首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel double-windows fluorescence sensor for carbofuran (CF) detection was successfully developed based on rare-earth Eu,Tb-doped Y2O3@SiO2-based molecularly imprinted nanoparticles (MINs) with a multilayer core-shell structure. The recognition process of the MINs for CF was fairly fast and needed only ~8 min to reach a dynamic equilibrium. Interestingly, one fluorescence attenuation window was found with an increase in CF concentration (Q) from 0.1 to 10 μg ml−1 and with a limit of detection (LOD) of 0.04 μg ml−1 at 544 nm belonging to the Tb3+ emission, as well as another fluorescence enhanced window within the CF concentration range 10–100 μg ml−1 (LOD = 4 μg ml−1) at 617 nm of Eu3+ emission in the dispersed rare-earth-doped MIN colloidal aqueous solution. Luminescence resonance energy transfer from CF to Eu3+ and an inner filter effect of CF towards Tb3+, as well from the two independent detection windows were clearly observed simultaneously. The competition experiment displayed hardly any marked interference during detection of CF following addition of its analogues (carbaryl, isoprocarb, aldicarb, methomyl, and etofenprox). Moreover, the MINs could also be applied to accurately detect CF in rhubarb and wolfberry samples with recoveries of 85.7–92.2%. This sensing system has high specific recognition and a wide detection range for CF and provides new opportunities for pesticide detection.  相似文献   

2.
Sodium dodecyl sulfate (SDS)-capped 1-pyrenecarboxaldehyde nanoparticles (PyalNPs) were prepared using a reprecipitation method in an aqueous medium and exhibited red-shifted aggregation-induced enhanced emission (AIEE). The dynamic light scattering (DLS) examination showed narrower particle size distribution with an average particle size of 41 nm, whereas −34.5 mV zeta potential value indicate the negative surface charge and good stability of nanoparticles (NPs) in an aqueous medium. The AIEE was seen at λmax = 473 nm in a fluorescence spectrum of a PyalNP suspension. In the presence of Cu2+ ions, the fluorescence of PyalNPs quenches very significantly, even in the presence of other metal ions like Ba2+, Ca2+, Cd2+, Co2+, Al3+, Fe2+, Hg2+, Ni2+ and Mg2+. The changes in the fluorescence lifetime of PyalNPs in the presence of Cu2+ ions suggested that the type of quenching was dynamic. The fluorescence quenching data for the NPs suspension fitted well into a typical Stern–Volmer relationship in the concentration range 1.0–25 μg/ml of Cu2+ ions. The estimated value of the correlation coefficient R2 = 0.9877 was close to 1 and showed the linear relationship between quenching data and Cu2+ ion concentration. The limit of detection (LOD) was found to be 0.94 ng/ml and is far below the tolerable intake limit value of 1.3 μg/ml accepted by the World Health Organization for Cu2+ ions in drinking water. The fluorescence quenching approach for a SDS-capped Pyal nanosuspension for copper ion quantification is of high specificity and coexisting ions were found to interfere very negligibly. The developed method was successfully applied for the estimation of copper ions in river water samples.  相似文献   

3.
Here, a simple and portable paper-based analytical device (PAD) based on the inherent capability of carbon quantum dots (CQDs) to serve as a great emitter for the bis(2,4,6-trichlorophenyl)oxalate (TCPO)–hydrogen peroxide (H₂O₂) chemiluminescence (CL) reaction is introduced for the detection of harmful mercury ions (Hg2+). The energy is transferred from the unstable reaction intermediate (1,2-dioxetanedione) to CQDs, as acceptors, and an intensive orange-red CL emission is generated at ~600 nm, which is equal to the fluorescence emission wavelength of CQDs. The analytical applicability of this system was examined for the determination of Hg2+. It was observed that Hg2+ could significantly quench the produced emission, which can be attributed to the formation of a stable and nonluminescent Hg2+–CQDs complex. Accordingly, a simple and rapid PAD was established for monitoring Hg2+, with a limit of detection of 0.04 μg ml−1. No interfering effect on the signal was found from other examined cations, indicating the acceptable specificity of the method. The designed assay was appropriately utilized to detect Hg2+ ions in cosmetic samples with high efficiency. It was characterized by its low cost, ease of use, and was facile but accurate and high selective for the detection of Hg2+ ions. In addition, the portability of this probe makes it suitable for on-site screening purposes.  相似文献   

