首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LaOBr:Yb3+/Er3+ nanofibers were synthesized for the first time by calcinating electrospun PVP/[La(NO3)3 + Er(NO3)3 + Yb(NO3)3 + NH4Br] composites. The morphology and properties of the final products were investigated in detail using scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), X‐ray diffractometry (XRD) and fluorescence spectroscopy. The results indicate that LaOBr:Yb3+/Er3+ nanofibers are tetragonal in structure with a space group of P4/nmm. The diameter of LaOBr:Yb3+/Er3+ nanofibers is ~ 147 nm. Under the excitation of a 980‐nm diode laser, LaOBr:Yb3+/Er3+ nanofibers emit strong green and red up‐conversion emission centering at 519, 541 and 667 nm, ascribed to the 2H11/2, 4S3/24I15/2 and 4 F9/24I15/2 energy‐level transitions of Er3+ ions, respectively. The up‐conversion luminescent mechanism of LaOBr:Yb3+/Er3+ nanofibers is advanced. Moreover, near‐infrared emission of LaOBr:Yb3+/Er3+ nanofibers is obtained under the excitation of a 532‐nm laser. The formation mechanism of LaOBr:Yb3+/Er3+ nanofibers is proposed. LaOBr:Yb3+/Er3+ nanofibers could be important up‐conversion luminescent materials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Tin oxide (SnO2) nanocrystalline powders doped with erbium ion (Er3+) in different molar ratios (0, 3, 5, and 7 mol%) were prepared using a solid-state reaction technique. These samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible absorption, visible upconversion, and near-infrared luminescence techniques. XRD analysis revealed the tetragonal rutile structure of SnO2 and the average crystallite size was about 32 nm. From Tauc's plots, it was confirmed that the substitution of Er3+ ions into the SnO2 host lattice resulted in the narrowing its band gap. Optical absorption bands at 520 and 654 nm correspond to the 4f electron transitions of Er3+ further confirming visible light absorption. Infrared luminescence spectra showed a broad band centred at 1536 nm which is assigned to the 4I13/24I15/2 transition of Er3+. Visible upconverted emission spectra under 980 nm excitation exhibit a strong red luminescence with a main peak at 672 nm which is attributed to the 4F9/24I15/2 transition of Er3+. Power-dependent upconversion spectra confirmed that two photons participated in the upconversion mechanism. Enhancement in the intensities of both visible and infrared luminescence was observed when raising the concentration. The results pave the way for the potential applications of these nanocrystalline powders in energy harvesting applications such as infrared light upconverting layer in solar cells, light emitting diodes, infrared broadband sources and amplifiers, and biological labelling.  相似文献   

3.
This paper reports the synthesis and characterization of Er3+‐doped CeO2 phosphor with variable concentrations of erbium. The sample was synthesized using a solid‐state reaction method, which is useful for the large‐scale production of phosphors and is also eco‐friendly. The prepared sample was characterized using an X‐ray diffraction (XRD) technique. The XRD pattern confirmed that sample has the pure cubic fluorite crystal structure of CeO2. The crystallite size of the prepared phosphor was determined by Scherer's formula and the crystallite size giving an intense XRD peak is 40.06 nm. The surface morphology of the phosphor was determined by field emission gun scanning electron microscopy (FEGSEM). From the FEGSEM image, good surface morphology with some agglomerates was found. The functional group in the prepared sample was analysed by Fourier transform infrared (FTIR) spectroscopy. All samples prepared with variable concentrations of Er3+ (0.1–2 mol%) were studied by photoluminescence analysis and it was found that the excitation spectra of the prepared phosphor shows broad excitation centred at 251 nm. Emission spectra at different concentrations of Er3+ show strong peaks at 413 and 470 nm and a weaker peak at 594 nm. The dominant peaks