首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An antecedent of the MHC-linked genomic region in amphioxus   总被引:3,自引:0,他引:3  
The MHC genes on human chromosome 6 are located within one of the best-characterised paralogy regions of the human genome. Numerous genes mapping around this location, 6p21, have paralogues at one, two or three other chromosomal locations on HSA 1, 9 and 19. The similarity between these four chromosomal regions suggests the linkages may have adaptive significance, and/or they may be echoes of segmental or genome duplication in human ancestry. Here, we show that six amphioxus cosmids, containing genes orthologous to those from the human MHC-linked paralogy regions, map to a single amphioxus chromosome. The composition of the MHC-linked genomic region, therefore, pre-dates vertebrate origins.  相似文献   

2.
3.
Han K  Lou DI  Sawyer SL 《PLoS genetics》2011,7(12):e1002388
Tripartite Motif (TRIM) ubiquitin ligases act in the innate immune response against viruses. One of the best characterized members of this family, TRIM5α, serves as a potent retroviral restriction factor with activity against HIV. Here, we characterize what are likely to be the youngest TRIM genes in the human genome. For instance, we have identified 11 TRIM genes that are specific to humans and African apes (chimpanzees, bonobos, and gorillas) and another 7 that are human-specific. Many of these young genes have never been described, and their identification brings the total number of known human TRIM genes to approximately 100. These genes were acquired through segmental duplications, most of which originated from a single locus on chromosome 11. Another polymorphic duplication of this locus has resulted in these genes being copy number variable within the human population, with a Han Chinese woman identified as having 12 additional copies of these TRIM genes compared to other individuals screened in this study. Recently, this locus was annotated as one of 34 "hotspot" regions that are also copy number variable in the genomes of chimpanzees and rhesus macaques. Most of the young TRIM genes originating from this locus are expressed, spliced, and contain signatures of positive natural selection in regions known to determine virus recognition in TRIM5α. However, we find that they do not restrict the same retroviruses as TRIM5α, consistent with the high degree of divergence observed in the regions that control target specificity. We propose that this recombinationally volatile locus serves as a reservoir from which new TRIM genes arise through segmental duplication, allowing primates to continually acquire new antiviral genes that can be selected to target new and evolving pathogens.  相似文献   

4.
To better understand genome structure and the expression of α/β-gliadin multigenes in hexaploid wheat, bacterial artificial chromosome (BAC) clones containing α/β-gliadin genes from the three loci, Gli-A2, Gli-B2, and Gli-D2, were screened. Based on their restriction fragment patterns, we selected five BAC clones, namely, two clones for Gli-A2, two clones for Gli-B2, and one clone for Gli-D2, to fully sequence. Approximately 200 kb was sequenced for each locus. In total, twelve α/β-gliadin intact genes and four pseudogenes were found, and retrotransposons or other transposons existed in each BAC clone. Dot-plot analysis revealed the pattern of genome segmental duplication within each BAC. We calculated time since duplication of each set of α/β-gliadin genes and insertion of retrotransposons. Duplication of all adjacent genes within the same BAC clone took place before or after allotetrapolyploidization, but duplication of certain genes occurred before diploid differentiation of wheat species. Retrotransposons were also inserted before and after the segmental duplication events. Furthermore, translocation of α/β-gliadin genes from chromosomes 1 to 6 apparently occurred before the diversification of various wheat genomes. Duplication of genome segments containing α/β-gliadin genes and retrotransposons were brought about through unequal crossing-over or saltatory replication and α/β-gliadin genes per se were duplicated without any recombination events. Out of twelve intact α/β-gliadin genes detected from their sequences, nine were expressed, although their patterns of expression were distinct. Since they have similar cis-elements and promoter structures, the mechanisms underlying their distinct gene expression and possible applications are discussed.  相似文献   