4.
The antihypotensive drug heptaminol was determined using a spectrofluorimetric method and ortho-phthaladehyde as a fluorescence probe. The drug was mixed with the reagent in the presence of 2-mercaptoethanol and the reaction was carried out in slightly alkaline aqueous solution containing 0.1 M sodium hydroxide. The resulting product exhibited high fluorescence activity that was measured at 451 nm after excitation at 334 nm. The linearity range of the method was 5–100 ng ml−1 with a lower detection limit of 1.8 ng ml−1. The procedure was evaluated according to the International Council of Harmonization guidelines. The proposed method was applied to analyze the drug in pharmaceutical tablets and oral drops. In addition, the present study represents the first spectrofluorimetric method for the determination of the cited drug in real human plasma. The method provided high recovery percentages without any interference from coexisting pharmaceutical excipients or the components of human plasma.  相似文献   

5.
In this work, carbon dots (CDs) was easily synthesized from aspartic acid through a pyrolysis method. Based on their favourable fluorescence properties, CDs were utilized to design a metal ion-mediated fluorescent probe for N-acetyl-l -cysteine (NAC) detection. The fluorescence intensity of CDs was firstly quenched by manganese ions (Mn2+) through static quenching effect and subsequently restored by NAC via the combination with Mn2+ due to the coordination effect. Therefore, the fluorescent turn-on sensing of NAC was actuated based on the fluorescence quenching stimulated by Mn2+ and recovery induced by coordination. The fluorescence recovery efficiencies showed a proportional range to the concentration of NAC in the range 0.04–5 mmol L−1 and the detection limit was 0.03 mmol L−1. Furthermore, this metal ion-mediated fluorescent nanoprobe was applied to human urine sample detection and the standard recovery rates were located in the range 97.62–102.34%. This was the first time that Mn2+ was used to construct a fluorescent nanoprobe for NAC. Compared with other heavy metal ions, Mn2+ with good biosecurity prevented the risk of application, which made the nanoprobe green and biopractical. The facile synthesis of CDs and novel metal ion-mediated sensing mode made it a promising method for pharmaceutical analysis.  相似文献   

6.
To develop conducting organic polymers (COPs) as luminescent sensors for determination of toxic heavy metals, a new benzene sulfonic acid‐doped polypyrrole (PPy‐BSA) thin film was electrochemically prepared by cyclic voltammetry (CV) on flexible indium tin oxide (ITO) electrode in aqueous solution. PPy‐BSA film was characterized by FTIR spectrometry, X‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The optical properties of PPy‐BSA were investigated by ultraviolet (UV)‐visible absorption and fluorescence spectrometry in dimethylsulfoxide (DMSO) diluted solutions. PPy‐BSA fluorescence spectra were strongly quenched upon increasing copper(II) ion (Cu2+) and lead(II) ion (Pb2+) concentrations in aqueous medium, and linear Stern–Volmer relationships were obtained, which indicated the existence of a main dynamic fluorescence quenching mechanism. BSA‐PPy sensor showed a high sensitivity for detection of both metallic ions, Cu2+ and Pb2+, with very low limit of detection values of 3.1 and 18.0 nM, respectively. The proposed quenching‐fluorimetric sensor might be applied to the determination of traces of toxic heavy metallic ions in water samples.  相似文献   

7.
The sensitive and reliable detection of Hg2+ and CN as harsh environmental contaminants are of great importance. In view of this, a novel ‘on–off–on’ fluorescent probe based on nitrogen-rich silicon quantum dots (NR-SiQDs) has been designed for sensitive detection of Hg2+ and CN ions in aqueous medium. NR-SiQDs were synthesized using a facile, one-step, and environment friendly procedure in the presence of 3-aminopropyl trimethoxysilane (APTMS) and ascorbic acid (AA) as precursors, with l -asparagine as a nitrogen source for surface modification. The NR-SiQDs exhibited strong fluorescence emission at 450 nm with 42.34% quantum yield, satisfactory salt tolerance, and superior photostability and pH stability. The fluorescence emission was effectively quenched using Hg2+ (turn-off) due to the formation of a nonfluorescent stable NR-SiQDs/Hg2+ complex, whereas after the addition of cyanide ions (CN), Hg2+ ions could be leached from the surface of the NR-SiQDs and the fluorescence emission intensity of the quenched NR-SiQDs fully recovered (turn-on) due to the formation of highly stable [Hg(CN)4]2− species. After optimizing the response conditions, the obtained limits of detection were found to be 53 nM and 0.46 μM for Hg2+ and CN, respectively. Finally, the NR-SiQD-based fluorescence probe was utilized to detect Hg2+ and CN ions in water samples and satisfactory results were obtained, suggesting its potential application for environmental monitoring.  相似文献   

