首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Abstract. Continuous high resolution measurement of sugar beet leaf extension over 5 d in growth chambers showed average leaf extension rates (LER) in darkness to be from three to six times those in light for plants growing in non-salinized media. The changes in LER in light-dark transitions occurred within seconds, a response which was more rapid than stomatal opening or closing. When the growth medium was salinized to 100 mol m−3 NaCl, LER's were reduced by about 50% in darkness and 90% in light, markedly increasing the ratio of dark to light LER.
A 2-d episode of root-zone salinity imposed midway through a 5-d period of measurement decreased LER and produced higher leaf temperatures. LER and diurnal leaf temperature patterns reverted to their pre-salinized levels when root-zone salinity was removed. Thus, the effects of short episodes of high sodium chloride in the growth medium appear to be reversible, suggesting a water stress mechanism of growth reduction rather than toxicity effects of salt.  相似文献   

3.
植物叶片性状随叶龄的变化是植物生活史策略的体现, 反映了植物叶片的物质投资和分配方式。该研究通过在个体和物种2个水平, 比较浙江天童1 hm 2样地内常绿阔叶树种的平均叶面积(MLA)、比叶面积(SLA)和叶片干物质含量(LDMC)在当年生和往年生叶片间的差异和关联, 探究叶片物质分配策略在异龄叶间的变化, 并分析叶龄对植物叶片性状, 特别是叶片面积建成消耗的影响。结果显示: 1)在个体和物种水平上, MLA变异系数最大(个体: 79.5%; 物种: 66.5%), SLA次之(个体: 28.1%; 物种: 24.7%), LDMC较低(个体: 17.0%, 物种: 14.1%); 当年生叶片MLA、LDMCSLA的变异系数均高于往年生叶片; 2)往年生叶MLA显著大于当年生叶(t = -38.53, p < 0.001), 往年生叶SLA显著小于当年生叶(t = 45.30, p < 0.001), 往年生叶LDMC显著大于当年生叶(t = -9.71, p < 0.001); 3)在个体水平, 当年生叶片MLA、SLALDMC值分别解释了往年生叶片MLA、SLALDMC变异的86%、48%和41%; 在物种水平, 当年生叶片MLA、SLALDMC值分别解释了往年生叶片MLA、SLALDMC变异的97%、83%和85%; 4) SLA在异龄叶间的变化表明, 与往年生叶片相比, 投资相同干物质, 当年生叶片可形成较大的叶面积, 其叶片面积建成消耗较小。研究认为, 植物叶性状在异龄叶间具有较大的变异性和关联性, 叶面积形成过程中生物量建成与消耗的协调可能影响植物叶片的发育。  相似文献   

4.
西藏紫花针茅叶功能性状沿降水梯度的变化   总被引:4,自引:0,他引:4       下载免费PDF全文
植物叶功能性状与环境因子的关系是近10年来植物生态学的研究热点。该文以广泛分布于青藏高原干旱、半干旱草地的优势植物种紫花针茅(Stipa purpurea)为研究对象, 沿降水梯度(69-479 mm)系统测定了日土、改则、珠峰、当雄和纳木错5个调查地点紫花针茅比叶面积(SLA)、单位重量和单位面积叶氮含量(Nmass, Narea)、叶密度和厚度等叶功能性状以及土壤全氮含量等因子, 试图验证干旱胁迫地区同一物种内SLA-Nmass关系沿降水梯度的策略位移现象是否具有普遍性, 并对是否出现策略位移现象提出可能的解释。研究结果表明: 1) SLANmass与生长季温度和降水以及土壤全氮含量均没有显著关系, SLANmass的关系在干旱半干旱区(年降水/蒸发比< 0.11)与半湿润区(年降水/蒸发比> 0.11)之间并没有出现典型的位移现象; 2)叶密度是决定半湿润区SLA变化的主导因子, 而叶厚度则是干旱半干旱区SLA变化的控制因子, 两者与SLA均呈负相关, 随着温度增加或降水减少, 叶厚度增加而叶密度降低, 导致SLA随温度和降水变化不明显; 3)半湿润区的叶密度增加引起Narea增加, 而干旱半干旱区的叶厚度增加并没有造成Narea的显著变化, 导致Narea沿降水梯度没有显著变化; 4)紫花针茅地上生物量与Narea具有显著正相关关系, 表明Narea的增加有助于提高植被生产力。结果表明, 在干旱胁迫下, 植物通过增加叶厚度来维持不变的Narea可能有助于保持与较湿润地区相似的光合生产和水分利用效率。叶厚度和叶密度对比叶面积的相对影响在干旱半干旱区与半湿润区之间发生转变, 这为进一步检测高寒草地植被的水分限制阈值提供了新思路。  相似文献   

