首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the evidence that fauna play complex and critical roles in ecosystems (e.g. pollination and nutrient cycling) and the knowledge that they need to be considered in restoration, fauna often remain poorly represented in restoration goal setting, monitoring and assessments of restoration success. Fauna clearly are integral to the aspirations of achieving full ecosystem recovery. However, over‐reaching assumptions about the unassisted return of fauna to restored sites, low investment in fauna monitoring, and minimal consideration of the requirements for fauna monitoring in regulatory guidance and standards appear to have led to the historically vegetation‐centric approaches to rehabilitation and ecological restoration. We argue that ecological complexities render assumptions of unassisted fauna return inappropriate in many situations and may represent a missed opportunity to enhance ecological outcomes and improve restoration trajectories. We advocate for greater consideration of fauna as facilitators of ecological restoration and, particularly for well‐funded projects, for monitoring to place greater emphasis on examining the behaviour and resilience of restored fauna communities. There is a clear need for both industry and regulators to recognise that fauna can be crucial facilitators of restoration and appreciate that the return and monitoring of functional faunal communities can be costly, challenging and may require detailed study across a wide range of taxonomic groups. Failure to advance from business as usual models may risk leaving a legacy of ostensibly functional, but biodiversity‐depauperate, restored ecosystems.  相似文献   

2.
Linke  Simon  Norris  Richard 《Hydrobiologia》2003,500(1-3):203-211
The aim of this study is to create a two-tiered assessment combining restoration and conservation, both needed for biodiversity management. The first tier of this approach assesses the condition of a site using a standard bioassessment method, AUSRIVAS, to determine whether significant loss of biodiversity has occurred because of human activity. The second tier assesses the conservation value of sites that were determined to be unimpacted in the first step against a reference database. This ensures maximum complementarity without having to set a priori target areas. Using the reference database, we assign site-specific and comparable coefficients for both restoration (Observed/Expected taxa with >50% probability of occurrence) and conservation values (O/E taxa with <50%, rare taxa). In a trial on 75 sites on rivers around Sydney, NSW, Australia we were able to identify three regions: (1) an area that may need restoration; (2) an area that had a high conservation value and; (3) a region that was identified as having significant biodiversity loss but with high potential to respond to rehabilitation and become a biodiversity hotspot. These examples highlight the use of the new framework as a comprehensive system for biodiversity assessment.  相似文献   

3.
Ecosystem restoration can help reverse biodiversity loss, but whether faunal communities of forests undergoing restoration converge with those of primary forest over time remains contentious. There is a need to develop faunal indicators of restoration success that more comprehensively reflect changes in biodiversity and ecosystem function. Ants are an ecologically dominant faunal group and are widely advocated as ecological indicators. We examine ant species and functional group responses on a chronosequence of rainforest restoration in northern Australia, and develop a novel method for selecting and using indicator species. Four sampling techniques were used to survey ants at 48 sites, from grassland, through various ages (1–24 years) of restoration plantings, to mature forest. From principal components analysis of seven vegetation metrics, we derived a Forest Development Index (FDI) of vegetation change along the chronosequence. A novel Ant Forest Indicator Index (AFII), based on the occurrences of ten key indicator species associated with either grassland or mature forest, was used to assess ant community change with forest restoration. Grasslands and mature forests supported compositionally distinct ant communities at both species and functional levels. The AFII was strongly correlated with forest development (FDI). At forest restoration sites older than 5–10 years that had a relatively closed canopy, ant communities converged on those of mature rainforest, indicating a promising restoration trajectory for fauna as well as plants. Our findings reinforce the utility of ants as ecological indicators and emphasize the importance of restoration methods that achieve rapid closed‐canopy conditions. The novel AFII assessed restoration status from diverse and patchily distributed species, closely tracking ant community succession using comprehensive species‐level data. It has wide applicability for assessing forest restoration in a way that is relatively independent of sampling methodology and intensity, and without a need for new comparative data from reference sites.  相似文献   