5.
Yuan Z  Sun X  Liu H  Xie J 《PloS one》2011,6(3):e17666
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression by targeting mRNAs for translation repression or mRNA degradation. Many miRNAs are being discovered and studied, but in most cases their origin, evolution and function remain unclear. Here, we characterized miRNAs derived from repetitive elements and miRNA families expanded by segmental duplication events in the human, rhesus and mouse genomes. We applied a comparative genomics approach combined with identifying miRNA paralogs in segmental duplication pair data in a genome-wide study to identify new homologs of human miRNAs in the rhesus and mouse genomes. Interestingly, using segmental duplication pair data, we provided credible computational evidence that two miRNA genes are located in the pseudoautosomal region of the human Y chromosome. We characterized all the miRNAs whether they were derived from repetitive elements or not and identified significant differences between the repeat-related miRNAs (RrmiRs) and non-repeat-derived miRNAs in (1) their location in protein-coding and intergenic regions in genomes, (2) the minimum free energy of their hairpin structures, and (3) their conservation in vertebrate genomes. We found some lineage-specific RrmiR families and three lineage-specific expansion families, and provided evidence indicating that some RrmiR families formed and expanded during evolutionary segmental duplication events. We also provided computational and experimental evidence for the functions of the conservative RrmiR families in the three species. Together, our results indicate that repetitive elements contribute to the origin of miRNAs, and large segmental duplication events could prompt the expansion of some miRNA families, including RrmiR families. Our study is a valuable contribution to the knowledge of evolution and function of non-coding region in genome.  相似文献   

6.
An unexpected finding of the human genome was the large fraction of the genome organized as blocks of interspersed duplicated sequence. We provide a comparative and phylogenetic analysis of a highly duplicated region of 16p12.2, which is composed of at least four different segmental duplications spanning in excess of 160 kb. We contrast the dispersal of two different segmental duplications (LCR16a and LCR16u). LCR16a, a 20 kb low-copy repeat sequence A from chromosome 16, was shown previously to contain a rapidly evolving novel hominoid gene family (morpheus) that had expanded within the last 10 million years of great ape/human evolution. We compare the dispersal of this genomic segment with a second adjacent duplication called LCR16u. The duplication contains a second putative gene family (KIAA0220/SMG1) that is represented approximately eight times within the human genome. A high degree of sequence identity (approximately 98%) was observed among the various copies of LCR16u. Comparative analyses with Old World monkey species show that LCR16a and LCR16u originated from two distinct ancestral loci. Within the human genome, at least 70% of the LCR16u copies were duplicated in concert with the LCR16a duplication. In contrast, only 30% of the chimpanzee loci show an association between LCR16a and LCR16u duplications. The data suggest that the two copies of genomic sequence were brought together during the chimpanzee/human divergence and were subsequently duplicated as a larger cassette specifically within the human lineage. The evolutionary history of these two chromosome-specific duplications supports a model of rapid expansion and evolutionary turnover among the genomes of man and the great apes.  相似文献   

7.
Genome-level evolution of resistance genes in Arabidopsis thaliana   总被引:2,自引:0,他引:2  
Baumgarten A  Cannon S  Spangler R  May G 《Genetics》2003,165(1):309-319
Pathogen resistance genes represent some of the most abundant and diverse gene families found within plant genomes. However, evolutionary mechanisms generating resistance gene diversity at the genome level are not well understood. We used the complete Arabidopsis thaliana genome sequence to show that most duplication of individual NBS-LRR sequences occurs at close physical proximity to the parent sequence and generates clusters of closely related NBS-LRR sequences. Deploying the statistical strength of phylogeographic approaches and using chromosomal location as a proxy for spatial location, we show that apparent duplication of NBS-LRR genes to ectopic chromosomal locations is largely the consequence of segmental chromosome duplication and rearrangement, rather than the independent duplication of individual sequences. Although accounting for a smaller fraction of NBS-LRR gene duplications, segmental chromosome duplication and rearrangement events have a large impact on the evolution of this multigene family. Intergenic exchange is dramatically lower between NBS-LRR sequences located in different chromosome regions as compared to exchange between sequences within the same chromosome region. Consequently, once translocated to new chromosome locations, NBS-LRR gene copies have a greater likelihood of escaping intergenic exchange and adopting new functions than do gene copies located within the same chromosomal region. We propose an evolutionary model that relates processes of genome evolution to mechanisms of evolution for the large, diverse, NBS-LRR gene family.  相似文献   

