首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A series of SrMoO4:Sm3+,Tb3+,Na+ phosphors was synthesized using a high‐temperature solid‐state reaction method in air. On excitation at 290 nm, SrMoO4:Sm3+,Tb3+ phosphor emitted light that varied systematically from green to reddish‐orange on changing the Sm3+ and Tb3+ ion concentrations. The emission intensities of SrMoO4:Sm3+ and SrMoO4:Sm3+,Tb3+ phosphors were increased two to four times due to charge compensation when Na+ was added as a charge compensator. The luminescence mechanism and energy transfer could be explained using energy‐level diagrams of the MoO42– group, Sm3+ and Tb3+ ions. SrMoO4:Sm3+,Tb3+,Na+ could be used as reddish‐orange phosphor in white light‐emitting diodes (LEDs) based on an ~ 405 nm near‐UV LED chip. This research is helpful in adjusting and improving the luminescence properties of other phosphors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The present study investigates the impact of the ligand environment on the luminescence and thermometric behavior of Sm3+ doped A3(PO4)2 (A = Sr, Ca) phosphors prepared by combustion synthesis. The structural and luminescent properties of Sm3+ ions in the phosphate lattices were investigated using powder X-ray diffraction (PXRD) and photoluminescence (PL) techniques. PXRD results of the synthesized phosphors exhibit the expected phases that are in agreement with their respective standards. Fourier-transform infrared (FTIR) spectroscopy confirms the presence of PO4 vibrational bands. Upon excitation with near ultraviolet light, the PL studies indicated that Sr3(PO4)2:Sm3+ phosphors exhibit a yellow light emission, whereas Ca3(PO4)2:Sm3+ phosphors exhibit an emission of orange light. The PL emission results are in accordance with the CIE coordinates, with the Sr3(PO4)2:Sm3+ phosphors showing coordinates of (0.56, 0.44), and the Ca3(PO4)2:Sm3+ phosphors displaying coordinates of (0.60, 0.40). Thermal analysis shows improved stability of Ca3(PO4)2:Sm3+ based on lower weight reduction in thermogravimetric analysis. The effect of temperature on the luminescence properties of the phosphor has been examined upon a 405 nm excitation. By using the fluorescence intensity ratio (FIR) method, the temperature responses of the emission ratios from the Sm3+: the 4F3/26H5/2 transition to the 4G5/26H7/2 and 4F3/26H5/2 transition to the 4G5/26H9/2 emissions are characterized. The Ca3(PO4)2:Sm3+ phosphors are more sensitive as compared with the Sr3(PO4)2:Sm3+ phosphors. The earlier research findings strongly indicate that these phosphors hold great promise as ideal candidates for applications in non-invasive optical thermometry and solid-state lighting devices.  相似文献   

3.
