favorable thermal and foraging habitat than the surrounding salt marsh, while their ability to provide conditions which improved behavior and physiology was mixed. Our study shows that anthropogenic habitats can act as analogs to historic ecosystems and enhance the habitat quality for range‐shifting species in colonized suboptimal ecosystems. If the patterns that we document are general across systems, then anthropogenic habitats may play an important facilitative role in the range shifts of species with continued climate change.  相似文献   

17.
Clonal growth occurring below the ground makes it difficult to identify individuals and demonstrate the demographic features of a focal plant species. In this study, genotypically identified ramets of a rhizomatous clonal herb, Convallaria keiskei Miq., were monitored for their growth, survival, and reproduction from 2003 to 2006. After the monitoring period, their subterranean organs were excavated to explore the underground connections of established ramets and the direction of clonal growth. We then combined data on the fate of the monitored ramets with the information of rhizome connections, clarifying reproductive demography at both the ramet and genet levels. Although each ramet initiated both sexual reproduction (via flowering) and clonal growth, clonal growth tended to precede sexual reproduction. In a surveyed genet, 51.0% of ramets produced flowers and 29.6% generated clonal offspring during the study period. Consequently, we clarified the reproductive demography of C. keiskei: clonal growth tended to precede flowering in a ramet, and a genet can keep reproducing every season at the genet level, despite a ramet not having inflorescence every year.  相似文献   

18.
Slow‐colonizing forest understorey plants are probably not able to rapidly adjust their distribution range following large‐scale climate change. Therefore, the acclimation potential to climate change within their actual occupied habitats will likely be key for their short‐ and long‐term persistence. We combined transplant experiments along a latitudinal gradient with open‐top chambers to assess the effects of temperature on phenology, growth and reproductive performance of multiple populations of slow‐colonizing understorey plants, using the spring flowering geophytic forb Anemone nemorosa and the early summer flowering grass Milium effusum as study species. In both species, emergence time and start of flowering clearly advanced with increasing temperatures. Vegetative growth (plant height, aboveground biomass) and reproductive success (seed mass, seed germination and germinable seed output) of A. nemorosa benefited from higher temperatures. Climate warming may thus increase future competitive ability and colonization rates of this species. Apart from the effects on phenology, growth and reproductive performance of M. effusum generally decreased when transplanted southwards (e.g., plant size and number of individuals decreased towards the south) and was probably more limited by light availability in the south. Specific leaf area of both species increased when transplanted southwards, but decreased with open‐top chamber installation in A. nemorosa. In general, individuals of both species transplanted at the home site performed best, suggesting local adaptation. We conclude that contrasting understorey plants may display divergent plasticity in response to changing temperatures which may alter future understorey community dynamics.  相似文献   

19.
Clonality is a widespread life history trait in flowering plants that may be essential for population persistence, especially in environments where sexual reproduction is unpredictable. Frequent clonal reproduction, however, could hinder sexual reproduction by spatially aggregating ramets that compete with seedlings and reduce inter‐genet pollination. Nevertheless, the role of clonality in relation to variable sexual reproduction in population dynamics is often overlooked. We combined population matrix models and pollination experiments to compare the demographic contributions of clonal and sexual reproduction in three Dicentra canadensis populations, one in a well‐forested landscape and two in isolated forest remnants. We constructed stage‐based transition matrices from 3 years of census data to evaluate annual population growth rates, λ. We used loop analysis to evaluate the relative contribution of different reproductive pathways to λ. Despite strong temporal and spatial variation in seed set, populations generally showed stable growth rates. Although we detected some pollen limitation of seed set, manipulative pollination treatments did not affect population growth rates. Clonal reproduction contributed significantly more than sexual reproduction to population growth in the forest remnants. Only at the well‐forested site did sexual reproduction contribute as much as clonal reproduction to population growth. Flowering plants were more likely to transition to a smaller size class with reduced reproductive potential in the following year than similarly sized nonflowering plants, suggesting energy trade‐offs between sexual and clonal reproduction at the individual level. Seed production had negligible effects on growth and tuber production of individual plants. Our results demonstrate that clonal reproduction is vital for population persistence in a system where sexual reproduction is unpredictable. The bias toward clonality may be driven by low fitness returns for resource investment in sexual reproduction at the individual level. However, chronic failure in sexual reproduction may exacerbate the imbalance between sexual and clonal reproduction and eventually lead to irreversible loss of sex in the population.  相似文献   

20.
In dioecious plants, the frequencies of flowering stems in each sex produced through clonal growth provide important information on the potential for reproductive success in the populations. However, apart from the light environment in their habitat, the factors affecting the flowering of each sex have not been well documented in shrub species that can maintain their populations in shady environments. In this research, we investigated seven soil variables and the flowering of stems of Aucuba japonica var. borealis in patches of this dioecious clonal shrub with different apparent stem sex ratios in an evergreen coniferous secondary forest with a shady forest floor. Of the 53 patches examined, 52 contained stems with flowers. Flowering stem ratios exhibited a positive relationship with available soil phosphate but a marginal negative relationship with exchangeable magnesium, whereas soil water content was associated with a female-biased flowering sex ratio. Stem density tended to be negatively related to flowering stem ratios in patches containing stems with female flowers but not males. While the results demonstrate that abundant amounts of certain nutrients and moisture in soils promote the production of flowers and/or a bias toward femaleness in patches, it is suggested that antagonistic effects of cations in the soil can inhibit the flowering of both sexes. In addition, the trade-off between sexual reproduction and clonal propagation in the females may amplify the variations in flowering in the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号