首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteria of the Cytophaga-Flavobacterium-Bacteroides phylum (CFB-phylum) are numerically important members of many microbial communities. A suite of five 16S rRNA-targeted oligonucleotide probes for members of this group is described which was designed to dominantly target bacteria of the CFB-phylum that are found in particular habitats. For this we initially performed a literature survey-for the sources and sites of isolation of hitherto described members of the CFB-phylum. Probe CFB286 is mostly complementary to the 16S rRNA of species originally isolated from freshwater habitats, however, detects some marine and soil isolates and is the only probe which includes some food isolates. Probe CFB563 detects marine as well as animal-associated isolates. Probe CFB719, which also detects some environmental isolates, and probe CFB972 are mostly targeting animal-associated isolates. All probes are complementary to a variety of human-associated species within the CFB-phylum which, in the data set investigated (October 1998), made up 46% of all 16S rRNA sequences from the CFB-phylum. We conclude that it is difficult to find habitat-specific probes for members of the CFB-phylum and that the design of probes for monophyletic groups should remain the standard approach. Applicability of the probes for fluorescence in situ hybridization and specificity for single cell detection were evaluated for the four mentioned probes whereas the fifth, probe CFB1082, which almost exclusively targets human-associated species, was not further characterized. The new probes are of limited determinative value and should be used together with the already established probes for the CFB-phylum. It is the hybridization pattern observed for a given cell or culture with the enlarged probe set that is suggestive for its affiliation with a defined group within the CFB-phylum.  相似文献   

2.
Ryu JH  Lee A  Na JH  Lee S  Ahn HJ  Park JW  Ahn CH  Kim BS  Kwon IC  Choi K  Youn I  Kim K 《Amino acids》2011,41(5):1113-1122
Among the classical collagenases, matrix metalloproteinase-13 (called MMP-13, collagenase-3) is one of the most important components for cartilage destruction of osteoarthritis (OA) developments. Despite many efforts, the detection methods of MMP-13 activity have been met with limited success in vivo, in part, due to the low sensitivity and low selectivity by homology of MMP family. Previously, we demonstrated the use of strongly dark-quenched fluorogenic probe allowed for the visual detection of MMP-13 in vitro and in OA-induced rat models. In this study, we described the optimization of MMP-13 fluorogenic probe for OA detection in vivo. Three candidate probes demonstrated recovered fluorescent intensity proportional with MMP-13 concentrations, respectively; however, Probe 2 exhibited both high signal amplification and selective recognition for MMP-13, not MMP-2 and MMP-9 in vitro. When Probe 2 was applied to OA-induced rat models, clear visualization of MMP-13 activity in OA-induced cartilage was obtained. Optimized MMP-13 fluorogenic probe can be applied to detect and image OA and have potential for evaluating the in vivo efficacy of MMP-13 inhibitors which are being tested for therapeutic treatment of OA.  相似文献   

3.
The Molecular Inversion Probe (MIP) assay has been previously applied to a large-scale human SNP detection. Here we describe the PathogenMip Assay, a complete protocol for probe production and applied approaches to pathogen detection. We have demonstrated the utility of this assay with an initial set of 24 probes targeting the most clinically relevant HPV genotypes associated with cervical cancer progression. Probe construction was based on a novel, cost-effective, ligase-based protocol. The assay was validated by performing pyrosequencing and Microarray chip detection in parallel experiments. HPV plasmids were used to validate sensitivity and selectivity of the assay. In addition, 20 genomic DNA extracts from primary tumors were genotyped with the PathogenMip Assay results and were in 100% agreement with conventional sequencing using an L1-based HPV genotyping protocol. The PathogenMip Assay is a widely accessible protocol for producing and using highly discriminating probes, with experimentally validated results in pathogen genotyping, which could potentially be applied to the detection and characterization of any microbe.  相似文献   

4.
A carboxylesterase fluorescent probe (Probe 1) was developed for determination of carboxylesterase to guide detection of carbamate pesticide. The probe uses benzothiazole as fluorescence group and phenyldimethyl carbamate as recognition group. The solution of the fluorescent probe gradually changes from light blue to dark blue as the concentration of carbamate pesticides increases. The concentration of carbamate pesticides can be quickly calculated according to the colour of the probe solution through Get Color software on a smartphone. It showed that Probe 1 can be used as a rapid detection tool to achieve rapid detection of carbamate pesticides in juice samples without professional personnel and equipment. Furthermore, the probe has been successfully used to detect carbamate pesticides in fruit juice and vegetable juice.  相似文献   

