首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon dots (CDs), as an attractive zero-dimensional carbon nanomaterial with unique photoluminescent merits, have recently exhibited significant application potential in gas sensing as a result of their excellent optical/electronic characteristics, high chemical/thermal stability, and tunable surface states. CDs exhibit strong light absorption in the ultraviolet range and tunable photoluminescence characteristics in the visible range, which makes CDs an effective tool for optical sensing applications. Optical gas sensor based on CDs have been investigated, which generally responds to the target gas by corresponding changes in optical absorption or fluorescence. Moreover, electrical gas sensor and quartz crystal microbalance sensor whose sensing layer involves CDs have also been designed. Electrical gas sensor exhibits an increase or a decrease in electrical current, capacitance, or conductance once exposed to the target gas. Quartz crystal microbalance sensor responds to the target gas with a frequency shift. CDs greatly promote the absorption of the target gas and improve the sensitivity of both sensors. In this review, we aim to summarize different types of gas sensors involving CDs, and sensing performances of these sensors for monitoring diverse gases or vapors, as well as the mechanisms of CDs in different types of sensors. Moreover, this review provides the prospect of the potential development of CDs based gas sensors.  相似文献   

2.
A simple microwave‐assisted solvothermal method was used to prepare fluorescent nitrogen‐doped carbon dots (N‐CDs) with high fluorescence quantum yield (79.63%) using citric acid and N‐(2‐hydroxyethyl)ethylenediamine as starting materials. The PVAm‐g‐N‐CDs grafted products were synthesized by amide bond formation between the carboxylic groups of N‐CDs and amine groups of polyvinylamine (PVAm). Fluorescent hydrogel films (PVAm‐g‐N‐CDs/PAM) were synthesized by interpenetration polymer network polymerization of PVAm‐g‐N‐CDs and acrylamide (AM). When used for ion detection, we found that the fluorescence of the hydrogel films was clearly quenched by addition of Hg2+. Repeatability tests on using the hydrogel films for Hg2+ detection showed that they could be applied at least three times. The PVAm‐g‐N‐CDs/PAM could serve as an effective fluorescent sensing platform for sensitive detection of Hg2+ ions with a detection limit of 0.089 μmol/L. This work may offer a new approach for developing recoverable and sensitive N‐CDs‐based sensors for biological and environmental applications.  相似文献   

3.
Despite the significant advancement in cancer diagnosis and therapy, a huge burden remains. Consequently, much research has been diverted on the development of multifunctional nanomaterials for improvement in conventional diagnosis and therapy. Luminescent nanomaterials offer a versatile platform for the development of such materials as their intrinsic photoluminescence (PL) property offers convergence of diagnosis as well as therapy at the same time. However, the clinical translation of nanomaterials faces various challenges, including biocompatibility and cost-effective scale up production. Thus, luminescent materials with facile synthesis approach along with intrinsic biocompatibility and anticancerous activity hold significant importance. As a result, carbon dots (CDs) and nanohydroxyapatite (nHA) have attracted much attention for the development of optical imaging probes. CDs are the newest members of the carbonaceous nanomaterials family that possess intrinsic luminescent and therapeutic properties, making them a promising candidate for cancer theranostic. Additionally, nHA is an excellent bioactive material due to its compositional similarity to the human bone matrix. The nHA crystal can efficiently host rare-earth elements to attain luminescent property, which can further be implemented for cancer theranostic applications. Herein, the development of CDs and nHA based nanomaterials as multifunctional agents for cancer has been briefly discussed. The emphasis has been given to different synthesis strategies leading to different morphologies and tunable PL spectra, followed by their diverse applications as biocompatible theranostic agents. Finally, the review has been summarized with the current challenges and future perspectives.  相似文献   

4.
Carbon dots (CDs) are nanometer-scale particles produced from carbon sources that exhibit fluorescence emission. The present work presents the synthesis and characterization of CDs, as well as the sensing studies for the determination of chloramphenicol (CAP). CAP is an antibiotic used in human medicine and agriculture, and its indiscriminate use and inappropriate disposal have caused damage to human health and the environment. The carbonaceous precursor used in the synthesis of CDs was 3,4-diaminobenzoic acid (3,4-DABA) through the hydrothermal method via domestic microwave irradiation. The first synthesis procedure was carried out in the presence of water/ethanol (a-CDs) and the second in the presence of 1 mol/L sodium hydroxide/ethanol (b-CDs). The CDs were initially characterized in terms of spectroscopic properties in the ultraviolet and visible region (UV-visible), Fourier-transform infrared (FTIR) spectra, Raman spectroscopy, and fluorescence emission spectroscopy. Sensing studies for the antibiotic C were performed by fluorescence suppression in the presence of a- and b-CDs, as well as the precursor 3,4-DABA. The a- and b-CDs presented similar values of linear range 0.00080–0.0050 mg/ml and limit of detection (LOD) = 0.00030 mg/ml (0.30 ppm) for CAP. Then, a- and b-CDs were embedded in Whatman and Mellita® filter paper, and CAP sensing was evaluated through UV light excitation.  相似文献   