at 413 and 470 nm are caused by the allowed electronic transition 4S3/24I15/2 and the weaker transition at 594 nm is due to the transition 4 F9/24I15/2. Spectrophotometric determinations of peaks were evaluated using the Commission Internationale de I'Eclairage (CIE) technique. The emission spectra were also observed using an infrared (IR) laser 980 nm source, and three distinct peaks were found in the IR region at 848, 870 and 980 nm. The prepared phosphor has utility for application in display devices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The present study investigates the impact of the ligand environment on the luminescence and thermometric behavior of Sm3+ doped A3(PO4)2 (A = Sr, Ca) phosphors prepared by combustion synthesis. The structural and luminescent properties of Sm3+ ions in the phosphate lattices were investigated using powder X-ray diffraction (PXRD) and photoluminescence (PL) techniques. PXRD results of the synthesized phosphors exhibit the expected phases that are in agreement with their respective standards. Fourier-transform infrared (FTIR) spectroscopy confirms the presence of PO4 vibrational bands. Upon excitation with near ultraviolet light, the PL studies indicated that Sr3(PO4)2:Sm3+ phosphors exhibit a yellow light emission, whereas Ca3(PO4)2:Sm3+ phosphors exhibit an emission of orange light. The PL emission results are in accordance with the CIE coordinates, with the Sr3(PO4)2:Sm3+ phosphors showing coordinates of (0.56, 0.44), and the Ca3(PO4)2:Sm3+ phosphors displaying coordinates of (0.60, 0.40). Thermal analysis shows improved stability of Ca3(PO4)2:Sm3+ based on lower weight reduction in thermogravimetric analysis. The effect of temperature on the luminescence properties of the phosphor has been examined upon a 405 nm excitation. By using the fluorescence intensity ratio (FIR) method, the temperature responses of the emission ratios from the Sm3+: the 4F3/26H5/2 transition to the 4G5/26H7/2 and 4F3/26H5/2 transition to the 4G5/26H9/2 emissions are characterized. The Ca3(PO4)2:Sm3+ phosphors are more sensitive as compared with the Sr3(PO4)2:Sm3+ phosphors. The earlier research findings strongly indicate that these phosphors hold great promise as ideal candidates for applications in non-invasive optical thermometry and solid-state lighting devices.  相似文献   

5.
Calcium boro fluoro zinc phosphate glasses modified using alkali oxide and doped with Nd3+ and Er3+ ions with the chemical composition of 69.5 (B2O3) + 10 (P2O5) + 10 (CaF2) + 5 (ZnO) + 5 (Na2O/Li2O/K2O) + 0.5 (Er2O3/Nd2O3) were prepared using a conventional melt quenching technique. The results of X-ray diffraction patterns indicated the amorphous nature of all the prepared glasses. The visible–near-infrared red (NIR) absorption spectra of these glasses were analyzed systematically. The NIR emission spectra of Er3+ and Nd3+:calcium boro fluoro zinc phosphate glasses showed prominent emission bands at 1536 nm (4I13/24I15/2) and 1069 nm (4F3/24I11/2) respectively with λexci = 514.5 nm (Ar+ laser) as the excitation source.  相似文献   

6.
Novel erbium(III) ion-doped borate-based glasses (Er3+:BCNF) by conventional melt-quenching technique were designed and synthesized. The glasses were characterized for their structural, vibrational and spectroscopic properties. The nephelauxetic ratio, bonding parameters, and Judd–Ofelt (JO) intensity parameters (Ωλ λ = 2, 4 and 6) were determined by using absorption spectrum of 1 mol% Er2O3 doped glass. These JO parameters were utilized to derive radiative properties for various excited states of erbium(III) ions. Emission cross-section for 4I13/24I15/2 transition of erbium(III) ions was computed through McCumber theory. The decay curves for (2H11/2, 4S3/2) and 4I13/2 levels were recorded and analysed. All the results of Er3+:BCNF glasses revealed that the studied glasses are efficient and thermally stable and could be suitable for display devices, optical amplification and green laser applications.  相似文献   

7.