5.
To establish the reaction mechanism of the high-quantum-yield bioluminescence in Cypridina (Vargula), we investigated the chemiluminescence of 6-aryl-2-methylimidazo[1,2-a]pyrazin-3(7H)-ones (1H) as Cypridina luciferin analogues in DMSO-1,1,3,3-tetramethylguanidine and in diglyme-acetate buffer. We found that the chemiluminescence of 1H with an electron-donating aryl group, such as a 4-(dimethylamino)phenyl, 3-indolyl or 3-(1-methyl)indolyl group, gave a high quantum yield (Phi(CL)) in diglyme-acetate buffer. This indicates that the reaction mechanism producing this high Phi(CL) involves the chemiexcitation of a neutral dioxetanone intermediate possessing an electron-donating aryl group to the singlet excited state of neutral acetamidopyrazine (the light emitter). In addition, we investigated the fluorescence of acetamidopyrazines and performed DFT calculations for neutral dioxetanones and the transition states (TS) of the dioxetanone's decomposition. The results made it clear that the electron-donating aryl group gives the TS and the singlet-excited acetamidopyrazine (S(1)) a strong intramolecular charge transfer (ICT) character, and their similar ICT character leads to the ICT TS --> S(1) route in the charge transfer-induced luminescence (CTIL) mechanism for efficient chemiexcitation. The reaction mechanism of the chemiluminescence of 1H can explain the highly efficient chemiexcitation of Cypridina bioluminescence.  相似文献   

6.
A dual-function fluorescent probe (Probe 1) was developed in this work for the separate detection of pH value and formaldehyde (HCHO). Probe 1 could recognize HCHO and the pH value from the amino group. The colour of the probe solution was changed from grey blue to light blue with the increase in the pH value, and luminous intensity became larger with the increase in formaldehyde concentration. The curve function relationship between fluorescence intensity and the pH value was also determined. A smartphone containing a colour detector for imaging was used to record the values of the three primary colours (R value, G value, and B value) for the probe solution in formaldehyde. Importantly, there was a linear functional relationship between the B*R/G value with HCHO concentration. Therefore, the probe could be used as a rapid tool for the detection of formaldehyde. More importantly, Probe 1 was successfully used to detect formaldehyde in an actual distilled liquor sample.  相似文献   

7.
Zhang Z  Harada H  Tanabe K  Hatta H  Hiraoka M  Nishimoto S 《Peptides》2005,26(11):2182-2187
A family of fluorescein-peptide conjugates (CNP1-3) for aminopeptidase N (APN/CD13) targeting fluorescent probes were designed and synthesized. Among the three conjugates, CNP1 bearing tumor-homing cyclic peptide CNGRC, could selectively label APN/CD13 over-expressing on the surface of tumor cells of HT-1080, as identified by means of fluorescent microscopic cell imaging. CNP1 was shown to be a promising fluorescent probe applicable to tumor-targeting molecular imaging.  相似文献   

8.
Four 16S rRNA-targeted oligonucleotide probes were designed for the detection of thermophilic members of the domain Bacteria known to thrive in marine hydrothermal systems. We developed and characterized probes encompassing most of the thermophilic members of the genus Bacillus, most species of the genus Thermus, the genera Thermotoga and Thermosipho, and the Aquificales order. The temperature of dissociation of each probe was determined. Probe specificities to the target groups were demonstrated by whole-cell and dot blot hybridization against a collection of target and nontarget rRNAs. Whole-cell hybridizations with the specific probes were performed on cells extracted from hydrothermal vent chimneys. One of the samples contained cells that hybridized to the probe specific to genera Thermotoga and Thermosipho. No positive signals could be detected in the samples tested with the probes whose specificities encompassed either the genus Thermus or the thermophilic members of the genus Bacillus. However, when simultaneous hybridizations with the probe specific to the order Aquificales and a probe specific to the domain Bacteria (R. I. Amann, B. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl, Appl. Environ. Microbiol. 56:1919-1925, 1990) were performed on cells extracted from the top and exterior subsamples of chimneys, positive signals were obtained from morphologically diverse bacteria representing about 40% of the bacterial population. Since specificity studies also revealed that the bacterial probe did not hybridize with the members of the order Aquificales, the detected cells may therefore correspond to a new type of bacteria. One of the observed morphotypes was similar to that of a strictly anaerobic autotrophic sulfur-reducing strain that we isolated from the chimney samples. This work demonstrates that application of whole-cell hybridization with probes specific for different phylogenetic levels is a useful tool for detailed studies of hydrothermal vent microbial ecology.  相似文献   