5.
The synthesis, characterization, and spectral properties of strategically designed boronic acid containing fluorescent sensors, o-, m-, p-BMOQBA, for the potential detection of tear glucose concentrations when immobilized in plastic disposable contact lenses is described. The new probes, BMOQBAs, consist of the 6-methoxyquinolinium nucleus as a fluorescent indicator, and the boronic acid moiety as a glucose chelating group. A control compound BMOQ, which has no boronic acid group and therefore does not bind monosaccharides has also been prepared. In this paper, we show that structural design considerations of the new probes have afforded for their compatibility within the lenses, with reduced probe sugar-bound pK(a) favorable with the mildly acidic lens environment. In addition, the new probes are readily water soluble, have high quantum yields, and can be prepared by a simple one-step synthetic procedure.  相似文献   

6.
In recent years, more and more nanomaterials‐based chemiluminescence (CL) systems have appeared to improve the sensitivity and expand the scope of the analytical applications with the explosive growth and development of nanomaterials and technology. As a fascinating class of luminescent carbon nanomaterials, carbon dots (CDs) are now substantially studied in fabricating CL based assays due to their unique optical and mechanical properties. Herein, we summarize and highlight the current developments of CDs‐involved weak or ultraweak CL systems, as well as the corresponding mechanisms and proper applications in some fields. CDs can take part in the CL reactions as oxidants, emitting species directly involved in redox oxidation, energy acceptors of CL energy transfer, or even catalysts involving other luminophores. In fact, they always have more than one role in many cases, owing to the formation of various excited species with short life in CL systems. Therefore, in this review article, the most recent progress of the different CDs‐assisted CL systems including the mechanisms and applications are presented. Finally, the conclusions and future prospects of this field are also discussed. The significant features of the CDs‐based CL systems may open up new prospects and challenges in a wider range of fields.  相似文献   

7.
Glycero- and sphingolipids have been shown to be building blocks of membranes and lipoproteins, metabolites and important intermediaries in the signalling cascades involved in stress responses, proliferation of cells and also apoptosis. Investigations into the exact functions of these lipids have found that they are fundamentally more important than previously thought and that they are intricately involved in the processes of many significant metabolic pathways and diseases. Investigation of these functions requires the detection of the lipids in their natural environment within membranes. To this end, fluorescent labelling has become one of the preferred means in which to study these essential components due to the relative ease of detection. This review will look at the novel compounds that have been synthesised recently through various methodologies including classical lipid synthesis as well as the innovative application of organometallic chemistry. This field has expanded with the advancements in fluorescence detection and these lipids are being used as specific probes for an extensive range of applications in order to ascertain the mechanisms and signalling capabilities of this very important class of biological compounds.  相似文献   

8.
Cyclomaltodextrinase (CDase, EC 3.2.1.54), maltogenic amylase (EC 3. 2.1.133), and neopullulanase (EC 3.2.1.135) are reported to be capable of hydrolyzing all or two of the following three types of substrates: cyclomaltodextrins (CDs); pullulan; and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. The present review surveys the biochemical, enzymatic, and structural properties of three types of such enzymes as defined based on the substrate specificity toward the CDs: type I, cyclomaltodextrinase and maltogenic amylase that hydrolyze CDs much faster than pullulan and starch; type II, Thermoactinomyces vulgaris amylase II (TVA II) that hydrolyzes CDs much less efficiently than pullulan; and type III, neopullulanase that hydrolyzes pullulan efficiently, but remains to be reported to hydrolyze CDs. These three types of enzymes exhibit 40-60% amino acid sequence identity. They occur in the cytoplasm of bacteria and have molecular masses from 62 to 90 kDa which are slightly larger than those of most alpha-amylases. Multiple amino acid sequence alignment and crystal structures of maltogenic amylase and TVA II reveal the presence of an N-terminal extension of approximately 130 residues not found in alpha-amylases. This unique N-terminal domain as seen in the crystal structures apparently contributes to the active site structure leading to the distinct substrate specificity through a dimer formation. In aqueous solution, most of these enzymes show a monomer-dimer equilibrium. The present review discusses the multiple specificity in the light of the oligomerization and the molecular structures arriving at a clarified enzyme classification. Finally, a physiological role of the enzymes is proposed.  相似文献   

