首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Fe is an essential micronutrient for plant growth and development; plants have developed sophisticated strategies to acquire ferric Fe from the soil. Nongraminaceous plants acquire Fe by a reduction-based mechanism, and graminaceous plants use a chelation-based mechanism. In Arabidopsis thaliana, which uses the reduction-based method, IRON-REGULATED TRANSPORTER1 (IRT1) functions as the most important transporter for ferrous Fe uptake. Rapid and constitutive degradation of IRT1 allows plants to quickly respond to changing conditions to maintain Fe homeostasis. IRT1 degradation involves ubiquitination. To identify the specific E3 ubiquitin ligases involved in IRT1 degradation, we screened a set of insertional mutants in RING-type E3 ligases and identified a mutant that showed delayed degradation of IRT1 and loss of IRT1-ubiquitin complexes. The corresponding gene was designated IRT1 DEGRADATION FACTOR1 (IDF1). Evidence of direct interaction between IDF1 and IRT1 in the plasma membrane supported the role of IDF1 in IRT1 degradation. IRT1 accumulation was reduced when coexpressed with IDF1 in yeast or Xenopus laevis oocytes. IDF1 function was RING domain dependent. The idf1 mutants showed increased tolerance to Fe deficiency, resulting from increased IRT1 levels. This evidence indicates that IDF1 directly regulates IRT1 degradation through its RING-type E3 ligase activity.  相似文献   

4.
5.
The plant growth‐promoting fungi (PGPF) have long been known to improve plant growth and suppress plant diseases. The PGPF Penicillium viridicatum GP15‐1 elicited plant growth and induced systemic resistance (ISR) in Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000 (Pst), leading to a restriction of pathogen growth and disease development. Examination of local and systemic genes indicated that GP15‐1 did not modulate the expression of any of the tested defence‐related marker genes involved in salicylic acid (SA), jasmonic acid (JA) and ethylene signalling pathways. Subsequent challenge of GP15‐1‐colonized plants with Pst bacterium primed Arabidopsis plants for enhanced activation of the JA‐inducible Atvsp (vegetative storage protein) gene at a later stage of infection. To assess the contribution of different signalling pathways in GP15‐1‐elicited plant growth and ISR, Arabidopsis genotypes implicated in SA signalling expressing the nahG transgene (NahG) or carrying disruption in NPR1 (npr1), JA signalling (jar1) and ethylene signalling (ein2) were tested. The GP15‐1‐induced plant growth and ISR were fully compromised in an ein2 mutation. Root colonization assay revealed that the inability of the ein2 mutant to express GP15‐1‐induced plant growth and ISR was not associated with reduced root colonization by GP15‐1. In conclusion, our results demonstrate the ethylene signalling pathway is involved in plant growth promotion and ISR elicitation by the PGPF P. viridicatum GP15‐1 in Arabidopsis. These results provide evidence that ethylene signalling has a substantial role in plant growth and disease resistance.  相似文献   

6.
7.
8.
9.
Zinc (Zn) is essential for normal plant growth and development. The Zn-regulated transporter, iron-regulated transporter (IRT)-like protein (ZIP) family members are involved in Zn transport and cellular Zn homeostasis throughout the domains of life. In this study, we have characterized four ZIP transporters from Arabidopsis thaliana (IRT3, ZIP4, ZIP6, and ZIP9) to better understand their functional roles. The four ZIP proteins can restore the growth defect of a yeast Zn uptake mutant and are upregulated under Zn deficiency. Single and double mutants show no phenotypes under Zn-sufficient or Zn-limited growth conditions. In contrast, triple and quadruple mutants show impaired growth irrespective of external Zn supply due to reduced Zn translocation from root to shoot. All four ZIP genes are highly expressed during seed development, and siliques from all single and higher-order mutants exhibited an increased number of abnormal seeds and decreased Zn levels in mature seeds relative to wild type. The seed phenotypes could be reversed by supplementing the soil with Zn. Our data demonstrate that IRT3, ZIP4, ZIP6, and ZIP9 function redundantly in maintaining Zn homeostasis and seed development in A. thaliana.  相似文献   

10.
Metal homeostasis is critical for the survival of living organisms, and metal transporters play central roles in maintaining metal homeostasis in the living cells. We have investigated the function of a metal transporter of the NRAMP family, AtNRAMP3, in Arabidopsis thaliana. A previous study showed that AtNRAMP3 expression is upregulated by iron (Fe) starvation and that AtNRAMP3 protein can transport Fe. In the present study, we used AtNRAMP3 promoter beta-glucoronidase (GUS) fusions to show that AtNRAMP3 is expressed in the vascular bundles of roots, stems, and leaves under Fe-sufficient conditions. This suggests a function in long-distance metal transport within the plant. Under Fe-starvation conditions, the GUS activity driven by the AtNRAMP3 promoter is upregulated without any change in the expression pattern. We analyze the impact of AtNRAMP3 disruption and overexpression on metal accumulation in plants. Under Fe-sufficient conditions, AtNRAMP3 overexpression or disruption does not lead to any change in the plant metal content. Upon Fe starvation, AtNRAMP3 disruption leads to increased accumulation of manganese (Mn) and zinc (Zn) in the roots, whereas AtNRAMP3 overexpression downregulates Mn accumulation. In addition, overexpression of AtNRAMP3 downregulates the expression of the primary Fe uptake transporter IRT1 and of the root ferric chelate reductase FRO2. Expression of AtNRAMP3::GFP fusion protein in onion cells or Arabidopsis protoplasts shows that AtNRAMP3 protein localizes to the vacuolar membrane. To account for the results presented, we propose that AtNRAMP3 influences metal accumulation and IRT1 and FRO2 gene expression by mobilizing vacuolar metal pools to the cytosol.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
The activity of chlorophyllase in wild type (WT) was higher than in ethylene insensitive mutant (eti 5) of Arabidopsis thaliana (L.) Heynh plants during the vegetative period. Chlorophyll content in eti 5 leaves was higher than in WT but the difference decreased by the end of the experimental period.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号