The antimonate compound La3SbO7 has high chemical stability, lattice stiffness and thermal stability. Orange–red‐emitting antimonate‐based phosphors La3SbO7:xSm3+ (x = 0.02, 0.05, 0.08, 0.10, 0.15, 0.20 and 0.25) were synthesized. The phase structure and photoluminescence properties of these phosphors were investigated. The emission spectrum obtained on excitation at 407 nm contained exclusively the characteristic emissions of Sm3+ at 568, 608, 654 and 716 nm, which correspond to the transitions from 4G5/2 to 6H5/2, 6H7/2, 6H9/2 and 6H11/2 of Sm3+, respectively. The strongest emission was located at 608 nm due to the 4G5/26H7/2 transition of Sm3+, generating bright orange–red light. The critical quenching concentration of Sm3+ in La3SbO7:Sm3+ phosphor was determined as 10% and the energy transfer between Sm3+ was found to be through an exchange interaction. The International Commission on Illumination chromaticity coordinates of the La3SbO7:0.10Sm3+ phosphors are located in the orange–red region. The La3SbO7:Sm3+ phosphors may be potentially used as red phosphors for white light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A series of Sr1‐x‐yCayMoO4:xSm3+ (0 ≤ x ≤ 7 mol% and 0 ≤ y < 1) phosphors was synthesized by a conventional solid‐state reaction method in air, and their structural and spectroscopic properties were investigated. The optimal doping concentration of Sm3+ in SrMoO4:Sm3+ phosphor is 5 mol%. Under excitation with 275 nm, in Sr1‐x‐yCayMoO4:xSm3+ (0 ≤ x ≤ 7 mol% and 0 ≤ y < 1) phosphors, the emission band of the host was found to overlap with the excitation bands peaking at ~500 nm of Sm3+ ion, and the energy transfer from MoO42? group to Sm3+ ion can also be observed. The International Commission on Illumination (CIE) chromaticity coordinates of Sr0.95‐yCayMoO4:0.05Sm3+ phosphors with excitation 275 nm varied systematically from an orange (0.4961, 0.3761) (y = 0) to a white color (0.33, 0.3442) (y = 0.95) with increasing calcium oxide (CaO) concentration. However, Sr0.95‐yCayMoO4:0.05Sm3+ phosphors with excitation at 404 nm only showed red emission and the energy transfer between MoO42? group to Sm3+ ion was not observed. The complex mechanisms of luminescence and energy transfer are discussed by energy level diagrams of MoO42? group and Sm3+ ion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
CaSnO3:Bi3+ blue‐emitting phosphor was synthesized using a high‐temperature solid‐state reaction method in air. The crystal structures and luminescence properties were investigated. A broad emission band peaking at ~448 nm upon excitation at 262 and 308 nm was observed in the range 330–680 nm at room temperature due to 3P1 → 1S0 transition of the Bi3+ ion. The chromaticity coordinate was (0.1786, 0.1665). The optimal Bi3+ ion concentration was ~0.6 mol% in CaSnO3:Bi3+ phosphor. The emission spectrum of CaSnO3:Bi3+ phosphor showed a blue‐shift with increasing temperature from 50 to 300 K due to the influence of temperature on the electron transition of the Bi3+ ion. The emission intensity of CaSnO3:Bi3+ phosphor may be increased ~1.45 times by co‐doping Li+ ions as a charge compensator and fluxing agent. The luminescence mechanism is explained by a configurational coordinate diagram of Bi3+ ion in CaSnO3:Bi3+ phosphor.  相似文献   

6.
The CaAlBO4:RE (RE = Dy3+, Eu3+, Sm3+) phosphor were prepared via combustion synthesis and studied by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), photoluminescence (PL) spectra and CIE coordinates. The phase formation of the obtained phosphor was analyzed by XRD and the result was confirmed by standard PDF Card No. 1539083. XRD data successfully indicated pure phase of CaAlBO4 phosphor. The crystal structure of CaAlBO4 phosphor is orthorhombic with space group Ccc2 (37). The SEM image of CaAlBO4 phosphor reveals an agglomerated morphology and non-uniform particle size. The EDS image provides evidence of the elements present and the chemical makeup of the materials. Under the 350 nm excitation, the emission spectrum of Dy3+ activated CaAlBO4 phosphor consists of two main groups of characteristic peaks located at 484 and 577 nm which are ascribed to 4F9/26H15/2 and 4F9/26H13/2 transition of Dy3+ respectively. The PL emission spectra of CaAlBO4:Eu3+ phosphor shows characteristics bands observed around 591 and 613 nm, which corresponds to 5D07F1 and 5D07F2 transition of Eu3+ respectively, upon 395 nm excitation wavelength. The emission spectra of Sm3+ activated CaAlBO4 phosphor shows three characteristic bands observed at 565, 601 and 648 nm which emits yellow, orange and red color. The prominent emission peak at the wavelength 601 nm, which is attributed to 4G5/26H7/2 transition, displays an orange emission. The CIE color coordinates of CaAlBO4:RE (RE = Dy3+, Eu3+, Sm3+) phosphor are calculated to be (0.631, 0.368), (0.674, 0.325) and (0.073, 0.185). As per the obtained results, CaAlBO4:RE (RE = Dy3+, Eu3+, Sm3+) phosphor may be applicable in eco-friendly lightning technology.  相似文献   

7.