5.
6.
ABSTRACT

A previous study of 19 south-east Australian heath and forest species with a range of leaf textures showed that they varied considerably in leaf biomechanical properties. By using an index of sclerophylly derived from botanists' rankings (botanists' sclerophylly index, BSI) we determined that leaves considered by botanists to be sclerophyllous generally had both high strength and work to fracture (particularly in punching and tearing tests), both at the level of leaf and per unit leaf thickness. In the current study we have shown that leaves from the same species also varied considerably in leaf specific mass (46–251 g m-2), neutral detergent fibre concentration (20–59% on a dry weight basis) and in leaf anatomy. Multiple regression indicated a very strong correlation between BSI and the first two components of a principal components analysis (PCA) of leaf anatomy (R 2 = 0.91). In addition, there was strong correlation between the first component of a PCA of the mechanical properties (correlated with BSI) and the two axes derived from anatomical characteristics (R 2 = 0.66). The anatomical properties contributing most to the significant component axes were thickness of palisade mesophyll and upper cuticle (axis 1) and percentage fibre (neutral detergent fibre) and lower epidermis thickness (axis 2). However, whether these relationships are causal, or reflect correlations with characteristics not measured in this study, such as vascularization and sclerification, is not clear. At a finer scale, however, there is evidence that there are various ways to be sclerophyllous, both in terms of anatomical and mechanical properties. This is illustrated by comparison of two of the sclerophyllous species, Eucalyptus baxteri and Banksia marginata.  相似文献   

7.
Leaf area estimation in a sugar beet cultivar by linear models   总被引:6,自引:6,他引:0  
Tsialtas  J. T.  Maslaris  N. 《Photosynthetica》2005,43(3):477-479
An indirect method of leaf area measurement for Rizor sugar beet cultivar was tested. Leaves were sampled during two growing seasons in a Randomised Complete Block Design experiment. For 2002 samplings, leaf area [cm2] was linearly correlated with maximum leaf width [cm] using all leaf samples (r 2 = 0.83, p < 0.001) or using the means of the 8 sampling occasions (r 2 = 0.97, p < 0.001). Correlations between leaf area and leaf mid vein length [cm] were weaker (r 2 = 0.75, p < 0.001 and r 2 = 0.93, p < 0. 001, respectively). For 2003 samplings, the area estimated by the equations was highly correlated to the measured leaf area.  相似文献   

8.
The objective of this paper was to assess the congruency of leaf traits and soil characteristics and to analyze the survival strategies of different plant functional types in response to drought and nutrient-poor environ-ments in the southeastern Ke'erqin Sandy Lands in China. Six leaf traits-leaf thickness (TH), density (DN), specific leaf area (SLA), leaf dry weight to fresh weight ratio (DW/ FW), leaf N concentration (Nmass), and N resorption efficiency (NREmass)-of 42 plant species were investi-gated at four sites. The correlations between leaf traits and soil characteristics-organic C (OC), total N (TN), total P (TP), and soil moisture (SM)-were examined. We found that the six leaf traits across all the 42 species showed large variations and that DW/FW was negatively correlated with OC, TN, TP, and SM (P<0.05), while other leaf traits showed no significant correlations with soil characteristics. To find the dissimilarity to accommodate environment, a hierarchical agglomerative clustering analysis was made of all the species. All the species clustered into three groups except the Scutellaria baicalensis. Species of group Ⅲ might be most tolerant of an arid environment, and species of group Ⅱ might avoid nutrient stress in the nutrient-poor environment, while group Ⅰ was somewhat intermediate. Therefore, species from the different groups may be selected for use in vegetation restoration of different sites based on soil moisture and nutrient conditions.  相似文献   