9.
The prospective uses of tree gum polysaccharides and their nanostructures in various aspects of food, water, energy, biotechnology, environment and medicine industries, have garnered a great deal of attention recently. In addition to extensive applications of tree gums in food, there are substantial non-food applications of these commercial gums, which have gained widespread attention due to their availability, structural diversity and remarkable properties as ‘green’ bio-based renewable materials. Tree gums are obtainable as natural polysaccharides from various tree genera possessing exceptional properties, including their renewable, biocompatible, biodegradable, and non-toxic nature and their ability to undergo easy chemical modifications. This review focuses on non-food applications of several important commercially available gums (arabic, karaya, tragacanth, ghatti and kondagogu) for the greener synthesis and stabilization of metal/metal oxide NPs, production of electrospun fibers, environmental bioremediation, bio-catalysis, biosensors, coordination complexes of metal–hydrogels, and for antimicrobial and biomedical applications. Furthermore, polysaccharides acquired from botanical, seaweed, animal, and microbial origins are briefly compared with the characteristics of tree gum exudates.  相似文献   

10.
Chemotherapy drugs (CDs), e.g. colchicine derivative thiocolchicoside (TCC) and taxol, have been found to physically bind with lipid bilayer membrane and induce ion pores. Amphiphiles capsaicin (Cpsn) and triton X-100 (TX100) are known to regulate lipid bilayer physical properties by altering bilayer elasticity and lipid monolayer curvature. Both CDs and amphiphiles are predicted to physically accommodate alongside lipids in membrane to exert their membrane effects. The effects of their binary accommodation in the lipid membrane are yet to be known. Firstly, we have performed experimental studies to inspect whether membrane adsorption of CDs (colchicine or TCC) gets regulated due to any membrane effects of Cpsn or TX100. We find that the aqueous phase presence of these amphiphiles, known to reduce the membrane stiffness, works towards enhancing the membrane adsorption of CDs. Our recently patented technology ‘direct detection method’ helps address the membrane adsorption mechanisms. Secondly, in electrophysiology records, we measured the amphiphile effects on the potency of ion channel induction due to CDs. We find that amphiphiles increase the CD induced channel induction potency. Specifically, the membrane conductance, apparently due to the ion channel induction by the TCC, increases substantially due to the Cpsn or TX100 induced alterations of the bilayer physical properties. Thus we may conclude that the binary presence of CDs and amphiphiles in lipid membrane may influence considerably in CD’s membrane adsorption, as well as the membrane effects, such as ion pore formation.  相似文献   

11.
In this research, for the first time, a dedicated sensor was designed to detect Hg+ ions using photoluminescent carbon dots (CDs). Due to the preferred green synthesis of CDs from bio-resources, carbohydrate-rich faba bean seeds as a potential carbon precursor were applied to the synthesis of CDs. The CDs were prepared from the faba bean seeds using the hydrothermal method in an aqueous solution in the absence of substances such as an acid or base and any other additives. The synthesized CDs exhibited maximum emission intensity at 387 nm when excited at 310 nm and their luminescence quantum yield was calculated to be ~5.94%. Then, the fluorescence emission of CDs was examined in the presence of different metal ions. Results revealed that the CDs had good selectivity towards the Hg+ ions, so the fluorescence emission was significantly changed in the presence of these ions with a limit of detection (LOD) as low as 0.35 μM. Furthermore, because of their very low cytotoxicity, these CDs can be applied for cell imaging.  相似文献   

12.
Air pollution is a severe concern globally as it disturbs the health conditions of living beings and the environment because of the discharge of acetone molecules. Metal oxide semiconductor (MOS) nanomaterials are crucial for developing efficient sensors because of their outstanding chemical and physical properties, empowering the inclusive developments in gas sensor productivity. This review presents the ZnO nanostructure state of the art and notable growth, and their structural, morphological, electronic, optical, and acetone-sensing properties. The key parameters, such as response, gas detection limit, sensitivity, reproducibility, response and recovery time, selectivity, and stability of the acetone sensor, have been discussed. Furthermore, gas-sensing mechanism models based on MOS for acetone sensing are reported and discussed. Finally, future possibilities and challenges for MOS (ZnO)-based gas sensors for acetone detection have also been explored.  相似文献   