9.
In situ detection of RNA by hybridization with complementary probes is a powerful technique. Probe design is a critical parameter in successful target detection. We have evaluated the efficiency of fluorescent DNA oligonucleotides modified to contain locked nucleic acid (LNA) residues. This increases the thermal stability of hybrids formed with RNA. The LNA-based probes detect specific RNAs in fixed yeast cells with an efficiency far better than conventional DNA oligonucleotide probes of the same sequence. Using this probe design, we were also able to detect poly(A)(+) RNA accumulation within the nucleus/ nucleolus of wild-type cells. LNA-based probes should be readily applicable to a diverse array of cells and tissue samples.  相似文献   

10.
11.
A double-labeling approach was applied to nonisotopic in situ hybridization with individual cosmid and plasmid clones, using digoxigenin or biotin as label and a combination of two separate enzymatic labeling methods. Probe labeling was achieved by nick translation, followed by tailing of the probe by terminal deoxynucleotidyl transferase. The double-labeling method, in conjunction with an improved detection protocol, provides for a higher signal intensity than that obtainable with single-labeled probes.  相似文献   

12.
We have used oligodeoxyribonucleotide probes to investigate possible interactions between chloramphenicol and portions of the rRNA contained within the peptidyltransferase center of the Escherichia coli ribosome. Oligodeoxyribonucleotide probes complementary to bases 2448-2454, 2468-2482, and 2497-2505 of 23 S rRNA were hybridized to 50 S subunits in situ. Probe binding was qualitatively assessed by sucrose gradient centrifugation. Each probe was shown to bind specifically with its intended binding site through digestion of the rRNA within the RNA/DNA hetero-duplexes with RNase H and analysis of the digestion fragments using gel electrophoresis. Competitive binding experiments were conducted between each probe and the antibiotics chloramphenicol and erythromycin. The binding of a probe complementary to bases 2497-2505 was attenuated by 70% upon the binding of chloramphenicol. A probe complementary to bases 2468-2482 showed an increase in binding of 14% while binding of a probe complementary to bases 2448-2454 was not affected by chloramphenicol binding. Erythromycin did not affect the binding of any of these probes to 50 S subunits. These results suggest that bases within the 2497-2505 region of 23 S rRNA in E. coli may be involved in a chloramphenicol/rRNA interaction.  相似文献   

13.
We describe a new method for relative quantification of 40 different DNA sequences in an easy to perform reaction requiring only 20 ng of human DNA. Applications shown of this multiplex ligation-dependent probe amplification (MLPA) technique include the detection of exon deletions and duplications in the human BRCA1, MSH2 and MLH1 genes, detection of trisomies such as Down’s syndrome, characterisation of chromosomal aberrations in cell lines and tumour samples and SNP/mutation detection. Relative quantification of mRNAs by MLPA will be described elsewhere. In MLPA, not sample nucleic acids but probes added to the samples are amplified and quantified. Amplification of probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two oligonucleotides, one synthetic and one M13 derived, that hybridise to adjacent sites of the target sequence. Such hybridised probe oligonucleotides are ligated, permitting subsequent amplification. All ligated probes have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are small (50–70 nt). The prerequisite of a ligation reaction provides the opportunity to discriminate single nucleotide differences.  相似文献   

14.
Probes for CpG islands were cloned from the distal long arm of the human X chromosome; three of them were found to be polymorphic. A HindIII RFLP was identified by the probe 2-25 (DXS606), and it was mapped to the Xq27-Xq28 boundary. Probes 2-19 (DXS605) and 2-55 (DXS707), which identify EcoRI and MspI polymorphisms, respectively, have been mapped to the distal part of Xq28, in the G6PD-RCP/GCP gene region. Probe 2-19 has been further localized about 16 kb from the 3' end of the G6PD gene. The new RFLPs may be useful for the precise mapping of the many disease genes localized in this part of the human X chromosome. Probe 2-19 is highly informative, and it has been studied in greater detail. Using the methylation-sensitive rare-cutter enzyme EagI in conjunction with the polymorphic EcoRI site, we were able to demonstrate that the RFLP may be used both to study randomness of X chromosome inactivation and for carrier detection in X-linked syndromes where nonrandom X inactivation occurs. It is conceivable that the combined use of 2-19 and of the probes described so far (pSPT-PGK and M27 beta) will make analysis of X inactivation feasible in virtually every female.  相似文献   