This paper focuses on an optical study of a Tb3+/Bi3+‐doped and Sm3+/La3+‐ doped Ca2Al2SiO7 phosphor synthesized using combustion methods. Here, Ca2Al2SiO7:Sm3+ showed a red emission band under visible light excitation but, when it co‐doped with La3+ ions, the emission intensity was further enhanced. Ca2Al2SiO7:Tb3+ shows the characteristic green emission band under near‐ultraviolet light excitation wavelengths, co‐doping with Bi3+ ions produced enhanced photoluminescence intensity with better colour tunable properties. The phosphor exhibited better phase purity and crystallinity, confirmed by X‐ray diffraction. Binding energies of Ca(2p), Al(2p), Si(2p), O(1s) were studied using X‐ray photoelectron spectroscopy. The reported phosphor may be a promising visible light excited red phosphor for light‐emitting diodes and energy conversion devices.  相似文献   

8.
A series of Eu2+‐, Sm3+‐ and Eu2+/Sm3+‐doped SrZn2(PO4)2 samples were synthesized using a solid‐state reaction. SrZn2(PO4)2:Eu2+ presented a broad emission band due to 4f65d–4f7 transition of the Eu2+ ion. The spectra of SrZn2(PO4)2:Sm sintered in air and H2/N2 were identical in every aspect, except for a very small difference in intensity. A Eu2+–Sm3+ energy transfer scheme was proposed to realize the sensitization of Sm3+ ion emission by Eu2+ ions, and UV‐convertible Sm3+‐activated red phosphor was obtained in SrZn2(PO4)2:Eu2+, Sm3+. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A near ultraviolet excitable phosphor based on Sm3+‐doped YAl3(BO3)4 has been synthesized by modified solid‐state reaction at 1000°C. The phase purity and photoluminescence (PL) behavior of the phosphor are studied in detail using the powder X‐ray diffraction technique and PL measurements. X‐ray diffraction reveals that the phase purity of YAl3(BO3)4 critically depends upon the boric acid concentration. The phosphor has strong excitation at 406 nm in the near ultraviolet region (350–420 nm) and its emission peaks were monitored at 564, 599 and 643 nm. Further, detailed PL analysis demonstrates that the substitution of Sm3+ ions at sites of Y3+ and Al3+ ions enhances the PL efficiency of the phosphor appreciably. First, the PL efficiency of YAl3(BO3)4:Sm3+ was compared with commercial (Y,Gd)BO3:Eu3+ red phosphor. The Fourier transform infrared study provides essential information regarding the change in metal–oxygen bond vibrations of the phosphor. The morphology of the phosphor was investigated through scanning electron microscopy, which reveals that the phosphor possessed distorted spherical and rectangular shapes with average grain sizes in the range 0.5–1 µm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A novel multi-color emitting Na2YMg2V3O12:Sm3+ phosphor was synthesized using a solid-state reaction, and its crystal structure, luminescence properties, and thermal stability were studied. Charge transfer within the (VO4)3− groups in the Na2YMg2V3O12 host led to a broad emission band between 400 and 700 nm, with a maximum at 530 nm. The Na2Y1−xMg2V3O12:xSm3+ phosphors exhibited a multi-color emission band under 365 nm near-ultraviolet (near-UV) light, consisting of the green emission of the (VO4)3− groups and sharp emission peaks at 570 nm (yellow), 618 nm (orange), 657 nm (red), and 714 nm (deep red) of Sm3+ ions. The optimal doping concentration of Sm3+ ions was found to be 0.05 mol%, and the dipole–dipole (d–d) interaction was primarily responsible for the concentration quenching phenomenon. Using the acquired Na2YMg2V3O12:Sm3+ phosphors, commercial BaMgAl10O17:Eu2+ blue phosphor, and a near-UV light-emitting diode (LED) chip, a white-LED lamp was designed and packaged. It produced bright neutral white light, manifesting a CIE coordinate of (0.314, 0.373), a color rendering index (CRI) of 84.9, and a correlated color temperature (CCT) of 6377 K. These findings indicate the potential of Na2YMg2V3O12:Sm3+ phosphor to be used as a multi-color component for solid-state illumination.  相似文献   

11.