13.
即时检测(point-of-care testing,POCT)是一种检测成本低、检测速度快、准确度高、能自我采样获得临床诊断结果的新型诊断技术。该技术在临床诊断、病情监控与疫情防控等领域发挥了重要作用。核酸适配体是一种能够特异性识别多种靶标的分子探针,具有易合成、批间差异小、易实现信号放大等突出优势,是生物医学传感器中重要的分子识别元件。本文概述了核酸适配体探针的现有筛选方法和进展,总结了核酸适配体POCT传感器信号放大策略,着重介绍了各类核酸适配体传感器在POCT领域的应用现状,并对核酸适配体POCT传感器的发展前景进行了展望。  相似文献   

14.
BODIPY is an important fluorophores due to its enhanced photophysical and chemical properties including outstanding thermal/photochemical stability, intense absorption/emission profiles, high photoluminescence quantum yield, and small Stokes' shifts. In addition to BODIPY, indole and its derivatives have recently gained attention because of their structural properties and particularly biological importance, therefore these molecules have been widely used in sensing and biosensing applications. Here, we focus on recent studies that reported the incorporation of indole‐based BODIPY molecules as reporter molecules in sensing systems. We highlight the rationale for developing such systems and evaluate detection limits of the developed sensing platforms. Furthermore, we also review the application of indole‐based BODIPY molecules in bioimaging studies. This article includes the evaluation of indole‐based BODIPYs from synthesis to characterization and a comparison of the advantages and disadvantages of developed reporter systems, making it instructive for researchers in various disciplines for the design and development of similar systems.  相似文献   

15.
In this work, carbon dots (CDs) with a high quantum yield (22.3%) were easily prepared by hydrothermal pyrolysis of acid fuchsin 6B and hydrogen peroxide at 180°C for 10 h. The resultant CDs possess a narrow size distribution in the range of 2.6 to 3.2 nm and emit blue fluorescence. Interestingly, the absorption band of metronidazole (MTZ) centered at 318 nm can complementary overlap with the excitation band of the as‐prepared CDs centered at 320 nm, resulting in an inner filter effect (IFE) in high efficiency. In fact, the fluorescence quenching of the CDs depends on the concentration of MTZ. Therefore, a simple method for the detection of MTZ can be established using the CDs‐based sensor via the IFE. The linear range of the proposed method was 0–10 μg mL?1 with the limit of detection as low as 0.257 μg mL?1. This CDs‐based sensor had been applied for the detection of MTZ in honey and MTZ tablets with the recoveries in the range of 98.0% to 105.1% and 95.7% to 106.5%, respectively. Therefore, the as‐prepared CDs have a potential to be developed as a MTZ sensor with high selectivity, sensitivity and accuracy.  相似文献   

16.
The development of effective and environmentally friendly methods for the green synthesis of nanoparticles (NPs) is a critical stage in the field of nanotechnology. Silver nanoparticles (AgNPs) are significant due to their unique physical, chemical, and biological properties, as well as their numerous applications. Physical, chemical, and green synthesis approaches can all be used to produce AgNPs; however, synthesis using biological precursors, particularly plant-based green synthesis, has shown outstanding results. In recent years, owing to a combination of frequent droughts, unusual rainfall, salt-affected areas, and high temperatures, climate change has changed several ecosystems. Crop yields have decreased globally as a result of these changes in the environment. Green synthesized AgNPs role in boosting antioxidant defense mechanisms, methylglyoxal (MG) detoxification, and developing tolerance for abiotic stress-induced oxidative damage has been thoroughly described in plant species over the last decade. Although various studies on abiotic stress tolerance and metallic nanoparticles (NPs) in plants have been conducted, but the details of AgNPs mediated abiotic stress tolerance have not been well summarized. Therefore, the plant responses to abiotic stress need to be well understood and to apply the gained knowledge to increase stress tolerance by using AgNPs for crop plants. In this review, we outlined the green synthesis of AgNPs extracted from plant extract. We also have updates on the most important accomplishments through exogenous application of AgNPs to improve plant tolerance to drought, salinity, low and high-temperature stresses.  相似文献   