9.
复叶植物相比单叶植物更具生长优势,但复叶内部小叶性状及其相关关系是否受到着生位置影响尚未可知。该研究以东北典型复叶植物水曲柳(Fraxinusmandshurica)为研究对象,测定复叶内部不同着生位置小叶的叶厚(LT)、叶面积(LA)、叶干物质含量(LDMC)、比叶面积(SLA)、叶氮含量(LNC)和叶磷含量(LPC),分析上述6种小叶性状及其生长关系在复叶内部的变异,并分别通过最小显著性差异(LSD)法以及标准化主轴(SMA)法检验着生位置对小叶性状及性状间生长关系是否存在显著影响。结果表明:(1) LT、LA、LDMC和LNC随小叶着生位置级别增加(从复叶顶端至复叶基部)呈减小趋势,但SLA和LPC呈增大趋势。(2)复叶内部, LNC与SLA间以及LT与LDMC间表现为同速生长关系, LT、SLA、LPC 3个性状与LA间, SLA、LNC、LPC 3个性状与LDMC间以及LPC与LT间均表现为异速生长关系。(3)小叶着生位置对LA与LT、SLA、LPC之间的相关关系存在显著影响, LT、SLA与LA的斜率在三级小叶(复叶中部)附近达到最大值, LT、LPC与LA的斜率绝对值在六...  相似文献   

10.
Leaves of flowering plants are diverse in shape. Part of this morphological diversity can be attributed to differences in spatiotemporal regulation of polarity in the upper (adaxial) and lower (abaxial) sides of developing leaves. In a leaf primordium, antagonistic interactions between polarity determinants specify the adaxial and abaxial domains in a mutually exclusive manner. The patterning of those domains is critical for leaf morphogenesis. In this review, we first summarize the gene networks regulating adaxial–abaxial polarity in conventional bifacial leaves and then discuss how patterning is modified in different leaf type categories. genesis 52:1–18, 2014. © 2013 The Authors. Genesis Published byWiley Periodicals, Inc.  相似文献   

11.
Abstract Leaf area index (LAI) is a key parameter controlling plant productivity and biogeochemical fluxes between vegetation and the atmosphere. Tropical forests are thought to have comparably high LAIs; however, precise data are scarce and environmental controls of leaf area in tropical forests are not understood. We studied LAI and stand leaf biomass by optical and leaf mass-related approaches in five tropical montane forests along an elevational transect (1,050–3,060 m a.s.l.) in South Ecuador, and conducted a meta-analysis of LAI and leaf biomass data from tropical montane forests around the globe. Study aims were (1) to assess the applicability of indirect and direct approaches of LAI determination in tropical montane forests, (2) to analyze elevation effects on leaf area, leaf mass, SLA, and leaf lifespan, and (3) to assess the possible consequences of leaf area change with elevation for montane forest productivity. Indirect optical methods of LAI determination appeared to be less reliable in the complex canopies than direct leaf mass-related approaches based on litter trapping and a thorough analysis of leaf lifespan. LAI decreased by 40–60% between 1,000 and 3,000 m in the Ecuador transect and also in the pan-tropical data set. This decrease indicates that canopy carbon gain, that is, carbon source strength, decreases with elevation in tropical montane forests. Average SLA decreased from 88 to 61 cm2 g−1 whereas leaf lifespan increased from 16 to 25 mo between 1,050 and 3,060 m in the Ecuador transect. In contrast, stand leaf biomass was much less influenced by elevation. We conclude that elevation has a large influence not only on the leaf traits of trees but also on the LAI of tropical montane forests with soil N (nitrogen) supply presumably being the main controlling factor.  相似文献   

12.
利用热及物质交换原理, 并结合前人研究成果, 在单叶尺度上建立了简单的叶温和水气蒸腾模型。模型通过预设值驱动, 预设值参照干旱区环境及植物叶片特征设置。模拟结果显示: 随气孔阻力的增加, 叶片蒸腾速率降低, 叶温升高; 同一环境下, 具有低辐射吸收率的叶片蒸腾速率和叶温更低, 并且气孔阻力越大, 这种差异越明显。另外, 叶片宽度及风速是影响叶片蒸腾及叶温的重要因子。干旱地区植物生长季节, 风速小于0.1 m·s -1、气孔阻力接近1000 s·m -1时, 降低叶片宽度不仅有利于降低叶片温度, 而且能够降低叶片蒸腾速率, 从而实现保持水分, 增强植物适应高温、干旱的能力。  相似文献   

