首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article focuses on the effect of monovalent cation doping on the optical properties of rare earth (RE = Eu3+, Tb3+) co-doped Ca14Zn6Al10O35 which has been synthesized by a low temperature combustion method. Crystalline phase of the Ca14Zn6Al10O35 phosphor was examined and confirmed by X-ray diffraction measurement. Under near-ultraviolet light excitation Eu3+-doped Ca14Zn6Al10O35 phosphor exhibit characterization of Eu3+ emission bands that are located at a maximum wavelength (λmax) of approximately 470 nm and other peaks centred at 593 nm and 615 nm, respectively. With Tb3+-doped Ca14Zn6Al10O35 phosphor showing a green emission band centred at 544 nm under near-ultraviolet range. Furthermore, we studied the energy transfer process in Eu3+/Tb3+pair and enhancement in photoluminescence (PL) intensity with doping different charge compensation. Here we obtained the optimum PL emission intensity of the phosphor in broad and intense visible spectral range which may be significant for the fabrication of white light emitting diodes (WLEDs).  相似文献   

2.
A series of Ca2Mg0.25Al1.5Si1.25O7:Ce3+/Eu2+/Tb3+ phosphors was been prepared via a conventional high temperature solid‐state reaction and their luminescence properties were studied. The emission spectra of Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+ and Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Tb3+ phosphors show not only a band due to Ce3+ ions (409 nm) but also as a band due to Eu2+ (520 nm) and Tb3+ (542 nm) ions. More importantly, the effective energy transfer from Ce3+ to Eu2+ and Tb3+ ions was confirmed and investigated by emission/excitation spectra and luminescent decay behaviors. Furthermore, the energy level scheme and energy transfer mechanism were investigated and were demonstrated to be of resonant type via dipole–dipole (Ce3+ to Eu2+) and dipole–quadrupole (Ce3+ to Tb3+) reactions, respectively. Under excitation at 350 nm, the emitting color could be changed from blue to green by adjusting the relative doping concentration of Ce3+ and Eu2+ ions as well as Ce3+ and Tb3+ ions. The above results indicate that Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+/Tb3+ are promising single‐phase blue‐to‐green phosphors for application in phosphor conversion white‐light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were synthesized using the solid‐state reaction method. X‐Ray diffraction (XRD) and photoluminescence (PL) analyses were used to characterize the phosphors. The XRD results revealed that the synthesized CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were crystalline and are assigned to the monoclinic structure with a space group C2/c. The calculated crystal sizes of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors with a main (221) diffraction peak were 44.87 and 53.51 nm, respectively. Energy‐dispersive X‐ray spectroscopy (EDX) confirmed the proper preparation of the sample. The PL emission spectra of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors have a broad band peak at 444.5 and 466 nm, respectively, which is due to electronic transition from 4f65d1 to 4f7. The afterglow results indicate that the CaMgSi2O6:Eu2+,Dy3+ phosphor has better persistence luminescence than the CaMgSi2O6:Eu2+,Ce3+ phosphor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this article we report Eu3+ luminescence in novel K3Ca2(SO4)3Cl phosphors prepared by wet chemical methods. The Eu3+ emission was observed at 594 nm and 615 nm, keeping the excitation wavelength constant at 396 nm nearer to light‐emitting diode excitation, Furthermore, phosphors were characterized by X‐ray diffraction for the confirmation of crystallinity. The variation of the photoluminescence intensity with impurity concentration has also been discussed. Thus, prominent emission in the red region makes prepared phosphors more applicable for white light‐emitting diodes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Ca2Al2O5:Eu3+, Ca2Al2O5:Dy3+ and Ca2Al2O5:Tb3+ phosphors were synthesized using a combustion synthesis method. The prepared phosphors were characterized by X‐ray powder diffraction for phase purity, by scanning electron microscopy for morphology, and by photoluminescence for emission and excitation measurements. The Ca2Al2O5:Eu3+ phosphors could be efficiently excited at 396 nm and showed red emission at 594 nm and 616 nm due to 5D0 → 7F1 and 5D0 → 7F2 transitions. Dy3+‐doped phosphors showed blue emission at 482 nm and yellow emission at 573 nm. Ca2Al2O5:Tb3+ phosphors showed emission at 545 nm when excited at 352 nm. Concentration quenching occurred in both Eu3+ and Dy3+phosphors at 0.5 mol%. Photoluminescence results suggested that the aluminate‐based phosphor could be a potential candidate for application in environmentally friendly based lighting technologies.  相似文献   

6.