A series of novel red‐emitting Sm3+‐doped bismuth silicate phosphors, Bi4Si3O12:xSm3+ (0.01 ≤ x ≤ 0.06), were prepared via the sol–gel route. The phase of the synthesized samples calcinated at 800 °C is isostructural with Bi4Si3O12 according to X‐ray diffraction results. Under excitation with 405 nm light, some typical peaks of Sm3+ ions centered at 566, 609, 655 and 715 nm are found in the emission spectra of the Sm3+‐doped Bi4Si3O12 phosphors. The strongest peak located at 609 nm is due to 4G5/26H7/2 transition of Sm3+. The luminescence intensity reaches its maximum value when the Sm3+ ion content is 4 mol%. The results suggest that Bi4Si3O12:Sm3+ may be a potential red phosphor for white light‐emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Samarium ion (Sm3+)-doped alkali zinc alumino borosilicate (AZABS) glass was synthesized via quick melt quench technique. Various spectroscopic studies like optical absorption, photoluminescence (PL) emission, PL excitation, temperature-dependent PL and PL decay kinetics were performed on the as prepared glass system. Under 402 nm excitation, three sharp bands at wavelengths 563, 599 and 645 nm corresponding to transitions 4G5/26H5/2, 6H7/2 and 6H9/2, respectively, can be seen in the PL emission spectra. The 0.25 mol% Sm3+ glass has the highest intensity for these emissions. The lanthanide interaction in the glass matrix is dipole–dipole in nature as was proven from Dexter's analysis. The direct bandgap of 0.25 mol% Sm3+-doped AZABS glass was calculated to be 2.88 eV. The lifetimes of the as prepared glass range from 1.93 ms for the lowest concentration of Sm3+ to 0.75 ms for the highest. From temperature dependent PL studies, the activation energy for 0.25 mol% Sm3+-doped AZABS glass was found to be 0.19 eV which shows high thermal stability of this glass. We propose to utilize these Sm3+-doped AZABS glasses for white-light emitting diodes (w-LEDs) and solid-state lighting (SSL) applications.  相似文献   

13.
Four series of borosilicate glasses modified by alkali oxides and doped with Tb3+ and Sm3+ ions were prepared using the conventional melt quenching technique, with the chemical composition 74.5B2O3 + 10SiO2 + 5MgO + R + 0.5(Tb2O3/Sm2O3) [where R = 10(Li2O /Na2O/K2O) for series A and C, and R = 5(Li2O + Na2O/Li2O + K2O/K2O + Na2O) for series B and D]. The X‐ray diffraction (XRD) patterns of all the prepared glasses indicate their amorphous nature. The spectroscopic properties of the prepared glasses were studied by optical absorption analysis, photoluminescence excitation (PLE) and photoluminescence (PL) analysis. A green emission corresponding to the 5D47F5 (543 nm) transition of the Tb3+ ions was registered under excitation at 379 nm for series A and B glasses. The emission spectra of the Sm3+ ions with the series C and D glasses showed strong reddish‐orange emission at 600 nm (4G5/26H7/2) with an excitation wavelength λexci = 404 nm (6H5/24F7/2). Furthermore, the change in the luminescence intensity with the addition of an alkali oxide and combinations of these alkali oxides to borosilicate glasses doped with Tb3+ and Sm3+ ions was studied to optimize the potential alkali‐oxide‐modified borosilicate glass.  相似文献   

14.