17.
In this work, carbon dots (CDs) was easily synthesized from aspartic acid through a pyrolysis method. Based on their favourable fluorescence properties, CDs were utilized to design a metal ion-mediated fluorescent probe for N-acetyl-l -cysteine (NAC) detection. The fluorescence intensity of CDs was firstly quenched by manganese ions (Mn2+) through static quenching effect and subsequently restored by NAC via the combination with Mn2+ due to the coordination effect. Therefore, the fluorescent turn-on sensing of NAC was actuated based on the fluorescence quenching stimulated by Mn2+ and recovery induced by coordination. The fluorescence recovery efficiencies showed a proportional range to the concentration of NAC in the range 0.04–5 mmol L−1 and the detection limit was 0.03 mmol L−1. Furthermore, this metal ion-mediated fluorescent nanoprobe was applied to human urine sample detection and the standard recovery rates were located in the range 97.62–102.34%. This was the first time that Mn2+ was used to construct a fluorescent nanoprobe for NAC. Compared with other heavy metal ions, Mn2+ with good biosecurity prevented the risk of application, which made the nanoprobe green and biopractical. The facile synthesis of CDs and novel metal ion-mediated sensing mode made it a promising method for pharmaceutical analysis.  相似文献   

18.
The penicillin derivative amoxicillin (AMX) plays an important role in treating various types of infections caused by bacteria. However, excessive use of AMX may have negative health effects. Therefore, it is of utmost importance to detect and quantify the AMX in pharmaceutical drugs, biological fluids, and environmental samples with high sensitivity. Therefore, this review article provides valuable and up-to-date information on nanostructured material-based optical and electrochemical sensors to detect AMX in various biological and chemical samples. The role of using different nanostructured materials on the performance of important optical sensors such as colorimetric sensors, fluorescence sensors, surface-enhanced Raman scattering sensors, chemiluminescence/electroluminescence sensors, optical immunosensors, optical fibre-based sensors, and several important electrochemical sensors based on different electrode types have been discussed. Moreover, nanocomposites, polymer, and MXenes-based electrochemical sensors have also been discussed, in which such materials are being used to further enhance the sensitivity of these sensors. Furthermore, nanocomposite-based photo-electrochemical sensors and the market availability of biosensors including AMX have also been discussed briefly. Finally, the conclusion, challenges, and future perspectives of the above-mentioned sensing techniques for AMX detection are presented.  相似文献   

19.
Boronic acids bind certain 1,2- and 1,3-diols with high affinity through reversible formation of boronate esters. They have been utilized as the recognition moiety for artificial receptors, particularly receptors for carbohydrates that have cis-diol moieties. Therefore, sensors for boronic acids could serve as universal reporters for monitoring boronate formation. This paper reports the design and synthesis of a series of photometric chemosensors for phenylboronic acid using diethanolamine as the recognition moiety. Diethanolamine, which binds strongly to boronic acids, has been linked to three different types of optical reporters. A photoinduced electron transfer system based on the anthracene fluorophore has been used to create sensors that show up to a fivefold increase in fluorescent intensity in the presence of millimolar concentrations of phenylboronic acid. Sensor designs based on the restriction of free rotation of extended pi systems and on the perturbed electronic properties of azo dyes are also included. This work demonstrates that sensors based on several different designs can be used for the detection of boronic acids.  相似文献   

20.
Fluorescent carbon dots (CDs) are one of the important carbonaceous nanomaterials in the area of nanoscience and nanotechnology because of their interesting physical as well as chemical properties. Herein we studied the effect of various aqueous extracting agents on fluorescence properties of waste tea residue-based carbon dots (WTR-CDs). WTR-CDs are firstly synthesized by utilizing kitchen waste-based carbonaceous biomass. To check the role of various aqueous media during the course of WTR-CDs synthesis from carbonized carbon powder, extraction of WTR-CDs was carried out in various kinds of aqueous media viz., only aqueous (100% water, WT), aqueous-alcoholic (10% ethanol, ET), aqueous-acidic (10% acetic acid, AA), and aqueous-basic (10% ammonia, AM). The consequences of extracting agents on the photophysical properties of final WTR-CDs-WT, WTR-CDs-ET, WTR-CDs-AA and WTR-CDs-AM were also discussed in detail. We have observed interesting blue shift fluorescence spectra in acidic medium for WTR-CDs-AA and polar protic solvents compared to polar aprotic medium. The solvatochromic behaviour of WTR-CDs-WT in model polar and non-polar solvent was also studied. The effect of cationic, anionic and non-anionic surfactants on the fluorescence of WTR-CDs-WT was also evaluated. The proposed findings may help researchers in the near future to obtain fast, easy and direct synthesize CDs from a variety of biomass-based precursors under different aqueous conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号