8.
A spectrofluorimetric approach that is sensitive, simple, validated, and cost-effective has been proposed for the estimation of amlodipine (AML) and perindopril (PER) in their bulk powders, pharmaceutical formulations, and spiked human plasma. The recommended approach utilized the quantitative quenching effect of the two cited drugs on the fluorescence intensity of erythrosine B, as a result of complex binary reactions among each drug with erythrosine B at pH 3.5 (Teorell and Stenhagen buffer). The quenching of erythrosine B fluorescence was recorded at 554 nm after excitation at 527 nm. The calibration curve was detected in the range 0.25–3.0 μg ml−1, with a correlation coefficient of 0.9996 for AML, and 0.1–1.5 μg ml−1, with a correlation coefficient of 0.9996 for PER. The established spectrofluorimetric approach was validated for the estimation of the cited drugs with high sensitivity regarding International Council on Harmonization guidelines. Therefore, the established approach could be utilized for quality control of the cited drugs in their pharmaceutical formulations.  相似文献   

9.
An approved, straightforward, fast, and delicate spectrofluorimetric strategy was developed for the estimation of tepotinib (TEPO), sotorasib (SOTO), and darolutamide (DARO) as new antineoplastic drugs. The spectrofluorimetric strategy was based on quantitative fluorescence quenching of MER at 538 nm after being excited at 350 nm by the addition of the cited drugs in the presence of acetate buffer (pH 3.5). The degree of fluorescence quenching was directly proportional to the concentrations of the cited drugs within the concentration range of 0.5–10.0, 0.2–10, and 0.4–10.0 μg ml−1 for TEPO, SOTO, and DARO, respectively. Mean ± standard deviation (SD) were calculated for the studied drugs as follows; 99.9 ± 0.87, 99.72 ± 1.08, and 100.21 ± 1.44, for TEPO, SOTO, and DARO, respectively. Limit of detection (LOD) values were 0.16, 0.05, and 0.11 μg ml−1, whereas limit of quantitation (LOQ) values were 0.5, 0.15, and 0.36 μg ml−1 for TEPO, SOTO, and DARO, respectively. Statistical comparison through detailed strategies produced greater understanding and found that there were no noteworthy contrasts in exactness and exactness between strategies. The proposed strategy was used effectively to analyze the measurement of different forms of the examined drugs. Moreover, the recommended fluorimetric strategy was used for examination of TEPO, SOTO, and DARO in human plasma and urine tests.  相似文献   

10.
A unique luminescent lanthanide metal–organic framework (LnMOF)–based fluorescence detection platform was utilized to achieve sensitive detection of vomitoxin (VT) and oxytetracycline hydrochloride (OTC-HCL) without the use of antibodies or biomolecular modifications. The sensor had a fluorescence quenching constant of 9.74 × 106 M−1 and a low detection limit of 0.68 nM for vomitoxin. Notably, this is the first example of a Tb-MOF sensor for fluorescence detection of vomitoxin. We further investigated its response to two mycotoxins, aflatoxin B1 and ochratoxin A, and found that their Stern–Volmer fluorescence quenching constants were lower than those of VT. In addition, the fluorescence sensor realized sensitive detection of OTC-HCL with a detection limit of 0.039 μM. In conclusion, the method has great potential as a sensitive and simple technique to detect VT and OTC-HCL in water.  相似文献   

11.
Cysteamine (CA)‐capped CdTe quantum dots (QDs) (CA–CdTe QDs) were prepared by the reflux method and utilized as an efficient nano‐sized fluorescent sensor to detect mercury (II) ions (Hg2+). Under optimum conditions, the fluorescence quenching effect of CA–CdTe QDs was linear at Hg2+ concentrations in the range of 6.0–450 nmol/L. The detection limit was calculated to be 4.0 nmol/L according to the 3σ IUPAC criteria. The influence of 10‐fold Pb2+, Cu2+ and Ag+ on the determination of Hg2+ was < 7% (superior to other reports based on crude QDs). Furthermore, the detection sensitivity and selectivity were much improved relative to a sensor based on the CA–CdTe QDs probe, which was prepared using a one‐pot synthetic method. This CA–CdTe QDs sensor system represents a new feasibility to improve the detection performance of a QDs sensor by changing the synthesis method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
We here for the first time demonstrate an analytical approach for the highly selective and sensitive detection of amoxicillin (Amox) in aqueous medium based on the fluorescence quenching of quantum dots (QDs). The change in fluorescence intensity of mercaptopropionic acid‐capped cadmium sulphide (MPA‐CdS) QDs is attributed to the increasing concentration of Amox. The results show that the fluorescence quenching of QDs by Amox takes place through both static and dynamic types of quenching mechanism. The fluorescence quenching of QDs with increase in concentration of Amox shows the linear range between 5 μg ml?1 and 30 μg ml?1 and the limit of detection (LOD) is 5.19 μg ml?1. There is no interference of excipients, which are commonly present in pharmaceutical formulation and urine samples. For the practical application approach, the developed method has been successfully applied for the determination of Amox in pharmaceutical formulations and urine samples with acceptable results.  相似文献   