8.
Zhang Y  Jiang WK  Gao LZ 《PloS one》2011,6(12):e28073
The origin and evolution of microRNA (miRNA) genes, which are of significance in tuning and buffering gene expressions in a number of critical cellular processes, have long attracted evolutionary biologists. However, genome-wide perspectives on their origins, potential mechanisms of their de novo generation and subsequent evolution remain largely unsolved in flowering plants. Here, genome-wide analyses of Oryza sativa and Arabidopsis thaliana revealed apparently divergent patterns of miRNA gene origins. A large proportion of miRNA genes in O. sativa were TE-related and MITE-related miRNAs in particular, whereas the fraction of these miRNA genes much decreased in A. thaliana. Our results show that the majority of TE-related and pseudogene-related miRNA genes have originated through inverted duplication instead of segmental or tandem duplication events. Based on the presented findings, we hypothesize and illustrate the four likely molecular mechanisms to de novo generate novel miRNA genes from TEs and pseudogenes. Our rice genome analysis demonstrates that non-MITEs and MITEs mediated inverted duplications have played different roles in de novo generating miRNA genes. It is confirmed that the previously proposed inverted duplication model may give explanations for non-MITEs mediated duplication events. However, many other miRNA genes, known from the earlier proposed model, were rather arisen from MITE transpositions into target genes to yield binding sites. We further investigated evolutionary processes spawned from de novo generated to maturely-formed miRNA genes and their regulatory systems. We found that miRNAs increase the tunability of some gene regulatory systems with low gene copy numbers. The results also suggest that gene balance effects may have largely contributed to the evolution of miRNA regulatory systems.  相似文献   

9.
10.
Fugu genome database enabled us to identify two novel tropomyosin 1 (TPM1) genes through in silico data mining and isolation of their corresponding cDNAs in vivo. The duplicate TPM1 genes in Japanese pufferfish Fugu rubripes suggest that additional an ancient segmental duplication or whole genome duplication occurred in fish lineage, which, like many other reported Fugu genes, showed reduction in genomic size in comparison with their human homologue. Computer analysis predicted that the coiled-coil probabilities, that were thought to be the most major function of TPM, were the same between the two TPM1 isoforms. We confirmed that the tissue expression profiles of the two TPM1 genes differed from each other, which implied that changes in expression pattern could fix duplicated TPM1 genes although the two TPM1 isoforms appear to have similar function.  相似文献   

11.
The subtelomeric regions of human chromosomes are comprised of sequence homologies shared between distinct subsets of chromosomes. In the course of developing a set of unique human telomere clones, we identified many clones containing such shared homologies, characterized by the presence of cross-hybridization signals on one or more telomeres in a fluorescence in situ hybridization (FISH) assay. We studied the evolutionary origin of seven subtelomeric clones by performing comparative FISH analysis on a primate panel that included great apes and Old World monkeys. All clones tested showed a single hybridization site in Old World monkeys that corresponded to one of the orthologous human sites, thus indicating the ancestral origin. The timing of the duplication events varied among the subtelomeric regions, from approximately 5 to approximately 25 million years ago. To examine the origin of and mechanism for one of these subtelomeric duplications, we compared the sequence derived from human 2q13--an ancestral fusion site of two great ape telomeric regions--with its paralogous subtelomeric sequences at 9p and 22q. These paralogous regions share large continuous homologies and contain three genes: RABL2B, forkhead box D4, and COBW-like. Our results provide further evidence for subtelomeric-mediated genomic duplication and demonstrate that these segmental duplications are most likely the result of ancestral unbalanced translocations that have been fixed in the genome during recent primate evolution.  相似文献   

12.
Human chromosome 18 differs from its homologues in the great apes by a pericentric inversion. We have identified a chimpanzee bacterial artificial chromosome that spans a region where a break is likely to have occurred in a human progenitor and have characterized the corresponding regions in both chimpanzees and humans. Interspecies sequence comparisons indicate that the ancestral break occurred between the genes ROCK1 and USP14. In humans, the inversion places ROCK1 near centromeric heterochromatin and USP14 adjacent to highly repetitive subtelomeric repeats. In addition, we provide evidence for a human segmental duplication that may have provided a mechanism for the inversion.  相似文献   