Erbium doped waveguide amplifiers can be used in optical integrated circuits to compensate for signal losses. Such amplifiers use stimulated emission from the first excited state (4 I 13/2) to the ground state (4 I 15/2) of Er3+ at 1.53 μm, the standard wavelength for optical communication. Since the intra-f transitions are parity forbidden for free Er3+ ions, the absorption and the emission cross sections are quite small for such doped amplifiers. To enhance the absorption, Si nanoclusters can be embedded in silica matrix. Here we investigate the effect of the Si nanocluster on the Er3+ emission using ab initio theory for the first time. We combine multi-reference configuration interaction with one-electron spin-orbit Hamiltonian and relativistic effective core potentials. Our calculations show that the presence of a polarizable Be atom at 5Ǻ from the Er3+ ion in a crystalline environment can lead to an enhancement in the emission by a factor of three. The implications of this effect in designing more efficient optical gain materials are discussed.  相似文献   

8.
In this study, a series of LaNbTiO6:RE3+ (RE = Tb, Dy, Ho) down‐converting phosphors were synthesized using a modified sol–gel combustion method, and their photoluminescence (PL) properties were investigated as a function of activator concentration and annealing temperature. The resultant particles were characterized using X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, UV/Vis diffuse reflectance spectroscopy and PL spectra. The highly crystalline LaNbTiO6:RE3+ (RE = Tb, Dy, Ho) phosphors with an average size of 200–300 nm obtained at 1100°C have an orthorhombic aeschynite‐type structure and exhibit the highest luminescent intensity in our study range. The emission spectra of LaNbTiO6:RE3+ (RE = Tb, Dy, Ho) phosphors under excitations at UV/blue sources are mainly composed of characteristic peaks arising from the f–f transitions of RE3+, including 489 nm (5D47F6) and 545 nm (5D47F5) for Tb3+, 476 and 482 nm (4F9/26H15/2) and 571 nm (4F9/26H13/2) for Dy3+, and 545 nm (5F4 + 5S25I8) for Ho3+, respectively. The luminescent mechanisms were further investigated. It can be expected that these phosphors are of intense interest and potential importance for many optical applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Optical materials composed of Ba9–3(m+n)/2ErmYbnY2Si6O24 (m = 0.005–0.2, n = 0–0.3) were prepared using a solid‐state reaction. The X‐ray diffraction patterns of the obtained phosphors were examined to index the peak positions. The photoluminescence (PL) excitation and emission spectra of the Er3+‐activated phosphors and the critical emission quenching as a function of Er3+ content in the Ba9–3m/2ErmY2Si6O24 structure were monitored. The spectral conversion properties of Er3+ and Er3+–Yb3+ ions doped in Ba9Y2Si6O24 phosphors were elucidated under diode‐laser irradiation at 980 nm. Up‐conversion emission spectra and the dependence of the emission intensity on pump power for the Ba8.55Er0.1Yb0.2Y2Si6O24 phosphor were investigated. The desired up‐conversion of the emitted light, which passed through the green, yellow, orange and red regions of the spectrum, was achieved through the use of appropriate Er3+ and/or Yb3+ concentrations in the host structure and 980 nm excitation light. The up‐conversion mechanism in the phosphors is described by an energy‐level schematic. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A facile method was used for the synthesis of peanut-shaped very emissive NaGdF4:Yb, Er upconversion nanospheres (UCNSs) at lower temperatures with uniform size distribution. Crystallographic structure, phase purity, morphology, thermal robustness, biocompatibility, colloidal stability, surface chemistry, optical properties, and luminesce properties were explored by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), zeta potential, thermogravimetric/differential thermal analysis (TGA/DTA), Fourier-transform infrared (FTIR), ultraviolet (UV)-visible and photoluminescence spectroscopic tools. XRD pattern verified the construction of a single-phase, highly-crystalline NaGdF4 phase with a hexagonal structure. Peanut-shaped morphology of the sample was obtained from SEM micrographs which were validated from high-resolution TEM images, to have an equatorial diameter of 170 to 200 nm and a length of 220 to 230 nm, with irregular size, monodispersed, porous structure, and rough surface of the particles. The positive zeta potential value exhibited good biocompatibility along with high colloidal stability as observed from the absorption spectrum. The prepared UCNSs revealed high dispersibility, irregular size peanut-shaped morphology, rough surface, good colloidal stability, and excellent biocompatibility in aqueous media. A hexagonal phase NaGdF4 doped with ytterbium (Yb) and erbium (Er) UCNSs revealed the characteristics of highly dominant emissions located at 520–525, 538–550, and 659–668 nm corresponding to the 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2 transition of Er3+ ions, respectively, as a result of energy transfer from sensitizer Yb3+ ion to emitter Er3+ ion.  相似文献   

11.