4.
Restoration can be important in slowing, or reducing, rates of biodiversity loss, but needs to consider the factors influencing fauna recolonization as part of the recovery process. Although many studies of factors influencing faunal recolonization have examined the influence of in situ site factors, fewer have examined the influence of neighborhood landscape factors, especially in landscapes with permeable matrices. To assess the relative influence of landscape and site factors on reptile recolonization in a production landscape with a permeable matrix, we surveyed reptiles at intact reference sites and post‐mining restoration sites (3–20 years post‐mining [YPM]) in a forest ecosystem in southwestern Australia. Reptile assemblages in restoration sites never converged on those in reference habitat. Reptile species composition and individual species abundances (>20 detections) in restoration sites were primarily influenced by site factors such as canopy height, litter cover, and coarse woody debris volume, and not by landscape factors. We suggest that the most common reptile species in our study area are primarily influenced by site factors, not landscape factors, and most reptiles detected in restoration sites were present by 3–4 YPM. Therefore, it is likely that habitat suitability is the main barrier to most species' recolonization of restoration sites in landscapes with permeable matrices. Management should continue to focus on restoring microhabitats and vegetation structure, which is similar to reference habitat to promote recolonization of restoration sites by reptiles.  相似文献   

5.
生态系统质量评估方法——理想参照系和关键指标   总被引:4,自引:0,他引:4  
何念鹏  徐丽  何洪林 《生态学报》2020,40(6):1877-1886
良好的生态系统质量是社会可持续发展的重要基础,也是国家生态文明建设的重要目标之一。目前,我国在生态系统质量评估体系建设方面取得了很好的进展,但由于缺乏科学的评估标准和统一的指标体系,不同区域间评估结果的可比性差或同一区域不同时期间评估结果难以比较,难以开展区域和国家尺度的集成研究,同时也难以满足快速评估关键区域或国家尺度生态系统质量的需求。为了有效克服上述困难与挑战,迫切需要构建一套科学的、经济可行的、简单快速的、且适用于区域或国家尺度的生态系统质量评估体系。以国内生态系统质量评估现状为基础,通过梳理现有的评估体系,提出了"理想参照系"的概念体系,旨在进一步完善评估体系的基本框架;同时,较详细地阐述了理想参照系中阈值的确定方法。此外,从科学、直观、快速、经济可行等角度出发,建议重新思考生态系统质量评估的关键指标(如生产力、土壤有机质、植物多样性和景观破碎度)。新构建的"理想参照系+关键指标"的新型生态系统质量评估体系,理论上可满足新时期区域或国家生态系统质量快速评估的需求,但许多技术细节仍待于进一步完善;由于新评估体系能量化生态系统质量的恢复潜力与发展阶段,它可为更合理配置资源、提高保护成效等提供科学依据。  相似文献   

6.
我国西南喀斯特地区是具有土层薄和土被不连续等特征的生态脆弱区,人为过度干扰和土地不当利用导致了生境退化甚至石漠化的发生。从“九五”规划到“十三五”规划,为了有效抑制并逆转石漠化趋势,生态修复措施得到普遍的推广应用。“十四五”规划进一步提出科学推进石漠化综合治理,提高生态系统自我修复能力和稳定性。从土壤微生物、原生动物、线虫、微节肢动物、蚯蚓和线蚓等方面,综述了喀斯特地区生态修复对土壤生物多样性的影响。研究发现:(1)喀斯特生境细菌和真菌的多样性高于非喀斯特生境,原因是喀斯特具有较高的土壤pH和钙含量;(2)与非喀斯特生境相比,喀斯特生境土壤动物类群数相差不大而个体密度较低;(3)石漠化过程伴随着植被退化,降低了土壤微生物种类和功能多样性,土壤动物的个体密度和类群数也呈现降低趋势;(4)生态修复促进植被正向演替,土壤微生物量和酶类活性逐渐上升,真菌/细菌生物量比值增大,土壤动物个体密度和类群数增加,有利于土壤固碳和生态修复。因此,土壤生物多样性是适合指示喀斯特石漠化的生态修复的生物学指标。研究建议:(1)在传统分类鉴定基础上,结合宏基因组学、宏蛋白质组学和同位素标记等技术,完善生态修复的...  相似文献   