Eu3+‐doped calcium titanate red phosphors, Ca1‐xZnxTiO3:Eu3+, were prepared by the sol‐gel method. The structure of prepared Ca1‐xZnxTiO3:Eu3+ phosphors were investigated by X‐ray diffraction and infrared spectra. Due to the 5D07F1–3 electron transitions of Eu3+ ions, photoluminescence spectra showed a red emission at about 619 nm under excitation of 397 nm and 465 nm, respectively. When zinc was added to the host, the luminescent intensity of Ca1‐xZnxTiO3:Eu3+ was markedly improved several fold compared with that of CaTiO3:Eu3+. Ca0.9Zn0.1TiO3:Eu3+ also had higher luminescence intensity than the commercially available Y2O3:Eu3+ phosphors under UV light excitation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
K. N. Shinde  K. Park 《Luminescence》2013,28(5):793-796
A series of efficient Li3Al2(PO4)3:Eu2+ novel phosphors were synthesized by the facile combustion method. The effects of dopant on the luminescence behavior of Li3Al2(PO4)3 phosphor were also investigated. The phosphors were characterized by X‐ray diffraction, field emission scanning electron microscope and photoluminescence techniques. The result shows that all samples can be excited efficiently by near‐ultraviolet excitation under 310 nm. The emission was observed for Li3Al2(PO4)3:Eu2+ phosphor at 425 nm, which corresponded to the d → f transition. The concentration quenching of Eu2+ was observed in Li3Al2(PO4)3:Eu2+ when the Eu concentration was at 0.5 mol%. The prepared powders exhibited intense blue emission at the 425 nm owing to the Eu2+ ion by Hg‐free excitation at 310 nm (i.e., solid‐state lighting excitation). Consequently, the availability of such a phosphor will significantly help in the development of blue‐emitting solid‐state lighting applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the Eu3+–Eu2+ (4%, molar ratio)‐doped xAl2O3–ySiO2 (x = 0–2.5, y = 1–5) and xAl2O3–zMgO (x = 0–1.5, z = 0–3) composites phosphors with different Al2O3 to SiO2 (A/S) and Al2O3 to MgO (A/M) ratios were prepared using a high‐temperature solid‐state reaction under air atmosphere. The effects of the A/S and A/M on luminescence properties, crystal structure, electron spin resonance, and Commission Internationale de l’Eclairage chromaticity coordinates of the samples were systematically analyzed. These results indicated that the different A/S and A/M ratios in the matrix effectively affected the crystal phase, degrees of self‐reduction of Eu3+, and led the relative emission intensity of Eu2+/Eu3+ to change and adjust.  相似文献   

9.