The individual emission and energy transfer between Ce3+ and Eu2+ or Dy3+ in BaCa(SO4)2 mixed alkaline earth sulfate phosphor prepared using a co‐precipitation method is described. The phosphor was characterized by X‐ray diffraction (XRD) and photoluminescence (PL) studies and doped by Ce;Eu and Dy rare earths. All phosphors showed excellent blue–orange emission on excitation with UV light. PL measurements reveal that the emission intensity of Eu2+ or Dy3+ dopants is greater than when they are co‐doped with Ce3+. An efficient Ce3+ → Eu2+ [2T2g(4f65d) → 8S7/2(4f7)] and Ce3+ → Dy3+ (4 F9/26H15/2 and 4 F9/26H13/2) energy transfer takes place in the BaCa(SO4)2 host. A strong blue emission peak was observed at 462 nm for Eu2+ ions and an orange emission peak at 574 nm for Dy3+ ions. Hence, this phosphor may be used as a lamp phosphor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this article, photoluminescence (PL) and thermoluminescence (TL) properties of ZrO2, ZrO2:Dy3+, ZrO2:Dy3+–Gd3+, ZrO2:Dy3+–Yb3+, ZrO2:Dy3+–Er3+, and ZrO2:Dy3+–Sm3+ phosphors synthesized by the Pechini method were investigated. The crystal structure, thermal properties, morphology, PL and TL properties were investigated using X-ray powder diffraction (XRD), differential thermal analysis/thermogravimetric analysis (DTA/TGA), scanning electron microscopy (SEM), PL and TL, respectively. The room temperature emission bands corresponding to 4F9/2 → 6HJ (J = 9/2, 11/2, 13/2 and 15/2) transitions of Dy3+ ions were measured. The phosphors were analysed using TmTSTOP, variable dose, and computerized glow curve fitting methods. Reusability, dose–response, and fading characteristics were investigated. The phosphors have a natural TL emission that vanished by heating treatment. Moreover, new peaks with similar properties to the natural emissions were observed after high-dose irradiation and long-term fading experiments. The glow curves of the phosphors have 13 individual peaks and many low- and high-temperature satellite peaks. The origin of the peaks is ZrO2 host material and doping with rare-earth ions (Gd3+, Dy3+, Yb3+, Er3+ and Sm3+) does not lead to a new glow peak. The dopants cause drastic changes in individual peak intensities of ZrO2.The initial fading rates of all the phosphors are relatively fast, but they slow down as time goes on.  相似文献   

13.