7.
Long‐term monitoring is vital to understanding the efficacy of restoration approaches and how restoration may enhance ecosystem functions. We revisited restored oyster reefs 13 years post‐restoration and quantified the resident and transient fauna that utilize restored reefs in three differing landscape contexts: on mudflats isolated from vegetated habitat, along the edge of salt marsh, and in between seagrass and salt marsh habitat. Differences observed 1–2 years post‐restoration in reef development and associated fauna within reefs restored on mudflats versus adjacent to seagrass/salt marsh and salt marsh‐only habitats persisted more than 10 years post‐restoration. Reefs constructed on open mudflat habitats had the highest densities of oysters and resident invertebrates compared to those in other landscape contexts, although all restored reefs continued to enhance local densities of invertebrate taxa (e.g. bivalves, gastropods, decapods, polychaetes, etc.). Catch rates of juvenile fishes were enhanced on restored reefs relative to controls, but to a lesser extent than directly post‐restoration, potentially because the reefs have grown vertically within the intertidal and out of the preferred inundation regime of small juvenile fishes. Reef presence and landscape setting did not augment the catch rates of piscivorous fishes in passive gill nets, similar to initial findings; however, hook‐and‐line catch rates were greater on restored reefs than non‐reef controls. We conclude that ecosystem functions and associated services provided by restored habitats can vary both spatially and temporally; therefore, a better understanding of how service delivery varies among landscape setting and over time should enhance efforts to model these processes and restoration decision‐making.  相似文献   

8.
Functionality of restored mangroves: A review   总被引:11,自引:9,他引:2  
Widespread mangrove degradation coupled with the increasing awareness of the importance of these coastal forests have spurred many attempts to restore mangroves but without concomitant assessment of recovery (or otherwise) at the ecosystem level in many areas. This paper reviews literature on the recovery of restored mangrove ecosystems using relevant functional indicators. While stand structure in mangrove stands is dependent on age, site conditions and silvicultural management, published data indicates that stem densities are higher in restored mangroves than comparable natural stands; the converse is true for basal area. Biomass increment rates have been found to be higher in younger stands than older stands (e.g. 12 t ha−1 year−1 for a 12 years plantation compared to 5.1 t ha−1 year−1 for a 80-year-old plantation). Disparities in patterns of tree species recruitment into the restored stands have been observed with some stands having linear recruitment rates with time (hence enhancing stand complexity), while some older stands completely lacked the understorey. Biodiversity assessments suggest that some fauna species are more responsive to mangrove degradation (e.g. herbivorous crabs and mollusks in general), and thus mangrove restoration encourages the return of such species, in some cases to levels equivalent to those in comparable natural stands. The paper finally recommends various mangrove restoration pathways in a functional framework dependent on site conditions and emphasizes community involvement and ecosystem level monitoring as integral components of restoration projects.  相似文献   

9.
We argue that the introduction of non-native extant tortoises as ecological replacements for extinct giant tortoises is a realistic restoration management scheme, which is easy to implement. We discuss how the recent extinctions of endemic giant Cylindraspis tortoises on the Mascarene Islands have left a legacy of ecosystem dysfunction threatening the remnants of native biota, focusing on the island of Mauritius because this is where most has been inferred about plant–tortoise interactions. There is a pressing need to restore and preserve several Mauritian habitats and plant communities that suffer from ecosystem dysfunction. We discuss ongoing restoration efforts on the Mauritian offshore Round Island, which provide a case study highlighting how tortoise substitutes are being used in an experimental and hypothesis-driven conservation and restoration project. The immediate conservation concern was to prevent the extinction and further degradation of Round Island's threatened flora and fauna. In the long term, the introduction of tortoises to Round Island will lead to valuable management and restoration insights for subsequent larger-scale mainland restoration projects. This case study further highlights the feasibility, versatility and low-risk nature of using tortoises in restoration programs, with particular reference to their introduction to island ecosystems. Overall, the use of extant tortoises as replacements for extinct ones is a good example of how conservation and restoration biology concepts applied at a smaller scale can be microcosms for more grandiose schemes and addresses more immediate conservation priorities than large-scale ecosystem rewilding projects.  相似文献   