13.
The aims of the study were to outline the sequence of eventsthat gave rise to the vertebrate insulin-relaxin gene familyand the chromosomal regions in which they reside. We analyzedthe gene content surrounding the human insulin/relaxin geneswith respect to what family they belonged to and if the duplicationhistory of investigated families parallels the evolution ofthe insulin-relaxin family members. Markov Clustering and phylogeneticanalysis were used to determine family identity. More than 15%of the genes belonged to families that have paralogs in theregions, defining two sets of quadruplicate paralogy regions.Thereby, the localization of insulin/relaxin genes in humansis in accordance with those regions on human chromosomes 1,11, 12, 19q (insulin/insulin-like growth factors) and 1, 6p/15q,9/5, 19p (insulin-like factors/relaxins) were formed duringtwo genome duplications. We compared the human genome with thatof Ciona intestinalis, a species that split from the vertebratelineage before the two suggested genome duplications. Two insulin-likeorthologs were discovered in addition to the already describedCi-insulin gene. Conserved synteny between the Ciona regionshosting the insulin-like genes and the two sets of human paralogonsimplies their common origin. Linkage of the two human paralogons,as seen in human chromosome 1, as well as the two regions hostingthe Ciona insulin-like genes suggests that a segmental duplicationgave rise to the region prior to the genome doublings. Thus,preserved gene content provides support that genome duplication(s)in addition to segmental and single-gene duplications shapedthe genomes of extant vertebrates.  相似文献   

14.
Large chromosomal events such as translocations and segmental duplications enable rapid adaptation to new environments. Here we marshal genomic, genetic, meiotic mapping, and physical evidence to demonstrate that a chromosomal translocation and segmental duplication occurred during construction of a congenic strain pair in the fungal human pathogen Cryptococcus neoformans. Two chromosomes underwent telomere-telomere fusion, generating a dicentric chromosome that broke to produce a chromosomal translocation, forming two novel chromosomes sharing a large segmental duplication. The duplication spans 62,872 identical nucleotides and generated a second copy of 22 predicted genes, and we hypothesize that this event may have occurred during meiosis. Gene disruption studies of one embedded gene (SMG1) corroborate that this region is duplicated in an otherwise haploid genome. These findings resolve a genome project assembly anomaly and illustrate an example of rapid genome evolution in a fungal genome rich in repetitive elements.  相似文献   

15.
Wei Q  Sun Z  He X  Tan T  Lu B  Guo X  Su B  Ji W 《PloS one》2011,6(9):e25052
Parthenogenetic embryonic stem cells are considered as a promising resource for regeneration medicine and powerful tools for developmental biology. A lot of studies have revealed that embryonic stem cells have distinct microRNA expression pattern and these microRNAs play important roles in self-renewal and pluripotency of embryonic stem cells. However, few studies concern about microRNA expression pattern in parthenogenetic embryonic stem cells, especially in non-human primate--the ideal model species for human, largely due to the limited rhesus monkey parthenogenetic embryonic stem cells (rpESCs) available and lack of systematic analysis of the basics of rpESCs. Here, we derived two novel rpESCs lines and characterized their microRNA signature by Solexa deep sequencing. These two novel rpESCs shared many properties with other primate ESCs, including expression of pluripotent markers, capacity to generate derivatives representative of all three germ layers in vivo and in vitro, maintaining of euploid karyotype even after long culture. Additionally, lack of some paternally expressed imprinted genes and identity of Single-nucleotide Polymorphism (SNP) compare to their oocyte donors support their parthenogenesis origin. By characterizing their microRNA signature, we identified 91 novel microRNAs, except those are also detected in other primate ESCs. Moreover, these two novel rpESCs display a unique microRNA signature, comparing to their biparental counterpart ESCs. Then we analyzed X chromosome status in these two novel rpESCs; results suggested that one of them possesses two active X chromosomes, the other possesses only one active X chromosome liking biparental female embryonic stem cells. Taken together, our novel rpESCs provide a new alternative to existing rhesus monkey embryonic stem cells, microRNA information expands rhesus monkey microRNA data and may help understanding microRNA roles in pluripotency and parthenogenesis.  相似文献   

16.

