首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this present study, a fluorescent probe was developed to detect curcumin, which is derived from the rhizomes of the turmeric. We used a simple and economical way to synthesize boron and nitrogen co‐doped carbon dots (BNCDs) by microwave heating. The maximum emission wavelength of the BNCDs was 450 nm at an excitation wavelength of 360 nm. The as‐prepared BNCDs were characterized by multiple analytical techniques such as transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray diffraction, and infrared spectroscopy. The synthesized carbon nanoparticles had an average particle diameter of 4.23 nm. The BNCDs exhibited high sensitivity to the detection of curcumin at ambient conditions. The changes of BNCDs fluorescent intensity show a good linear relationship with the curcumin concentrations in the range 0.2–12.5 μM. This proposed method has been successfully applied to detect the curcumin in urine samples with the recoveries of 96.5–105.5%.  相似文献   

2.
An easy hydrothermal synthesis strategy was applied to synthesize green‐yellow emitting nitrogen‐doped carbon dots (N‐CDs) using 1,2‐diaminobenzene as the carbon source, and dicyandiamide as the dopant. The nitrogen‐doped CDs resulted in improvement in the electronic characteristics and surface chemical activities. N‐CDs exhibited bright fluorescence emission and could response to Ag+ selectively and sensitively. Other ions produced nearly no interference. A N‐CDs based fluorescent probe was then applied to sensitively determine Ag+ with a detection limit of 5 × 10?8 mol/L. The method was applied to the determination of Ag+ dissolved in water. Finally, negligibly cytotoxic, excellently biocompatibile, and highly fluorescent carbon dots were applied for HepG2 cell imaging and the quenched fluorescence by adding Ag+, which indicated its potential applications.  相似文献   

3.
The development of an analytical probe to monitor highly mutagenic picric acid (PA) carries enormous significance for the environment and for health. A novel, simple and rapid fluorescence analytical assay using sulfur‐doped graphene quantum dots (SGQDs) was designed for the highly sensitive and selective detection of PA. SGQDs were synthesized via simple pyrolysis of 3‐mercaptopropionic acid and citric acid and characterized using advanced analytical techniques. Fluorescence intensity (FI) of SGQDs was markedly quenched by addition of PA, attributed to the inner filter effect and dominating static quenching mechanism between the two, in addition to a significant colour change. The calibration curve of the proposed assay exhibited a favourable linearity between quenched FI and PA concentration over the 0.1–100 μΜ range with a lowest detection limit of 0.093 μΜ and a correlation coefficient of 0.9967. The analytical assay was investigated for detection of trace amounts of PA in pond and rain water samples and showed great potential for practical applications with both acceptable recovery (98.0–100.8%) and relative standard deviation (1.24–4.67%). Analytical performance of the assay in terms of its detection limit, linearity range, and recovery exhibited reasonable superiority over previously reported methods, thereby holding enormous promise as a simple, sensitive, and selective method for detection of PA.  相似文献   

4.
In this piece of work, microwave-assisted conversion of a natural precursor in to high-valued nano-scale material was carried out by a completely greener method. The fluorescent carbon dots prepared, designated as long pepper derived carbon dots (LPCDs), have been thoroughly characterized to explore the physical and chemical properties. The system exhibits excitation dependent emission behavior and from the optimal studies the excitation and emission wavelength of the system was found to be 330 nm and 455 nm respectively. On account of the superior fluorescent behavior of the LPCDs, it was successfully employed as a fluorescent sensing probe to detect Sudan I with good level of selectivity and sensitivity. This carcinogenic dye extensively used as food adulterant can impart several health issues. Food product safety is of high concern, therefore a simple facile and economical analytical method was proposed based on the fluorescence of LPCDs for this dye detection with satisfactory statistical parameters. A linear relationship was maintained in the range of 0 to 27.27 μM Sudan I with limit of detection of 0.92 μM. The quenching mechanism was studied and finally attributed to Förster resonance energy transfer (FRET) mechanism. In addition, the probe was effectively implemented for Sudan I detection in commercial chili powder samples with good level of recovery parameters.  相似文献   