10.
Oyster reef restoration has become a principal strategy for ameliorating the loss of natural Crassostrea virginica populations and increasing habitat provision. In 2014, a large‐scale, high‐relief, 23‐ha subtidal C. virginica reef was restored at the historically productive Half Moon Reef in Matagorda Bay, TX, using concrete and limestone substrates. Encrusting and motile fauna were sampled seasonally until 17 months postrestoration at the restored reef and at adjacent unrestored sites. Restored oysters developed rapidly and were most abundant 3 months postrestoration, with subsequent declines possibly due to interacting effects of larval settlement success on new substrate versus post‐settlement mortality due to competitors and predators. Oyster densities were 2× higher than in a restored oyster population in Chesapeake Bay that was reported to be the largest reestablished metapopulation of native oysters in the world. Resident fauna on the restored reef were 62% more diverse, had 433% greater biomass, and comprised a distinct faunal community compared to unrestored sites. The presence of three‐dimensional habitat was the most important factor determining resident faunal community composition, indicating that substrate limitation is a major hindrance for oyster reef community success in Texas and other parts of the Gulf of Mexico. There were only minor differences in density, biomass, and diversity of associated fauna located adjacent (13 m) versus distant (150 m) to the restored reef. The two substrate types compared had little influence on oyster recruitment or faunal habitat provision. Results support the use of reef restoration as a productive means to rebuild habitat and facilitate faunal enhancement.  相似文献   

11.
12.
红树林植被对大型底栖动物群落的影响   总被引:4,自引:0,他引:4  
陈光程  余丹  叶勇  陈彬 《生态学报》2013,33(2):327-336
大型底栖动物是红树林生态系统的重要组成部分,从红树林大型底栖动物种类、红树林与其周边生境大型底栖动物群落的比较,以及生境变化对动物群落的影响等方面阐述了红树林植被与大型底栖动物群落的关系.从物种数量上看,软体动物和甲壳类动物构成了红树林大型底栖动物的主要部分.影响大型底栖动物分布的环境因素包括海水盐度、潮位和土壤特性等,但在小范围区域,林内动物的分布更多地与红树林植被特性和潮位有关.因此,由于红树林植被破坏或者恢复引起的生境变化,将导致大型底栖动物群落和常见物种种群的变化,尤其对底上动物影响明显;随着人工恢复红树林的发育,林内底栖动物的多样性相应增加,优势种也发生变化.相比位于相同潮位的无植被滩涂,红树林可促进潮间带生物多样性.  相似文献   

13.
14.
Native re‐forestation is a widely used restoration tool, typically undertaken with the expectation that planting native trees will initiate succession processes (including the re‐establishment of native fauna) that will eventually return the ecosystem to a native‐dominated state. Invertebrate groups can be used to assess restoration progress, as their life history traits enable them to respond more rapidly to environmental change than many other organisms. In this study, we assessed beetle responses to re‐forestation. Using two trapping methods (flight intercept traps and pitfall traps), we compared beetle assemblages in exotic pasture (pre‐restoration state), <10‐year‐old planted native forest (restoration intervention) and approximately 40‐year‐old unmanaged regenerating native forest (reference state). Analysis of the flight intercept‐trapped beetles suggests that re‐forestation has initiated a transition from an exotic‐dominated pasture fauna toward a native‐dominated fauna: in planted forests, 75% of all flight‐intercept‐trapped beetles were native (compared with 22% in pasture and 87% in unmanaged forest). Flight intercept‐trapped beetles also had higher native diversity and abundance in both forest types than in pasture. Pitfall‐trapped beetle species were predominantly native in both forest types, but there were few statistically significant differences between the forests and pasture in the pit‐fall trap data set. Both trapping methods detected significant compositional differences between the beetle assemblages in planted forest and unmanaged forest. Replanting native forest has increased native beetle diversity, abundance, and dominance (compared with the pre‐restoration state), but convergence with the unmanaged reference forest has not yet been achieved.  相似文献   