Background

Although the reference human genome sequence was declared finished in 2003, some regions of the genome remain incomplete due to their complex architecture. One such region, 1q21.1-q21.2, is of increasing interest due to its relevance to human disease and evolution. Elucidation of the exact variants behind these associations has been hampered by the repetitive nature of the region and its incomplete assembly. This region also contains 238 of the 270 human DUF1220 protein domains, which are implicated in human brain evolution and neurodevelopment. Additionally, examinations of this protein domain have been challenging due to the incomplete 1q21 build. To address these problems, a single-haplotype hydatidiform mole BAC library (CHORI-17) was used to produce the first complete sequence of the 1q21.1-q21.2 region.

Results

We found and addressed several inaccuracies in the GRCh37sequence of the 1q21 region on large and small scales, including genomic rearrangements and inversions, and incorrect gene copy number estimates and assemblies. The DUF1220-encoding NBPF genes required the most corrections, with 3 genes removed, 2 genes reassigned to the 1p11.2 region, 8 genes requiring assembly corrections for DUF1220 domains (~91 DUF1220 domains were misassigned), and multiple instances of nucleotide changes that reassigned the domain to a different DUF1220 subtype. These corrections resulted in an overall increase in DUF1220 copy number, yielding a haploid total of 289 copies. Approximately 20 of these new DUF1220 copies were the result of a segmental duplication from 1q21.2 to 1p11.2 that included two NBPF genes. Interestingly, this duplication may have been the catalyst for the evolutionarily important human lineage-specific chromosome 1 pericentric inversion.

Conclusions

Through the hydatidiform mole genome sequencing effort, the 1q21.1-q21.2 region is complete and misassemblies involving inter- and intra-region duplications have been resolved. The availability of this single haploid sequence path will aid in the investigation of many genetic diseases linked to 1q21, including several associated with DUF1220 copy number variations. Finally, the corrected sequence identified a recent segmental duplication that added 20 additional DUF1220 copies to the human genome, and may have facilitated the chromosome 1 pericentric inversion that is among the most notable human-specific genomic landmarks.  相似文献   

17.
Detection of tandem duplications and implications for linkage analysis.   总被引:1,自引:1,他引:0  
The first demonstration of an autosomal dominant human disease caused by segmental trisomy came in 1991 for Charcot-Marie-Tooth disease type 1A (CMT1A). For this disorder, the segmental trisomy is due to a large tandem duplication of 1.5 Mb of DNA located on chromosome 17p11.2-p12. The search for the CMT1A disease gene was misdirected and impeded because some chromosome 17 genetic markers that are linked to CMT1A lie within this duplication. To better understand how such a duplication might affect genetic analyses in the context of disease gene mapping, we studied the effects of marker duplication on transmission probabilities of marker alleles, on linkage analysis of an autosomal dominant disease, and on tests of linkage homogeneity. We demonstrate that the undetected presence of a duplication distorts transmission ratios, hampers fine localization of the disease gene, and increases false evidence of linkage heterogeneity. In addition, we devised a likelihood-based method for detecting the presence of a tandemly duplicated marker when one is suspected. We tested our methods through computer simulations and on CMT1A pedigrees genotyped at several chromosome 17 markers. On the simulated data, our method detected 96% of duplicated markers (with a false-positive rate of 5%). On the CMT1A data our method successfully identified two of three loci that are duplicated (with no false positives). This method could be used to identify duplicated markers in other regions of the genome and could be used to delineate the extent of duplications similar to that involved in CMT1A.  相似文献   