We have synthesized and characterized a new BaCa2Al8O15:Eu2+,Dy3+ phosphor prepared by the combustion method. X‐ray diffraction, thermoluminescence, scanning electron microscope, time decay and optical spectral analysis photoluminescence excitation, emission spectra were used to characterize the phosphors. Broadband ultraviolet excited luminescence of the BaCa2Al8O15:Eu2+,Dy3+ was observed in the blue region (λmax = 435 nm) due to transitions from the 4f65d1 to the 4f7 configuration of the Eu2+ ion. Scanning electron microscopy has been used for exploring the morphological properties of the prepared phosphors. The BaCa2Al8O15:Eu2+ phosphor has a blue afterglow when Dy3+ ions were co‐doped. The thermoluminescence spectra show that the Dy3+ ion induces a proper trap in the phosphor with a depth of 0.67 eV and results in a long afterglow phosphorescence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Dy3+ and Eu3+ activated Ca3Y2Si3O12 phosphors were synthesized by the solid‐state synthesis method. The phosphors were characterized by X‐ray diffraction (XRD), mechanoluminescence (ML), thermoluminescence (TL) and photoluminescence (PL) to determine structure and luminescence. For ML glow curves, only one peak was observed, as only one type of luminescence centre was formed during irradiation. The Ca3Y2Si3O12:Dy3+ TL glow curve showed a single peak at 151.55°C and the Ca3Y2Si3O12:Eu3+ TL glow curve peaked at 323°C with a small peak at 192°C, indicating that two types of traps were activated. The trapping parameters for both the samples were calculated using Chen's peak shape method. Dy3+‐activated Ca3Y2Si3O12 showed emission at 482 and 574 nm when excited by a 351 nm excitation wavelength, whereas the Eu3+‐activated Ca3Y2Si3O12 phosphor PL emission spectra showed emission peaks at 613 nm, 591 nm, 580 nm when excited at 395 nm wavelength. When excited at 466 nm, prominent emission peaks were observed at their respective positions with very slight shifts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Sr4Al2O7:Eu3+ and Sr4Al2O7:Dy3+ phosphors with alkali metal substitution were prepared using a sol–gel method. The effects of a charge compensator R on the structure and luminescence of Sr4Al2O7:Re3+,R+ (Re = Eu and Dy; R = Li, Na and K) phosphors were investigated in detail. Upon heating to 1400°C, the structure of the prepared samples was that of the standard phase of Sr4Al2O7. Under ultraviolet excitation, all Sr4Al2O7:Eu3+,R+ samples exhibited several narrow emission peaks ranging from 550 to 700 nm due to the 4f → 4f transition of Eu3+ ions. All Sr4Al2O7:Dy3+,R+ phosphors showed two emission peaks at 492 and 582 nm, due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. The luminescence intensity of Sr4Al2O7:Re3+,R+ (Re = Eu and Dy; R = Li, Na and K) phosphors improved markedly upon the addition of charge compensators, promoting their application in white light‐emitting diodes with a near‐ultraviolet chip.  相似文献   

12.
Eu3+‐activated MAl(SO4)2Br phosphors (where M = Mg or Sr) are successfully prepared using a wet chemical reaction technique. The samples are characterized by X‐ray diffraction (XRD) and photoluminescence (PL) spectroscopies. The XRD pattern revealed that both the samples are microcrystalline in nature. PL of Eu3+‐doped SrAl(SO4)2Br and MgAl(SO4)2Br phosphors exhibited characteristic red emission coming from the 5D07F2 (616 nm) electron transition, when excited by 396 nm wavelength of light. The maximum intensity of luminescence was observed at a concentration of 1 mol% Eu3+. The intensity of the electric dipole transition at 616 nm is greater than that of the magnetic dipole transition at 594 nm. The results showed that MAl(SO4)2Br:Eu3+, (M = Mg, Sr) phosphors have potential application in near‐UV light‐emitting diodes as efficient red‐emitting phosphor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Ca2MgSi2O7:Ce3+, Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+,Ce3+ phosphors were prepared using the solid‐state reaction method. The crystal structures of the sintered phosphors were of melilite type, which has a tetragonal crystallography. The chemical compositions of the sintered phosphors was confirmed by energy dispersive X‐ray spectroscopy. The different thermoluminescence kinetic parameters [activation energy (E), frequency factor (s) and order of the kinetics (b)] of these phosphors were evaluated and compared using the peak shape method. Under ultraviolet excitation, the emission spectra of both Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+,Ce3+ phosphors were composed of a broad emission band peaking at 530 nm. When the Ca2MgSi2O7:Eu2+ phosphor is co‐doped with Ce3+ ions, photoluminescence, afterglow and mechanoluminescence intensity was strongly enhanced. Ca2MgSi2O7:Eu2+ showed some afterglow with a short persist time. On incorporation of Ce3+, efficient energy transfer from Ce3+ to Eu2+ was found and the emission intensity of Eu2+ was enhanced. The mechanoluminescence intensities of Ca2MgSi2O7:Ce3+, Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+,Ce3+ phosphors increased proportionally increased with the increase in impact velocity, which suggests that these phosphors can be used as sensors to detect stress in an object.  相似文献   

14.