15.
Cabin (2007) asks whether formal science is an effective framework and methodology for designing and implementing ecological restoration programs. He argues that beyond certain ancillary benefits, restoration science has little of practical value to offer the practice of restoration. He goes on to suggest that restoration science most often represents an impediment to restoration practice because an “ivory tower” mentality limits the utility of experiments and diverts research dollars away from answering practical questions. His conclusion is that a nonscientific gardening approach may be more effective at restoring degraded ecosystems. We disagree with this perspective because: (1) restoration science has moved beyond exclusively using “square grids” placed on small patches of land to examine treatment effects on species representation; (2) Cabin’s critique greatly undervalues the contribution of science to restoration practice even where the input of restoration scientists is not directly evident; and (3) the practice of restoration is unlikely to advance beyond small‐scale and truly haphazard successes without well‐designed studies that can provide peer‐reviewed and widely accessible published information on the mechanisms underlying both successes and failures. We conclude that through integration with other disciplines, restoration science increasingly will provide novel approaches and tools needed to restore ecosystem composition, structure, and function at stand to landscape scales. As with the broader role of science in the human enterprise ( Sagan 1996 ), the contribution of restoration science to restoration practice can only grow as the discipline matures.  相似文献   

16.
Assessments of faunal reassembly during wetland restorations have typically been derived from relatively benign, lower‐elevation environments. We investigated recovery of terrestrial arthropod assemblages in conjunction with restoration of a montane wet meadow in Sequoia National Park (Sierra Nevada, California, U.S.A.). Our goal was to assess response of arthropod assemblages to wetland restoration in this winter‐dominated environment, including comparison of faunal reassembly in (1) areas of sparse plugs (planted over several years) and (2) dual‐density plantings with additional heterogeneity, complexity, and connectance to source habitats provided by high‐density bands running through sparsely planted habitat (final study year only). Results across all restoration treatments indicated varying levels of faunal reassembly, but convergence of faunal assemblages with reference habitat had not occurred after recovery periods as long as 5 years. Similarity indices and multivariate compositional results indicated a slower recovery than did univariate trends for assemblage metrics and abundances for some individual taxa, highlighting the utility of assessments using a range of taxa and analytical approaches. Faunal recovery did not appear to lag behind that of vegetation structure, despite the short growing season. The dual‐density plantings indicated faster recovery after 1 year, across almost all metrics, than was observed after several years for the sparse plantings. Restoration configurations that increase habitat complexity, heterogeneity, and/or connectance may disproportionately increase rates of passive faunal reassembly and prove to be cost‐effective approaches for promoting recovery of ecosystem function.  相似文献   

17.
It is standard practice to compare the status of performance indicators between restoration and reference sites to monitor restoration progress and demonstrate restoration success. However, standard methods for defining the reference ecosystem, selecting reference sites, and measuring success are surprisingly lacking. Our study develops these methods based on the acceptable range of variation (ARV) within the desirable stable (reference) state as a measure of restoration success. The method (1) constrains application to the contemporary landscape to avoid the problematic historical range of variation concept and idealized restoration targets; (2) acknowledges the theory of alternative stable states and ecosystem dynamics and posits that the reference ecosystem should be clearly defined as a desirable stable (reference) state; and (3) shows that identifying an acceptable thematic (classification) scale and an acceptable management timeframe is essential to defining the desirable stable (reference) state. We present two approaches to calculating an ARV and a simulation method to explore reference site replication sufficiency. We apply the methods to two contrasting Australian restoration case studies and recommend that routine adoption of these methods would make a significant contribution to the science and practice of restoration ecology and to the assessment of restoration success.  相似文献   