5.
Coptisine (COP), one of the bioactive components in Rhizoma Coptidis, has many pharmacological effects. Meanwhile, the determination of COP is essential in pharmacological and clinical applications. Herein, we prepared carbon quantum dots (CQDs) by one-step oil-thermal method using paper mill sludge (PMS) as precursor, and developed a ratiometric fluorescence method for the determination of COP. The structural and optical properties of PMS-CQDs were evaluated through high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), ultraviolet-visible (UV-vis), fluorescence, zeta potential and fluorescence lifetime experiments. Fluorescence intensity ratio at 550 nm and 425 nm (I550/I425) was recorded as an index for quantitative detection of COP. The detection concentration of COP ranges from 0.1 to 50 μM in good linear correlation (R2 = 0.9974) with a limit of detection of 0.028 μM (3σ/k). The quenching mechanism was deduced to be inner filter effect and static quenching. The ratiometric fluorescent probe showed impressive selectivity and sensitivity towards COP, and was successfully applied to the detection of COP in human urine with expected recoveries (95.22–111.00%) and relative standard deviations (0.46–2.95%), indicating that our developed method has a great application prospect in actual sample detection.  相似文献   

6.
N-doped carbon dots (N-CDs) were synthesized from L -glutamine and triethanolamine using a one-step hydrothermal method. The N-CDs emitting blue fluorescence had selective responses to tetracyclines (TCs) and could be used as a fluorescent probe to realize the quantitative detection and qualitative analysis of TCs. A method for the determination of TCs using the N-CDs in actual samples was successfully established. The recovery rate was maintained at 97.50–105.60%, and the relative standard deviation (RSD) was less than 3%. In addition, TCs can be visually distinguished using filter paper by the different fluorescence colours (light green, dark blue, and yellow-green) of the N-CDs/TCs system under ultraviolet light. This study provides a relatively simple method to detect and identify TCs.  相似文献   

7.
Green fluorescent silver (Ag)‐doped graphite carbon nitride (Ag‐g‐C3N4) nanosheets have been fabricated by an ultrasonic exfoliating method. The fluorescence of the Ag‐g‐C3N4 nanosheets is quenched by curcumin. The fluorescence intensity decreases with the increase in the concentration of curcumin, indicating that the Ag‐g‐C3N4 nanosheets can function as a non‐toxic and facile fluorescence probe to detect curcumin. The fluorescence intensity of Ag‐g‐C3N4 nanosheets shows a linear relationship to curcumin in the concentration range 0.01–2.00 μM with a low detection limit of 38 nM. The fluorescence quenching process between curcumin and Ag‐g‐C3N4 nanosheets mainly is based on static quenching. The fluorescent probe has been successfully applied to analyse curcumin in human urine and serum samples with satisfactory results.  相似文献   

8.
Green fluorescent carbon dots (G-CDs) were fabricated from Coptis chinensis directly via one-step hydrothermal treatment for the determination of quercetin (QCT) and pH sensing. The obtained G-CDs have low cytotoxicity, good photostability and excellent water solubility. The optimal excitation wavelength and emission wavelength were 480 and 530 nm. A remarkable emission reduction displayed when QCT was added to the G-CDs and the linear detection range is 0–200 μM, the limit of detection is 4.41 nM. The proposed method was applied to the determination of QCT in Haerbin beer products with satisfactory successful recovery. Furthermore, the G-CDs exhibited sensitive changes to pH and two fluorescent pH sensors in the linear ranges of 2.0–6.0 and 6.0–11.0 were constructed based on this. They also provide a feasible method to measure the pH value of real water samples. Importantly, the fluorescent sensor has been extended to detect QCT in yeast cell, demonstrating the G-CDs present potential biosensing application prospect.  相似文献   

9.
Photoluminescent (PL) carbon quantum dots (CQDs) were prepared successfully using a facile and green procedure. They exhibited striking blue fluorescence and excellent optical properties, with a quantum yield as high as 61.44%. Due to the fluorescence quenching effect and the stronger complexing ability of the phosphoric acid group of 1‐hydroxyethane‐1,1‐diphosphonic acid (HEDP) to Fe3+ , CQDs doped with Fe3+ were adequately constructed as an efficient and sensitive fluorescent probe for HEDP‐specific sensing. The proposed fluorescent probe had a sensitive and rapid response in the range 5–70 μ M. Furthermore, quantitative molecular surface (QMS) analysis based on the Multiwfn program was applied to explore the complexation mode of HEDP and metal ions. The distribution of electrostatic potential (ESP), average local ionization energy (ALIE), the minimum value points and the position of the lone pair electrons on the surface of molecular van der Waals were further determined. More strikingly, this experiment achieved the quantitative detection of water‐soluble phosphonate‐HEDP, for the first time using fluorescence spectrometry. It has been proved to be an effective and intuitive sensing method for the detection of HEDP in real samples.  相似文献   