This study synthesized BaMoO4:Eu3+ red phosphors using the microwave method. In addition, the phase composition, morphology, and luminescence properties of the red phosphors were characterized using X-ray diffraction, field-scanning electron microscopy, and photoluminescence spectroscopy. The results revealed that doping red phosphors with different concentrations of Eu3+ does not change the crystal structure of the matrix material. The BaMoO4:Eu3+ phosphors exhibited micron-scale irregular polyhedra, which could be excited by ultraviolet light with a wavelength of 395 nm to induce red-light emission. The optimal dosage of Eu3+ was 0.08, and the chromaticity coordinates of BaMoO4:0.08Eu3+ phosphors were (0.5869, 0.3099). White light-emitting diode (w-LED) devices manufactured by using a combination of BaMoO4:0.08Eu3+ phosphor and commercially available phosphors exhibited good white-light emission under the excitation of an ultraviolet chip. The BaMoO4:0.08Eu3+ red phosphors that rapidly synthesized under the microwave field are expected to be used in w-LED devices.  相似文献   

15.
White-light-tunable LaMgAl11O19:x%Tb3+, y%Eu3+ series phosphors were prepared using the gel-combustion method. The structure and luminescence properties were studied, and the energy transfer of Eu3+ and Tb3+ in the LaMgAl11O19 system was also discussed. The results showed that the LaMgAl11O19 matrix exhibited strong emission in the blue-light region under the excitation of ultraviolet light, which resulted in conditions suitable for the preparation of white-light-tunable phosphors. The emission spectra of LaMgAl11O19:2%Tb3+, y%Eu3+ (y = 2%–9%) series phosphors were obtained through optimization experiments. It could be seen from the CIE diagram that by adjusting the doping quantities of Eu3+ and Tb3+ in the LaMgAl11O19 host, multicolor luminescence and white light emission in a single host could be achieved. By calculating the energy transfer efficiency and critical distance between Eu3+ and Tb3+ series phosphors, the mechanism of energy transfer between Tb3+ and Eu3+ was found to be the interaction between electric quadruples.  相似文献   

16.
LiCaBO3:Dy3+/Eu3+ phosphors were synthesized by a solid‐state reaction. The synthesized materials were characterized using powder X‐ray diffraction pattern (XRD) for confirmation. All the structural parameters were calculated from the XRD data. Scanning electron microscopy (SEM) images showed rod‐like morphology. Photoluminescence (PL) emission spectra showed two emissions (484 and 577 nm) in Dy3+‐doped LiCaBO3:Dy3+phosphors with the concentration quenching effect and the critical distance was calculated to be about 22.76 Å. LiCaBO3:Eu3+ phosphor was effectively excited by a near‐UV light of 392 nm. The emission spectra exhibited the transition from 5D0 level to 7FJ (J = 0–2) with main emission at 614 nm, which comes from the electrodipole transition because of the asymmetric point group. The quenching concentration of Eu3+ is about 0.2 mol%, and the critical distance was calculated to be about 38.93 Å. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A series of Ba2P2O7:xEu2+,yCe3+,zTb3+ phosphors was synthesized via a co‐precipitation method, then their crystal structure, quantum efficiency and luminescent properties were analyzed by XRD and FL, respectively. The results showed that these phosphors not only presented the excitation characteristics of Ba2P2O7:xEu2+,zTb3+, but also exhibited that of the Ba2P2O7:yCe3+,zTb3+ phosphor. Meanwhile, the tri‐doped phosphor showed a stronger absorption around 320 nm in contrast with the Eu2+/Ce3+:Tb3+ co‐doped phosphor. Not only can energy transfer from Ce3+→Eu2+ be observed; the energy transfer mechanism from Eu2+ to Tb3+ is discussed in the tri‐doped system. Ce3+ affects the luminescence properties of Ba2P2O7:xEu2+,yCe3+,zTb3+ phosphors just as the sensitizer whereas Eu2+ is considered both as the sensitizer and the activator. The chromaticity coordinates of tri‐doped phosphors excited at 320 nm stayed steadily in the bluish‐white light region,and the emitted color and color temperature (CCT) of these phosphors could be tuned by adjusting the relative contents of Eu2+, Ce3+ and Tb3+. Hence, the single phase Ba2P2O7:xEu2+,yCe3+,zTb3+ phosphors may be considered as potential candidates for white light‐emitting diodes.  相似文献   

18.