In the present study, the effect of bismuth oxide (Bi2O3) content on the structural and optical properties of 0.5Sm3+‐doped phosphate glass and the effect of concentration on structural and optical properties of Sm3+‐doped bismuth phosphate (BiP) glass were studied. Structural characterization was accomplished using X‐ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy and 31P nuclear magnetic resonance (NMR) spectroscopy. Optical properties were studied using absorption, photoluminescence and decay measurements. Using optical absorption spectra, Judd–Ofelt parameters were derived to determine the local structure and bonding in the vicinity of Sm3+ ions. The emission spectra of Sm3+‐doped BiP glass showed two intense emission bands, 4G5/26H7/2 (orange) and 4G5/26H9/2 (red) for which the stimulated emission cross‐sections (σe) and branching ratios (β) were found to be higher. The quantum efficiencies were also calculated from decay measurements recorded for the 4G5/2 level of Sm3+ ions. The suitable combination of Bi2O3 (10 mol%) and Sm3+ (0.5 mol%) ions in these glasses acted as an efficient lasing material and might be suitable for the development of visible orange‐red photonic materials.  相似文献   

15.
Y. Xu  W. Yang  X. Li  W. Li  X. Ju 《Luminescence》2014,29(7):711-714
(Zn,Lnx)MoO4:Tb3+ (Ln = Y3+, Gd3+ and Lu3+) were prepared using the co‐precipitation method. Phase impurity, morphology and composition were investigated by power X‐ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The experimental results show that crystal structure is not destroyed after doping an appropriate amount of Y3+, Gd3+ and Lu3+. EDS analysis reveals that Y, Gd and Lu have been successfully doped into ZnMoO4. In addition, the morphology of the phosphors is notably improved, exhibiting homogeneous dispersion morphology and irregular shapes of particle size ~ 0.5–1 µm. The luminescent intensity of (Zn,Lnx)MoO4:Tb3+ (Ln = Y3+, Gd3+ and Lu3+) phosphor is obviously higher than that of ZnMoO4:Tb3+ phosphor. The energy transfer process between trivalent rare earth ions indicates that the inert earth ions can act as an energy bridge from MoO42‐ to Tb3+. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
K. N. Shinde  K. Park 《Luminescence》2013,28(5):793-796
A series of efficient Li3Al2(PO4)3:Eu2+ novel phosphors were synthesized by the facile combustion method. The effects of dopant on the luminescence behavior of Li3Al2(PO4)3 phosphor were also investigated. The phosphors were characterized by X‐ray diffraction, field emission scanning electron microscope and photoluminescence techniques. The result shows that all samples can be excited efficiently by near‐ultraviolet excitation under 310 nm. The emission was observed for Li3Al2(PO4)3:Eu2+ phosphor at 425 nm, which corresponded to the d → f transition. The concentration quenching of Eu2+ was observed in Li3Al2(PO4)3:Eu2+ when the Eu concentration was at 0.5 mol%. The prepared powders exhibited intense blue emission at the 425 nm owing to the Eu2+ ion by Hg‐free excitation at 310 nm (i.e., solid‐state lighting excitation). Consequently, the availability of such a phosphor will significantly help in the development of blue‐emitting solid‐state lighting applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, Bi3+ incorporation in NaYbF4:Er lattice and its influence on upconversion luminescence properties have been investigated in detail using techniques such as temperature‐dependent luminescence, Fourier transform infrared spectroscopy and X‐ray diffraction (XRD). The study was carried out to develop phosphors with improved upconversion luminescence. From photoluminescence and lifetime measurements it is inferred that luminescence intensity from NaYbF4:Er increases with Bi3+ addition. The sample containing 50 at.% Bi3+ ions exhibited optimum upconversion luminescence. Increased distance between Yb3+–Yb3+ and Er3+–Er3+ due to Bi3+ incorporation into the lattice and associated decrease in the extent of dipolar interaction/self‐quenching are responsible for increase in lifetime values and luminescence intensities from Er3+ ions. Incorporation of Bi3+ into NaYbF4:Er lattice reduced self‐quenching among Yb3+–Yb3+ions and this facilitated energy transfer from Yb3+ to Er3+. This situation also explains decrease in the extent of temperature‐assisted quenching of emission from thermally coupled 2H11/2 and 4S3/2 levels of Er3+. Based on Rietveld refinement of XRD patterns it was confirmed that a maximum of 10 at.% of Bi3+added was incorporated into the NaYbF4:Er lattice and the remaining complex co‐exists as a BiOF phase. These results are of significant interest in the area of development of phosphors based on Yb3+–Er3+ upconversion luminescence.  相似文献   

18.