13.
Herein, a boronic acid-based sensor was reported selectively to recognize Pd2+ ion. The fluorescence intensity increased 36-fold after sensor binding with 2.47 × 10−5 M of Pd2+ ion. It was carried out in the 99% aqueous solution for binding tests, indicating sensor having good water solubility. In addition, it is discernible that Pd2+ ion turned on the blue fluorescence of sensor under a UV–lamp (365 nm), while other ions (Ag+, Al3+, Ba2+, Ca2+, Cr2+, Cd2+, Co2+, Cs2+, Cu2+, Fe2+, Fe3+, K+, Li+, Mg2+, Mn2+, Na+, Ni2+ and Zn2+) did not show the similar change. Furthermore, sensor has a low limit of detection (38 nM) and high selectivity, which exhibits the potential for the development of Pd2+ recognition in practical environments.  相似文献   

14.
Water‐soluble carbon dots (CDs) were synthesized using a one‐step hydrothermal treatment of chloroplast dispersions extracted from fresh leaves as a green carbon source. The CD solution showed an emission peak centred at 445 nm when excited at 300 nm. The synthesized CDs were uniform and monodispersed with an average size of 5.6 nm. When adding ferric(III) ions (Fe3+) to the solution of the original CDs, the fluorescence intensity decreased significantly. Based on the linear relationship between fluorescence intensity and concentration of Fe3+ ions, an effective method for rapid, sensitive and selective Fe3+ sensing in aqueous solution could be established. Under optimum conditions, the extent of the fluorescence quenching of prepared CDs strongly depended on the Fe3+ ions over a wide concentration range 1.0–100.0 μM with a detection limit (3σ/k) of 0.3 μM. Furthermore, the quantitative determination of Fe3+ ions in environmental water samples was realized.  相似文献   

15.
Sunitinib is a tyrosine kinase inhibitor used for the treatment of renal cell carcinoma and gastrointestinal stromal tumors. In this study, two spectroscopic methods, spectrofluorometric and spectrophotometric, were utilized to quantify sunitinib in different matrices. In method I, the native fluorescence of erythrosine B was quenched by forming ion-pair complex with increasing quantities of sunitinib. This approach was utilized for measuring sunitinib in its dosage forms and spiked plasma. After excitation at 528 nm, the quenching of fluorescence is linearly related to the concentration across the range of 0.05–0.5 μg mL−1 at 550 nm in Britton–Robinson buffer (pH 4.0), with a correlation value of 0.9999 and a high level of sensitivity with detection limit down to 10 ng mL−1. Method II relies on spectrophotometric measurements of the produced complex at 550 nm across a range of 0.5–10.0 μg mL−1, with good correlation value of 0.9999. This method has a detection limit down to 0.16 μg mL−1. The proposed methodologies were validated according to International Conference on Harmonization (ICH) guidelines with satisfactory results. The stoichiometry of the reaction was determined through the application of Job's method, while the mechanism of quenching was investigated by employing the Stern–Volmer plot. The designated methods were used to estimate sunitinib in its capsules and in spiked human plasma. Additionally, the statistical analysis of the data revealed no substantial differences when compared to previous reported spectroscopic method. Green assessment tools provide further details about the eco-friendly nature of the methods.  相似文献   