10.
This work discusses surface modification of cellulose paper specimens for compatibility with nitrogen and sulfur co-doped carbon dots (NSCDs) for lead ion sensing. The interaction of carbon dots (CDs) and cellulose fibers was investigated using silane or chitosan-modified cellulose papers. It was found that modified papers could reduce undesirable redistribution of CDs, during paper drying. Also, only chitosan-modified filter paper was suitable for the successful immobilization of NSCDs. The effect of paper type, chitosan amount, pH, and NSCDs concentration was also studied, and a Whatman No. 42 filter paper modified with chitosan (1% w/v), pH 8.0, and an NSCD concentration of 2.5 g L−1 being selected for further studies. The sensor exhibited high selectivity for lead(II) compared with other metal ions because lead(II) resulted in the most significant changes in the emitted light intensity. Variations in NSCDs fluorescence were measured using a fluorescence imaging system. The NSCDs-paper sensor showed a linear relationship between mean fluorescence intensity and lead(II) in the concentration range of 5.00–1.25 × 102 μmol L−1 with a correlation coefficient (R2) of 0.9988 and a detection limit of 4.50 μmol L−1. The suggested method showed satisfying results for lead(II) determination in different samples as a fast and low-cost approach with on-site application.  相似文献   

11.
Kui‐Yu Yi 《Luminescence》2016,31(4):952-957
Novel CdTe/ZnS quantum dot (QD) probes based on the quenching effect were proposed for the simple, rapid, and specific determination of ammonium in aqueous solutions. The QDs were modified using 3‐mercaptopropionic acid, and the fluorescence responses of the CdTe/ZnS QD probes to ammonium were detected through regularity quenching. The quenching levels of the CdTe/ZnS QDs and ammonium concentration showed a good linear relationship between 4.0 × 10?6 and 5.0 × 10?4 mol/L; the detection limit was 3.0 × 10?7 mol/L. Ammonium contents in synthetic explosion soil samples were measured to determine the practical applications of the QD probes and a probable quenching mechanism was described. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Water‐soluble carbon dots (CDs) were synthesized using a one‐step hydrothermal treatment of chloroplast dispersions extracted from fresh leaves as a green carbon source. The CD solution showed an emission peak centred at 445 nm when excited at 300 nm. The synthesized CDs were uniform and monodispersed with an average size of 5.6 nm. When adding ferric(III) ions (Fe3+) to the solution of the original CDs, the fluorescence intensity decreased significantly. Based on the linear relationship between fluorescence intensity and concentration of Fe3+ ions, an effective method for rapid, sensitive and selective Fe3+ sensing in aqueous solution could be established. Under optimum conditions, the extent of the fluorescence quenching of prepared CDs strongly depended on the Fe3+ ions over a wide concentration range 1.0–100.0 μM with a detection limit (3σ/k) of 0.3 μM. Furthermore, the quantitative determination of Fe3+ ions in environmental water samples was realized.  相似文献   

13.
A highly sensitive fluorogenic probe for tiopronin was proposed. 2,4‐Dinitrobenzenesulfonyl‐fluorescein (I) is an almost nonfluorescent compound. Upon mixing with tiopronin in aqueous solution, the 2,4‐dinitrobenzenesulfonyl group of I was efficiently removed and its parent dye fluorescein was released, hence leading to dramatic increases in both fluorescence and absorbance of the reaction mixture. Under optimal conditions, the fluorescence increase is linear with tiopronin concentration in the range 5.0–600 ng mL?1, with a detection limit of 1.5 ng mL?1 (3σ). The proposed method has been successfully applied to tiopronin determination in pharmaceutical preparations and in spiked human urine samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Nitrogen-doped carbon quantum dots (N-CQDs) with citric acid and ethylenediamine as raw materials were synthesized by an efficient one-step strategy. The N-CQDs showed a special property that the fluorescence was quenched by Fe3+. The quenched fluorescence of N-CQDs could be recovered by glutathione (GSH). Therefore, a “signal-on” fluorescent sensor was developed to detect GSH. The fluorescent sensor could favorably avoid the interference of ascorbic acid, dopamine, glucose, oxidized glutathione, and other amino acids in the detecting process of GSH. The proposed sensor showed a great feature that GSH can be accurately detected in the range from 0.001 to 0.1?mol/L and can be applied to detect GSH in the human serum. Therefore, the proposed method has a promising application for monitoring the blood drug concentration of GSH in clinical studies.  相似文献   