A yellow‐emitting phosphor NaY(MoO4)2:Dy3+ was synthesized using a solid‐state reaction at 550 °C for 4 h, and its luminescent properties were investigated. Its phase formation was studied using X‐ray powder diffraction analysis, and there were no crystalline phases other than NaY(MoO4)2. NaY(MoO4)2:Dy3+ produced yellow emission under 386 or 453 nm excitation, and the prominent luminescence was yellow (575 nm) due to the 4 F9/26H13/2 transition of Dy3+. For the 575 nm emission, the excitation spectrum had one broad band and some narrow peaks; the peaks were located at 290, 351, 365, 386, 426, 453 and 474 nm. Emission intensities were influenced by the Dy3+ doping content and a concentration quenching effect was observed; the phenomenon was also proved by the decay curves. Moreover, the Commission International de I'Eclairage chromaticity coordinates of NaY(MoO4)2:Dy3+ showed similar values at different Dy3+ concentrations, and were located in the yellow region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A novel tunable red emitting phosphor LiBaB9O15:Sm2+/Sm3+, Li+ with broad excitation band was synthesized by a high temperature solid‐state method. Luminescence properties were investigated in detail by luminescence, X‐ray photoelectron spectroscopy (XPS) spectra and CIE chromaticity coordinates. XPS data confirmed that there were Sm3+ in LiBaB9O15:Sm3+ and Sm2+/Sm3+ in LiBaB9O15:Sm2+/Sm3+, respectively. Spectral property of LiBaB9O15:Sm3+, LiBaB9O15:Sm3+/Sm2+ and LiBaB9O15:Sm2+, Li+ presented that the excitation band of Sm3+ widened and the excitation band of Sm2+ ranged from 350 to 450 nm. And the red light color is tunable with changing Li+ concentration. The results indicated that LiBaB9O15:Sm2+/Sm3+, Li+ may be promising red phosphor for white light emitting diodes.  相似文献   

20.
Chlorosulphate NaMgSO4Cl phosphor doped with Ce3+ and co‐doped by Dy3+ prepared by the wet chemical method was studied for its photoluminescence and thermoluminescence (TL) characteristics. The emission spectrum of Ce3+ shows dominant peaks at 346 nm (excitation 270 nm) due to 5d → 4f transition. Efficient energy transfer occurs from Ce3+ → Dy3+ ions. Dy3+ emission at 485 nm and 576 nm is due to 4 F9/26H15/2 and 4 F9/26H13/2 transitions of Dy3+ ion respectively. The TL glow curves of NaMgSO4Cl:Ce and Ce,Dy have been recorded for various concentrations at a heating rate of 2 °C/s irradiated by γ‐rays at a dose rate of 0.995 kGy/h for 1 Gy, which peaks at about 241 °C and 247‐312 °C respectively. Further, in changing the concentration level, the general structure of the intensity is found to increase. The main property of this phosphor is its sensitivity even for low concentrations of rare earth ions and low γ‐ray dose. There is still scope for higher doses of γ‐radiation. The phosphor presented may be used as a lamp phosphor as well as for TL studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号