16.
A sensitive and selective phenothiazine-based sensor (PTZ) has been successfully synthesized. The sensor PTZ displayed specific identification of CN ‘turn-off’ fluorescence responses with a quick reaction and strong reversibility in an acetonitrile:water (90:10, V/V) solution. The sensor PTZ for detecting CN exhibits the marked advantages of quenching the fluorescence intensity, fast response time (60 s), and low value of the detection limit. The concentration that is authorized for drinking water by the WHO (1.9 μM) is far higher than the detection limit, which was found to be 9.11 × 10−9. The sensor displays distinct colorimetric and spectrofluorometric detection for CN anion due to the addition of CN anion to the electron-deficient vinyl group of PTZ, which reduces intramolecular charge transfer efficiencies. The 1:2 binding mechanism of PTZ with CN was validated by fluorescence titration, Job's plot, HRMS, 1H NMR, FTIR analysis, and density functional theory (DFT) investigations, among other methods. Additionally, the PTZ sensor was successfully used to precisely and accurately detect cyanide anions in actual water samples.  相似文献   

17.
In the present study, a first validated and green spectrofluorimetric approach for its assessment and evaluation in different matrices was investigated. After using an excitation wavelength of 345 nm, Roxadustat (ROX) demonstrates a highly native fluorescence at an emission of 410 nm. The influences of experimental factors such as pH, diluting solvents, and different organized media were tested, and the most appropriate solvent choice was ethanol. It was confirmed that there was a linear relationship between the concentration of ROX and the relative fluorescence intensity in the range 60.0–1000.0 ng ml−1, with the limit of detection and limit of quantitation, respectively, being 17.0 and 53.0 ng ml−1. The mean recoveries % [±standard deviation (SD), n = 5] for pharmaceutical preparations were 100.11% ± 2.24%, whereas for plasma samples, they were 100.08 ± 1.08% (±SD, n = 5). The results obtained after the application of four greenness criteria, Analytical Eco-Scale metric, NEMI, GAPI, and AGREE metric, confirmed its eco-friendliness. In addition, the whiteness meter (RGB12) confirmed its level of sustainability. The International Council for Harmonisation (ICH) criteria were used to verify the developed method through the study in both spiked plasma samples and content uniformity evaluation. An appropriate standard for various applications in industry and quality control laboratories was developed.  相似文献   

18.
A new Schiff base receptor 1 was synthesized and its photophysical properties were investigated by absorption, emission and excitation techniques. Furthermore, its chromogenic and fluorogenic sensing abilities towards various metal ions were examined. Receptor 1 selectively detects Cu2+ ion through fluorescence quenching and detection was not inhibited in the presence of other metal ions. From fluorescence titration, the limit of detection of receptor 1 as a fluorescent ‘turn‐off’ sensor for the analysis of Cu2+ was estimated to be 0.35 μM.  相似文献   

19.
Given how crucial it is to preserve a human-safe and sustainable environment, the rapid discovery of possibly lethal heavy metals such as Hg(II) has drawn much attention in recent years. A novel sensor, known as (E)-2-((10-octyl-10H-phenothiazin-3-yl)methylene)hydrazine-1-carbothioamide (PTZHC), was synthesized as a fluorescence ‘on–off’ sensor for Hg2+ ions. Coordination alters organic molecule electron densities, quenching the fluorescence intensity. PTZHC was described completely with the help of FTIR and 1H-NMR spectrum studies. The Hg2+ ion was successfully detected using the PTZHC sensor even when there were other metal ions present. The limit of the detection was estimated to be 2.5 × 10−8 M and the Job's plot examination implied that PTZHC was bound to Hg2+ with a simple 1:1 stoichiometry in s CH3CN/H2O (9:1, v/v) suspension. To further cast light on the bridged effect on geometric and optoelectronic characteristics, time-dependent density functional theory (TD-DFT) at the B3LYP/6-31G(d) level and DFT were both examined.  相似文献   

20.
A new sensitive and instantaneous spectrofluorimetric method for efficient determination of lomefloxacin (LMX) in its pure, dosage form and human plasma was designed. The developed method depends on formation of a metal-chelation compound of LMX as a ligand with zinc(II) in a buffer of acetate (pH 5.5). The following parameters; type of metal, concentration of metal, pH, type of buffer and diluting solvent were optimized. After carefully investigation; 0.2 mM zinc, 2.0 ml acetate buffer (pH 5.5) and water as diluting solvent were set as optimum reaction conditions. Under these conditions, a large increase in the intensity of the fluorescence of LMX was attained at 450 after excitation at 284 nm. The limits of detection and quantification were 5.8 and 1.9 ng ml−1, respectively, with linearity range of 10.0 to 500.0 ng ml−1. The binding mode of LMX and zinc(II) ion (Zn2+) was found to be 2:1, respectively, and confirmed by Job's plot method. Furthermore, it extended to the analysis of LMX in the spiked plasma of humans with percentage recovery (98.70 ± 0.97 to 100.30 ± 1.69%, n = 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号