In this study, Bi3+ incorporation in NaYbF4:Er lattice and its influence on upconversion luminescence properties have been investigated in detail using techniques such as temperature‐dependent luminescence, Fourier transform infrared spectroscopy and X‐ray diffraction (XRD). The study was carried out to develop phosphors with improved upconversion luminescence. From photoluminescence and lifetime measurements it is inferred that luminescence intensity from NaYbF4:Er increases with Bi3+ addition. The sample containing 50 at.% Bi3+ ions exhibited optimum upconversion luminescence. Increased distance between Yb3+–Yb3+ and Er3+–Er3+ due to Bi3+ incorporation into the lattice and associated decrease in the extent of dipolar interaction/self‐quenching are responsible for increase in lifetime values and luminescence intensities from Er3+ ions. Incorporation of Bi3+ into NaYbF4:Er lattice reduced self‐quenching among Yb3+–Yb3+ions and this facilitated energy transfer from Yb3+ to Er3+. This situation also explains decrease in the extent of temperature‐assisted quenching of emission from thermally coupled 2H11/2 and 4S3/2 levels of Er3+. Based on Rietveld refinement of XRD patterns it was confirmed that a maximum of 10 at.% of Bi3+added was incorporated into the NaYbF4:Er lattice and the remaining complex co‐exists as a BiOF phase. These results are of significant interest in the area of development of phosphors based on Yb3+–Er3+ upconversion luminescence.  相似文献   

14.
A series of Eu3+‐activated NaLi2PO4 novel phosphors was synthesized by the solid‐state reaction method. The X‐ray diffraction (XRD) and photoluminescence (PL) properties of these phosphors were investigated at room temperature. The excitation spectra indicate that these phosphors can be effectively excited by near‐UV (370–410 nm) light. The emission spectra exhibit strong reddish‐orange performance, which is due to the 5D07FJ transitions of Eu3+ ions. The orange emission from transition 5D07F1 is dominant over that of 5D07F2. The concentration quenching of Eu3+ was observed in NaLi2PO4:Eu3+ when the Eu concentration was at 1 mol%. The impact of doping Eu3+ and photoluminescence properties were investigated and we propose a feasible interpretation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A novel phosphor LiBaPO4 doped with rare earths Eu and Dy prepared by high temperature solid‐state reaction method is reported. The phosphors were characterized by X‐ray powder diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL). The emission and excitation spectra of these materials were measured at room temperature with a spectrofluorophotometer. The excitation spectra of LiBaPO4:Eu3+ phosphor can be efficiently excited by 394 nm, which is matched well with the emission wavelength of near‐UV light‐emitting diode (LED) chip. PL properties of Eu3+‐doped LiBaPO4 exhibited the characteristic red emission coming from 5D07 F1 (593 nm) and 5D07 F2 (617 nm) electronic transitions with color co‐ordinations of (0.680, 0.315). The results demonstrated that LiBaPO4:Eu3+ is a potential red‐emitting phosphor for near‐UV LEDs. Emission spectra of LiBaPO4:Dy3+ phosphors showed efficient blue (481 nm) and yellow (574 nm) bands, which originated from 4 F9/26H15/2 and 4 F9/26H13/2 transitions of the Dy3+ ion, respectively. The 574 nm line is more intense than the 481 nm lines, which indicates that the site Dy3+ is located with low symmetry. This article summarizes fundamentals and possible applications of optically useful inorganic phosphates with visible photoluminescence of Eu3+ and Dy3+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The BaZrSi3O9:Cr3+ phosphors were prepared by a high temperature solid state method. Their structures were confirmed with XRD and their luminescence properties were investigated. Under excitation at 455 nm, BaZrSi3O9:Cr3+ phosphors exhibited a broad near infrared emission band peaked at 800 nm, which was assigned to the 4T24A2 transition of Cr3+. The near infrared emission intensity reached a maximum at Cr3+ concentration of 0.7%. There was a concentration quenching phenomenon of Cr3+ in BaZrSi3O9 matrix and the corresponding concentration quenching mechanism was investigated. With efficient near infrared emission in the range of 700–1000 nm, BaZrSi3O9:Cr3+ phosphors may find applications in solar energy conversion.  相似文献   

17.