13.
We surveyed 24 plant species to examine how leaf anatomy influenced chloroplast movement and how the optical properties of leaves change with chloroplast position. All species examined exhibited light-dependent chloroplast movements but the associated changes in leaf absorptance varied considerably in magnitude. Chloroplast movement-dependent changes in leaf absorptance were greatest in shade species, in which absorptance changes of >10% were observed between high- and low-light treatments. Using the Kubelka-Munk theory, we found that changes in the absorption (k) and chlorophyll a absorption efficiency (k*) associated with chloroplast movement correlated with cell diameter, such that the narrower, more columnar cells found in sun leaves restricted the ability of chloroplasts to move. The broader, more spherical cells of shade leaves allowed greater chloroplast rearrangements and in low-light conditions allowed efficient light capture. Across the species tested, light-dependent chloroplast movements modulated leaf optical properties and light absorption efficiency by manipulating the package (sieve or flattening) effect but not the detour (path lengthening) effect.  相似文献   

14.
Leaf economic and hydraulic theories have rarely been applied to the ecological differentiation of speciose herbaceous plant radiations. The role of character trait divergences and network reorganization in the differentiation of the functional types in the megadiverse Neotropical Bromeliaceae was explored by quantifying a range of leaf economic and hydraulic traits in 50 diverse species. Functional types, which are defined by combinations of C3 or Crassulacean acid metabolism (CAM) photosynthesis, terrestrial or epiphytic habits, and non‐specialized, tank‐forming or atmospheric morphologies, segregated clearly in trait space. Most classical leaf economic relationships were supported, but they were weakened by the presence of succulence. Functional types differed in trait‐network architecture, suggesting that rewiring of trait‐networks caused by innovations in habit and photosynthetic pathway is an important aspect of ecological differentiation. The hydraulic data supported the coupling of leaf hydraulics and gas exchange, but not the hydraulic safety versus efficiency hypothesis, and hinted at an important role for the extra‐xylary compartment in the control of bromeliad leaf hydraulics. Overall, our findings highlight the fundamental importance of structure–function relationships in the generation and maintenance of ecological diversity.  相似文献   

15.
以五大连池新期火山熔岩台地13个稳定的自然植物群落共有种香杨、万年蒿、岩败酱为研究对象,测定其叶干物质含量(LDMC)、比叶面积(SLA)、叶氮含量(LNC)、叶磷含量(LPC)、叶氮磷比(N/P)等叶功能性状,研究不同生境下3种植物叶功能性状的变异特征,探讨新期火山熔岩台地植物叶功能性状相互之间的内在联系及其对环境的适应性。结果表明:(1)3种植物LDMC变化在0.294~0.359g·g~(-1)之间,SLA变化在9.082~22.347m2·kg~(-1)之间;与其他区域的研究结果相比,新期火山熔岩台地植物的LDMC值相对偏大、SLA值相对偏小,说明五大连池新期火山熔岩台地的植物采用高LDMC低SLA策略适应贫瘠恶劣的环境。(2)3种植物LNC变化在9.690~15.710g·kg~(-1)之间,LPC变化在0.669~1.078g·kg~(-1)之间,叶钾含量(LKC)变化在10.410~29.830g·kg~(-1)之间,叶N/P的变化在9.781~20.990之间;与其他区域的研究结果相比,新期火山熔岩台地植物LNC和LPC值相对偏小,LKC和N/P值相对偏大,说明五大连池新期火山熔岩台地的植物生长主要受磷素的限制,而且LNC偏小和LKC偏高与新期火山熔岩台地土壤中全N、全K的含量变化特征有关。(3)通过ANVOA分析发现,群落间植物叶功能性状的变异幅度较小,3种植物之间N/P、LDMC和SLA的变异幅度也较小,这说明在水分和养分极缺的火山熔岩台地植物对其生境的适应对策相似。(4)Pearson相关分析发现,SLA与LDMC以及N/P与LDMC和SLA均呈显著负相关关系。  相似文献   

16.
17.
Leaf expansion depends on both carbon and water availabilities. In cereals, most of experimental effort has focused on leaf elongation, with essentially hydraulic effects. We have tested if evaporative demand and light could have distinct effects on leaf elongation and widening, and if short‐term effects could translate into final leaf dimensions. For that, we have monitored leaf widening and elongation in a field experiment with temporary shading, and in a platform experiment with 15 min temporal resolution and contrasting evaporative demands. Leaf widening showed a strong (positive) sensitivity to whole‐plant intercepted light and no response to evaporative demand. Leaf elongation was (negatively) sensitive to evaporative demand, without effect of intercepted light per se. We have successfully tested resulting equations to predict leaf length and width in an external dataset of 15 field and six platform experiments. These effects also applied to a panel of 251 maize hybrids. Leaf length and width presented quantitative trait loci (QTLs) whose allelic effects largely differed between both dimensions but were consistent in the field and the platform, with high QTL × Environment interaction. It is therefore worthwhile to identify the genetic and environmental controls of leaf width and leaf length for prediction of plant leaf area.  相似文献   