15.
Highly fluorescent nitrogen and phosphorus‐doped carbon dots with a quantum yield 59% have been successfully synthesized from citric acid and di‐ammonium hydrogen phosphate by single step hydrothermal method. The synthesized carbon dots have high solubility as well as stability in aqueous medium. The as‐obtained carbon dots are well monodispersed with particle sizes 1.5–4 nm. Owing to a good tunable fluorescence property and biocompatibility, the carbon dots were applied for intercellular sensing of Fe3+ ions as well as cancer cell imaging. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In this research, for the first time, a dedicated sensor was designed to detect Hg+ ions using photoluminescent carbon dots (CDs). Due to the preferred green synthesis of CDs from bio-resources, carbohydrate-rich faba bean seeds as a potential carbon precursor were applied to the synthesis of CDs. The CDs were prepared from the faba bean seeds using the hydrothermal method in an aqueous solution in the absence of substances such as an acid or base and any other additives. The synthesized CDs exhibited maximum emission intensity at 387 nm when excited at 310 nm and their luminescence quantum yield was calculated to be ~5.94%. Then, the fluorescence emission of CDs was examined in the presence of different metal ions. Results revealed that the CDs had good selectivity towards the Hg+ ions, so the fluorescence emission was significantly changed in the presence of these ions with a limit of detection (LOD) as low as 0.35 μM. Furthermore, because of their very low cytotoxicity, these CDs can be applied for cell imaging.  相似文献   

17.
Hypochlorite (ClO), as a kind of essential reactive oxygen species, plays a crucial role in vitro and in vivo. Here, a ratiometric fluorescent probe ( TPAM ) was designed and constructed for sensing ClO based on substituted triphenylamine and malononitrile, which exhibited obvious colour transfer from orange to colourless under daylight accompanied by noticeable fluorescence change from red to green in response to ClO. TPAM could effectively monitor ClO with the merits of fast response, excellent selectivity, high sensitivity and a low detection limit of 0.1014 μM. 1H NMR, mass spectra and theoretical calculations proved that ClO caused the oxidation of the carbon–carbon double bond in TPAM , resulting in compound 1 and marked changes in colour and fluorescence. In addition, TPAM was utilized for imaging ClO in living cells successfully with good photostability and biocompatibility.  相似文献   

18.
Sensitive detection of doxorubicin (DOX) is critical for clinical theranostics. A novel ratiometric fluorescence strategy based on the inner filter effect (IFE) has been established for the sensitive detection of DOX by designing a ratiometric fluorescence probe. In the presence of DOX, the fluorescence intensity of copper nanoclusters (CuNCs) at 485 nm decreases, and the fluorescence intensity of carbon dots at 560 nm increases. Therefore, DOX can be quantitatively detected by measuring the ratio of the fluorescence intensities at 560 and 485 nm (F560/F485). The F560/F485 ratio exhibits a linear correlation with the DOX concentration in the range from 1.0 × 10−8 M to 1.0 × 10−4 M with the detection limit of 3.7 nM. Furthermore, this method was also successfully applied to the analysis of DOX in human plasma samples, affording an effective platform for drug safety management.  相似文献   

19.
Developing an effective method for the detection of nitrite (NO2) ions in the natural environment especially in environmental waters and soils is very necessary, since they will cause serious damage to human health once excess NO2 ions enters the human body. Therefore, a new colorimetric fluorescent probe NB-NO2 for determining NO2 ions was designed, which possesses good water-solubility and satisfactory selectivity over other common ions for NO2 ions. The addition of NO2 ions changed the color of solution from blue to colorless seen by the naked-eye. Furthermore, through test and calculation, the detection limit of the probe NB-NO2 is 129 nM. Based on the earlier excellent characteristics, the probe NB-NO2 was successfully used for monitoring NO2 ions in environmental waters and soils.  相似文献   

20.
As an important cellular microenvironmental parameter, viscosity could reflect the status of living cells. Small molecular fluorescent probes are a vital tool to measure the change of viscosity in living cells. A novel fluorescence probe ZL-1 with a large Stokes shift (in methanol it reached to 153 nm and in glycerol it reached to 125 nm) and excellent sensitivity toward viscosity was developed. The sharp enhancement of the emission intensity for the probe ZL-1 from low viscous methanol to high viscous glycerol indicated that the probe ZL-1 could respond to the viscosity variations. Moreover, the probe ZL-1 has been successfully utilized to detect of the viscosity variations in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号