The photoluminescence and thermoluminescence characteristics of rare earths (Dy or Ce) activated LiCaBO3 phosphors have been studied. Phosphors were synthesized by modified solid state synthesis. The phosphors were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) and thermoluminescence (TL) for structural, morphological and luminescence studies. Dy3+ activated LiCaBO3 shows emission at 486 and 577 nm due to 4 F9/26H15/2 and 4 F9/26H13/2 transition, respectively, whereas the PL emission spectra of Ce3+ activated LiCaBO3 phosphor shows a broad band peaking at 432 nm, which is due to the transition from 5d level to the ground state of the Ce3+ ion. The thermoluminescence study was also carried out for both these phosphors for γ‐ray irradiation and carbon beam irradiation. Linearity was studied for a 0.4–3.1 Rad dose γ‐rays. Linear behaviour over this dose range was observed. Gamma ray‐irradiated phosphors were shown to be negligible fading upon storage. All the samples were also studied for 75 MeV C5+ ion beam exposure in the range of 3.75 × 1012 – 7.5 × 1013 ion cm–2 fluence. In addition to this, trapping parameters of all the samples were also calculated using Chen's peak shape method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The luminescent properties of europium (Eu)‐ and dysprosium (Dy)‐co‐doped K3Ca2(SO4)3Cl halosulfate phosphors were analyzed. This paper reports the photoluminescence (PL) properties of K3Ca2(SO4)3Cl microphosphor doped with Eu and Dy and synthesized using a cost‐effective wet chemical method. The phosphors were characterized by X‐ray diffraction and scanning electron microscopy. The CIE coordinates were calculated to display the color of the phosphor. PL emission of the prepared samples show peaks at 484 nm (blue), 575 nm (yellow), 594 nm (orange) and 617 nm (red). The emission color of the Eu,Dy‐co‐doped K3Ca2(SO4)3Cl halophosphor depends on the doping concentration and excitation wavelength. The addition of Eu in K3Ca2(SO4)3Cl:Dy greatly enhances the intensity of the blue and yellow peaks, which corresponds to the 4 F9/26H15/2 and 4 F9/26H13/2 transitions of Dy3+ ions (under 351 nm excitation). The Eu3+/Dy3+ co‐doping also produces white light emission for 1 mol% of Eu3+, 1 mol% of Dy3+ in the K3Ca2(SO4)3Cl lattice under 396 nm excitation, for which the calculated chromaticity coordinates are (0.35, 0.31). Thus, K3Ca2(SO4)3Cl co‐doped with Eu/Dy is a suitable candidate for NUV based white light‐emitting phosphors technology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Rare earth ions (Eu3+ or Tb3+)‐activated Ca3 Ga2 Si3O12 (CaGaSi) phosphors were synthesized by using a sol–gel method. Photoluminescence spectra of Eu3+:CaGaSi phosphors exhibited five emission bands at 578, 592, 612, 652 and 701 nm, which were assigned to the transitions (5D07F0, 7F1, 7F2, 7F3 and 7F4), respectively, with an excitation wavelength of λexci = 392 nm. Among these, the transition 5D07F2 (612 nm) displayed bright red emission. In the case of Tb3+:CaGaSi phosphors, four emission bands were observed at 488 (5D47F6), 543 (5D47F5), 584 (5D47F4) and 614 nm (5D47F3) from the measurement of PL spectra with λexci = 376 nm. Among these, the transition 5D47F5 at 543 nm displayed bright green emission. The structure and morphology of the phosphors were studied from the measurements of X‐ray diffraction (XRD), scanning electron microscopy (SEM) and energy‐dispersive X‐ray analysis (EDAX) results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
《Inorganica chimica acta》1986,123(4):237-241
The uncatalysed hydrolysis of 4-nitrophenyl L-leucinate has been studied in detail over a range of pH and temperature at I=0.1 M (KNO3). Base hydrolysis of the ester is strongly promoted by copper(II) ions. Rate constants have been obtained for the following reactions (where EH+ is the N- protonated ester and E is the free base form) EH+ + OH → products E + OH → products E + H2O → products CuE2+ + OH → products Base hydrolysis of the copper(II) complex CuE2+ is 3.8 × 105 times faster than that of E and 75 times faster than that of EH+ at 25 °C and I=0.1 M. Activation parameters for these reactions have been determined and possible mechanisms are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号