18.
Ecosystem restoration frequently involves the reintroduction of plant material in the degraded ecosystem. When there are no plant nurseries or seeds available on the market, the plant material has to be harvested in the wild, in a “donor ecosystem.” A comprehensive assessment of donor ecosystem recovery is lacking, especially for Sphagnum‐dominated donor peatlands, where all top vegetation is harvested mechanically with different practices. We aimed to evaluate (1) the regeneration of vegetation, especially of Sphagnum mosses, to determine which harvesting practices are best to enhance recovery and (2) the influence of the site hydrological conditions and meteorological variables of the first complete growing season postharvesting on peat moss regeneration. Twenty‐five donor sites covering a 17‐year chronosequence (harvested 1–17 years ago) were inventoried along with 15 associated natural reference sites located in Quebec, New Brunswick, and Alberta, Canada. All donor sites aged 10 years or more were dominated by Sphagnum mosses, though plant composition varied between donor and their associated reference sites because of the wetter conditions at harvested donor sites. Harvesting practices strongly influenced donor site recovery, showing that the skills of the practitioner are an essential ingredient. Harvesting practices minimizing donor site disturbances are recommended, such as the choice of the adequate donor site (localization, hydrologic conditions, vegetation), the use of less disruptive methods, and harvesting when the soil is deeply frozen. This study demonstrated that harvesting surface plant material for peatland restoration is not detrimental towards the recovery of near‐natural peatland ecosystems.  相似文献   

19.
刘任涛 《生态学杂志》2012,31(3):760-765
在全球性气候变化背景下,极端降雨事件频发,总结土壤动物多样性与降雨变化间的关系及其响应机制,有助于理解全球变化对土壤生态系统结构与功能的作用过程,对于探讨陆地生态系统应对全球变化具有重要科学意义。荒漠草原生态系统极度脆弱,对气候变化敏感,但是关于荒漠草原土壤动物与降雨变化间关系的研究报道比较少,严重制约了对荒漠草原生态系统的有效管理和可持续利用。本文从地上、地面和地下3个方面总结了土壤动物和降雨变化间的关系,并就荒漠草原土壤动物应对气候变化研究提出了一些建议。研究表明,降雨变化直接影响土壤动物群落结构;土壤动物对降雨变化反应强烈,不同动物类群产生了积极的响应规律;某些土壤动物类群对于降雨变化还具有重要指示作用。在荒漠草原生态系统中,今后需要从降雨变化对土壤动物产生的长期影响、土壤动物对降雨变化的适应方式和某些动物类群对土壤水分敏感性以及土壤动物与气候变化间的互为反馈关系等方面加强研究。  相似文献   

20.
Accurate and ecologically meaningful characterisation of reference conditions is a fundamental premise of restoration ecology. Restoration practice and research commonly define reference conditions in terms of compositional and structural elements. We propose a “process-centred” framework that places central emphasis on ecological functions and ecosystem processes. A wide variety of processes is central to the functioning and dynamics of ecological systems, and can be placed at the foundation of restoration research and practice. A process-centred approach allows the definition of “reference dynamics”, where spatial and temporal variability and underlying mechanisms of change are primary. We illustrate this approach using a 303-yr reconstruction of the natural surface fire regime to guide restoration of a Pinus ponderosa forest in the Jemez Mountains of southwestern North America. Fire occurrence varied over space and time during the period of record, with ecologically significant variation in fire intervals (yr fire−1) governed by process–structure interactions. We defined a variety of reference variables for reintroduction of fire as the keystone ecological process, along with related structural variation. A process-centered approach and the reference dynamics paradigm can replace a more static concept of reference conditions in defining restoration baselines and provide an improved standard of comparison for restoration ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号