Yttrium aluminate (Y3A5O12) was doped with different rare earth ions (i.e. Gd3+, Ce3+, Eu3+ and/or Tb3+) in order to obtain phosphors (YAG:RE) with general formula,Y3‐x‐aGdxREaAl5O12 (x = 0; 1.485; 2.97 and a = 0.03). The synthesis of the phosphor samples was done using the simultaneous addition of reagents technique. This study reveals new aspects regarding the influence of different activator ions on the morpho‐structural and luminescent characteristics of garnet type phosphor. All YAG:RE phosphors are well crystallized powders containing a cubic‐Y3Al5O12 phase as major component along with monoclinic‐Y4Al2O9 and orthorhombic‐YAlO3 phases as the impurity. The crystallites dimensions of YAG:RE phosphors vary between 38 nm and 88 nm, while the unit cell slowly increase as the ionic radius of the activator increases. Under UV excitation, YAG:Ce exhibits yellow emission due to electron transition in Ce3+ from the 5d level to the ground state levels (2F5/2, 2F7/2). The emission intensity of Ce3+ is enhanced in the presence of the Tb3+ ions and is decreased in the presence of Eu3+ ions due to some radiative or non‐radiative processes that take place between activator ions. By varying the rare earth ions, the emission colour can be modulated from green to white and red. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Ce3+/Eu2+ co‐doped Na3Ca6(PO4)5 phosphors were prepared using a combustion‐assisted synthesis method. X‐Ray powder diffraction (XRD) analysis confirmed the formation of a Na3Ca6(PO4)5 crystal phase. Na3Ca6(PO4)5:Eu2+ phosphors have an efficient bluish‐green emission band that peaks at 489 nm, whereas Ce3+‐doped Na3Ca6(PO4)5 showed a bright emission band at 391 nm. Analysis of the experimental results suggests that enhancement of the Eu2+ emission intensity in co‐doped Na3Ca6(PO4)5:Eu2+,Ce3+ phosphors is due to a resonance‐type energy transfer from Ce3+ to Eu2+ ions, which is predominantly governed by an exchange interaction mechanism. These results indicate that Ce3+/Eu2+ co‐doped Na3Ca6(PO4)5 is potentially useful as a highly efficient, bluish‐green emitting, UV‐convertible phosphor for white‐light‐emitting diodes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
KBaPO4 luminescent powdered phosphors doped with rare earth elements (RE = Sm3+,Eu3+,Dy3+) were successfully synthesized using a wet chemical method to identify the most suitable phosphor for solid‐state lighting based on the measurement of their emission spectra at excitation wavelengths. The X‐ray diffraction pattern of the as‐prepared KBaPO4 was well matched with its standard JCPDS file no. 330996, indicating the formation of the desired compound. Scanning electron microscopy images revealed irregular morphology, the material crystallized particles aggregated and were non‐uniform with particle sizes ranging from 1 to 100 μm. Photoluminescence excitation and emission spectra clearly indicated that the phosphor containing the Sm3+‐activated KBaPO4 phosphors could be efficiently excited at 403 nm and exhibited an emission mainly including two wavelength peaks at 559 nm and 597 nm. The phosphor containing the Eu3+‐activated KBaPO4 phosphors could be efficiently excited at 396 nm and exhibited a bright red emission mainly including two wavelength peaks at 594 nm and 617 nm. The phosphor containing the Dy3+‐activated KBaPO4 phosphors could be efficiently excited at 349 nm and exhibited wavelength peaks at 474 nm and 570 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号