15.
Recent findings indicate that ion-chelator probes with tetracarboxylate structure bind proteins. It was suggested that these fluorescent probes are valuable tools to gain information on protein structure through the energy transfer from tryptophans to the bound probe. Here, the binding of the fluorescent probe Mag-Indo-1 to bovine serum albumin (BSA) was investigated. Mag-Indo-1 was reported previously to serve as a probe for magnesium cations (Kd = 2.8 x 10(-4) M for zero ionic strength) which can also interact with calcium cations (Kd = 7.5 x 10(-7) M). Probe complexation with protein results in a shift of the emission fluorescence spectrum of the probe from 480 to 457 nm. We used emission fluorescence techniques to monitor this interaction. Computational resolution of the complex fluorescence spectra and a new software to test the theoretical model were developed in our laboratory. This enabled us to calculate the number of interacting sites and the dissociation constants. The fluorescent probe Mag-Indo-1 binds at a singular site with high affinity (Kd = 1.8 x 10(-7) M) to bovine serum albumin (BSA). Since proteins are known to bind several compounds unspecifically, we have studied the influence of EDTA as a competitor of the probe. Our findings suggest that the BSA binding site is identical for both Mag-Indo-1 and EDTA. We found that EDTA binds the protein with Kd = 0.4 x 10(-3) M. We studied the influence of calcium and found that Mag-Indo-1 does not bind the calcium free Apo-protein anymore.  相似文献   

16.
17.
《Biophysical journal》2021,120(17):3776-3786
Identification, visualization, and quantitation of cardiolipin (CL) in biological membranes is of great interest because of the important structural and physiological roles of this lipid. Selective fluorescent detection of CL using noncovalently bound fluorophore 1,1,2,2-tetrakis[4-(2-trimethylammonioethoxy)-phenylethene (TTAPE-Me) has been recently proposed. However, this dye was only tested on wild-type mitochondria or liposomes containing negligible amounts of other anionic lipids, such as phosphatidylglycerol (PG) and phosphatidylserine (PS). No clear preference of TTAPE-Me for binding to CL compared to PG and PS was found in our experiments on artificial liposomes, Escherichia coli inside-out vesicles, or Saccharomyces cerevisiae mitochondria in vitro or in situ, respectively. The shapes of the emission spectra for these anionic phospholipids were also found to be indistinguishable. Thus, TTAPE-Me is not suitable for detection, visualization, and localization of CL in the presence of other anionic lipids present in substantial physiological amounts. Our experiments and complementary molecular dynamics simulations suggest that fluorescence intensity of TTAPE-Me is regulated by dynamic equilibrium between emitting dye aggregates, stabilized by unspecific but thermodynamically favorable electrostatic interactions with anionic lipids, and nonemitting dye monomers. These results should be taken into consideration when interpreting past and future results of CL detection and localization studies with this probe in vitro and in vivo. Provided methodology emphasizes minimal experimental requirements, which should be considered as a guideline during the development of novel lipid-specific probes.  相似文献   

18.
19.
A BSTRACTTo evaluate the role of Methanosaeta spp. in a variety of anaerobic environments, small-subunit rRNA targeted oligonucleotide hybridization probes were developed and experimentally characterized. The probes were designed to be genus specific for Methanosaeta and species specific for Methanosaeta concilii and Methanosaeta thermophila. The temperature of dissociation was determined for each probe. Probe specificities were determined using a diverse collection of Archaea and through an evaluation of probe nesting using samples from a variety of anaerobic bioreactors. Cell fixation and hybridization conditions for fluorescence in situ hybridizations were also evaluated. Although permeability of methanogens was variable, M. concilii cells could be permeabilized using a range of paraformaldehyde and ethanol based fixation conditions. Using the newly designed probes together with previously designed probes for methanogens, it was determined that Methanosaeta spp. were the dominant aceticlastic methanogens in a variety of anaerobic bioreactors when acetate concentrations were low. Their levels were higher in bioreactors with granular sludge than in those with flocculent sludge. In lab-scale upflow anaerobic sludge blanket reactors, the levels of M. concilii rRNA were as high as 30% of the total rRNA.  相似文献   

20.
Enediyne–peptide conjugates were designed with the aim to inhibit aminopeptidase N, a widespread ectoenzyme with a variety of functions, like protein digestion, inactivation of cytokines in the immune system and endogenous opioid peptides in the central nervous system. Enediyne moiety was embedded within the 12-membered ring with hydrophobic amino acid alanine, valine, leucine or phenylalanine used as carriers. Aromatic part of the enediyne bridging unit and the amino acid side chains were considered as pharmacophores for the binding to the aminopeptidase N (APN) active site. Additionally, the fused enediyne–amino acid “heads” were bound through a flexible linker to the l-lysine, an amino group donor. The synthesis included building the aromatic enediyne core at the C-terminal of amino acids and subsequent intramolecular N-alkylation. APN inhibition test revealed that the alanine-based derivative 9a inhibits the APN with IC50 of 34 ± 11 μM. Enediyne–alanine conjugate 12 missing the flexible linker was much less effective in the APN inhibition. These results show that enediyne-fused amino acids have potential as new pharmacophores in the design of APN inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号