18.
We analyzed 192 strains of the pathogenic yeast Candida glabrata from patients, mainly suffering from systemic infection, at Danish hospitals during 1985–1999. Our analysis showed that these strains were closely related but exhibited large karyotype polymorphism. Nine strains contained small chromosomes, which were smaller than 0.5 Mb. Regarding the year, patient and hospital, these C. glabrata strains had independent origin and the analyzed small chromosomes were structurally not related to each other (i.e. they contained different sets of genes). We suggest that at least two mechanisms could participate in their origin: (i) through a segmental duplication which covered the centromeric region, or (ii) by a translocation event moving a larger chromosome arm to another chromosome that leaves the centromere part with the shorter arm. The first type of small chromosomes carrying duplicated genes exhibited mitotic instability, while the second type, which contained the corresponding genes in only one copy in the genome, was mitotically stable. Apparently, in patients C. glabrata chromosomes are frequently reshuffled resulting in new genetic configurations, including appearance of small chromosomes, and some of these resulting “mutant” strains can have increased fitness in a certain patient “environment”.  相似文献   

19.
Chromosome rearrangement has been considered to be important in the evolutionary process. Here, we demonstrate the evolutionary relationship of the rearranged human chromosome 12 and the corresponding chromosome XII in apes (chimpanzee, bonobo, gorilla, orangutan, and gibbon) by examining PCR products derived from the breakpoints of inversions and by conducting shotgun sequencing of a gorilla fosmid clone containing the breakpoint and a "duplicated segment" (duplicon). We confirmed that a pair of 23-kb duplicons flank the breakpoints of inversions on the long and short arms of chimpanzee chromosome XII. Although only the 23-kb duplicon on the long arm of chimpanzee chromosome XII and its telomeric flanking sequence are found to be conserved among the hominoids (human, great apes, and gibbons), the duplicon on the short arm of chimpanzee chromosome XII is suggested to be the result of a duplication from that on the long arm. Furthermore, the shotgun sequencing of a gorilla fosmid indicated that the breakpoint on the long arm of the gorilla is located at a different position 1.9 kb from that of chimpanzee. The region is flanked by a sequence homologous to that of human chromosome 6q22. Our findings and sequence analysis suggest a close relationship between segmental duplication and chromosome rearrangement (or breakpoint of inversion) in Hominoidea. The role of the chromosome rearrangement in speciation is also discussed based on our new results.  相似文献   

20.
Recent segmental and gene duplications in the mouse genome   总被引:2,自引:0,他引:2       下载免费PDF全文

Background

The high quality of the mouse genome draft sequence and its associated annotations are an invaluable biological resource. Identifying recent duplications in the mouse genome, especially in regions containing genes, may highlight important events in recent murine evolution. In addition, detecting recent sequence duplications can reveal potentially problematic regions of the genome assembly. We use BLAST-based computational heuristics to identify large (≥ 5 kb) and recent (≥ 90% sequence identity) segmental duplications in the mouse genome sequence. Here we present a database of recently duplicated regions of the mouse genome found in the mouse genome sequencing consortium (MGSC) February 2002 and February 2003 assemblies.

Results

We determined that 33.6 Mb of 2,695 Mb (1.2%) of sequence from the February 2003 mouse genome sequence assembly is involved in recent segmental duplications, which is less than that observed in the human genome (around 3.5-5%). From this dataset, 8.9 Mb (26%) of the duplication content consisted of 'unmapped' chromosome sequence. Moreover, we suspect that an additional 18.5 Mb of sequence is involved in duplication artifacts arising from sequence misassignment errors in this genome assembly. By searching for genes that are located within these regions, we identified 675 genes that mapped to duplicated regions of the mouse genome. Sixteen of these genes appear to have been duplicated independently in the human genome. From our dataset we further characterized a 42 kb recent segmental duplication of Mater, a maternal-effect gene essential for embryogenesis in mice.

Conclusion

Our results provide an initial analysis of the recently duplicated sequence and gene content of the mouse genome. Many of these duplicated loci, as well as regions identified to be involved in potential sequence misassignment errors, will require further mapping and sequencing to achieve accuracy. A Genome Browser database was set up to display the identified duplication content presented in this work. This data will also be relevant to the growing number of investigators who use the draft genome sequence for experimental design and analysis.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号