18.
松嫩草地66种草本植物叶片性状特征   总被引:3,自引:0,他引:3  
植物叶片功能性状及其相互关系越来越受到关注.以松嫩草地66种草本植物为研究对象,测量叶片干物质含量、比叶面积、叶片厚度、叶片氮含量、叶片磷含量、叶绿素含量和类胡萝卜素含量,检验性状间的相互关系,比较不同功能群(多年生根茎禾草,多年生丛生禾草,多年生杂类草,1年生或2年生草本)间性状的差异性.结果表明,叶片厚度变异系数最大,比叶面积、叶片氮含量、叶片磷含量、叶绿素含量和类胡萝卜素含量之间存在显著的正相关关系;叶片于物质含量与叶片磷含量没有显著的相关关系,与其它叶片性状呈显著的负相关关系;叶片厚度只与叶片干物质含量和比叶面积呈显著的负相关关系,与其它叶片性状不相关.叶片干物质含量、比叶面积、叶片厚度、叶片氮、磷含量在4个功能群间差异显著,叶绿素含量和类胡萝卜素含量在各个功能群间差异不显著;多年生根茎禾草和多年生丛生禾草叶片的7个性状差异不显著;多年生根茎禾草和多年生丛生禾草的叶片干物质含量高于多年生杂类草和1年生或2年生草本,其它性状小于这两个功能群.  相似文献   

19.
Leaf blade parameters and leaf demography of Festuca pallens Host were studied in two types of dry grasslands. The field work was carried out in the Považsky Inovec Mts (Western Carpathians) during 1993–1995. The permanent plot in the Poo badensis-Festucetum pallentis was located on a steep, strongly eroded S-facing slope covered with dolomite outcrops, scree and sparse vegetation (20%) dominated by Festuca pallens. The permanent plot in the Festuco pallentis-Caricetum humilis was located on the even ridge plateau with shallow stony soil and vegetation covering about 70% dominated by Carex humilis and Festuca pallens. In comparison to other grasses Festuca pallens had a very low rate of leaf turnover. The highest leaf birth rates and the lowest leaf death rates were observed in June. Leaf mortality was uniformly distributed in time without a distinct minimum or maximum. For the surviving tillers the leaf production exceeded the leaf mortality during the whole growing season. The steady net gain of leaves in tillers was not interrupted by the parallel process of tillering. Among the leaf cohorts the leaves produced in May had the longest leaf blades. Leaves grew during the whole year. The winter cold and summer drought might slow down the growth rate or interrupt the growth. The growth of a leaf blade took five to eight weeks. Leaf life span was estimated to 150–200 days (time from leaf appearance at the apex to the complete loss of its green assimilating parts). In comparison to other grasses Festuca pallens belongs to the species with the longest leaf life span. The effect of environmental factors on leaf demography was followed by the comparison of two populations belonging to two phytosociological associations differing mostly in habitat xericity. Differences were revealed in the following characteristics: length of leaf blade in cohorts born during May and June, maximum length of a leaf blade in a tiller and daily increments in May and June. The course of leaf natality and mortality was similar in the studied populations.  相似文献   

20.
Leaf characteristics reflecting the size, lifespan (longevity), moisture content (degree of succulence) and complexity of structure of 20 mangrove species were studied over several years at 13 locations along the tropical and subtropical Australian coast. These characteristics were found to fall generally within the ranges of those for woody species from other ecosystems. With the exception of one species, it was found that leaf longevity was related inversely to leaf moisture content, increasing from nearly 6 months in more succulent species to over 2 years in less succulent species. This suggested that more succulent leaves are less complex in their structure because they have less well‐developed ability to compartmentalize salt. There was a tendency also for leaf longevity to increase in species with larger leaves. These findings were consistent with the general view for land plants that leaf longevity is greater in species that have developed tolerance to environmental stress, salt particularly in the case of mangroves. Leaf tissue in such species is more robust or complex and requires greater metabolic resources in its construction; the plant is then advantaged by retaining the tissue for longer periods. Classification of the species considered here, based on their leaf longevity, moisture content and complexity, identified phylogenetically related species groupings that reflected these leaf longevity effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号