首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existing taxonomy of Euryalida, one of the two orders of the Ophiuroidea (Echinodermata), is uncertain and characterized by controversial delimitation of taxonomic ranks from genus to family-level. Their phylogeny was not studied in detail until now. We investigated a dataset of sequence from a mitochondrial gene (16S rRNA) and two nucleic genes (18S rRNA and 28S rRNA) for 49 euryalid ophiuroids and four outgroup species from the order Ophiurida.The monophyly of the order Euryalida was supported as was the monophyly of Asteronychidae, Gorgonocephalidae and an Asteroschematidae + Euryalidae clade. However, the group currently known as the Asteroschematidae was paraphyletic with respect to the Euryalidae. The Asteroschematidae + Euryalidae clade, which we recognise as an enlarged Euryalidae, contains three natural groups: the Asteroschematinae (Asteroschema and Ophiocreas), a new subfamily Astrocharinae (Astrocharis) and the Euryalinae with remaining genera. These subfamilies can be distinguished by internal ossicle morphology.  相似文献   

2.
Ophiuroids are important benthic marine invertebrates with an unstable taxonomic history. Recent phylogenetic and morphological investigations have promoted major departures from established taxonomy. As such, additional insights into evolutionary relationships of ophiuroids are valuable. We analyzed ribosomal sequence data from a mitochondrial gene (16S rRNA) and a nuclear gene (18S rRNA) from 39 ophiuroids representing 14 of the 18 currently accepted families. Main findings from our study include support for a polyphyletic Ophiomyxidae, paraphyletic Amphiuridae, monophyletic Euryalida, a sister relationship between the Ophiactidae and Ophiotrichidae, and a clade comprised of the Amphiuridae and Amphilepididae. Relationships within the families Gorgonocephalidae, Ophiuridae, Ophiodermatidae and Ophiomyxidae are discussed.  相似文献   

3.
《Genomics》2020,112(5):2970-2977
Here we determined mitogenomes of three Bostrichiformia species. These data were combined with 51 previously sequenced Polyphaga mitogenomes to explore the higher-level relationships within Polyphaga by using four different mitogenomic datasets and three tree inference approaches. Among Polyphaga mitogenomes we observed heterogeneity in nucleotide composition and evolutionary rates, which may have affected phylogenetic inferences across the different mitogenomic datasets. Elateriformia, Cucujiformia, and Scarabaeiformia were each inferred to be monophyletic by all analyses, as was Bostrichiformia by most analyses based on two datasets with low heterogeneity. The large series Staphyliniformia was never recovered as monophyletic in our analyses. The Bayesian tree using a degenerated nucleotide dataset (P123_Degen) and a site-heterogeneous mixture model in PhyloBayes was supported as the best Polyphaga phylogeny: (Scirtiformia, (Elateriformia, ((Bostrichiformia, Cucujiformia), (Scarabaeiformia + Staphyliniformia)))). For Cucujiformia, the largest series, we inferred a superfamily-level phylogeny: ((Cleroidea, Coccinelloidea), (Tenebrionoidea, (Cucujoidea + Curculionoidea + Chrysomeloidea))).  相似文献   

4.
5.
Evolution of mitochondrial gene orders in echinoderms   总被引:1,自引:0,他引:1  
A comprehensive analysis of the mitochondrial gene orders of all previously published and two novel Antedon mediterranea (Crinoidea) and Ophiura albida (Ophiuroidea) complete echinoderm mitochondrial genomes shows that all major types of rearrangement operations are necessary to explain the evolution of mitochondrial genomes. In addition to protein coding genes we include all tRNA genes as well as the control region in our analysis. Surprisingly, 7 of the 16 genomes published in the GenBank database contain misannotations, mostly unannotated tRNAs and/or mistakes in the orientation of tRNAs, which we have corrected here. Although the gene orders of mt genomes appear very different, only 8 events are necessary to explain the evolutionary history of echinoderms with the exception of the ophiuroids. Only two of these rearrangements are inversions, while we identify three tandem-duplication-random-loss events and three transpositions.  相似文献   

6.
Phylogenetic relationship within Neuroptera is controversial, particularly for the various hypotheses based on both morphological and molecular evidence. In the present study, we determined the complete mitochondrial genome (mitogenome) of Gatzara jezoensis, which is the second representative of the tribe Dendroleontini. The G. jezoensis mitogenome contained the conserved set of 37 mitochondrial genes and a putative control region, with a conserved gene arrangement which was similar to that of most sequenced neuropteran mitogenomes. All transfer RNAs exhibited the canonical cloverleaf secondary structure, except for trnS(AGN). The control region contained two conserved elements (ploy-T stretch and ATGGTTCAAYAAAATAAYYCYCTC motif) and abundant microsatellite-like elements. The phylogenetic analysis of sequenced neuropteran mitogenomes using the concatenated protein-coding genes (PCGs) and ribosomal genes recovered the monophyly of Myrmeleontidae, which revealed this dataset could generate the more robust phylogeny of Neuroptera than that of 13 PCGs dataset.  相似文献   

7.
Lu Bao  Yonghen Zhang  Xing Gu  Yuefang Gao  Youben Yu 《Genomics》2019,111(5):1043-1052
Zygaenidae comprises >1036 species, including many folivorous pests in agriculture. In the present study, the complete mitochondrial genome (mitogenome) of a major pest of tea trees, Eterusia aedea was determined. The 15,196-bp circular genome contained the common set of 37 mitochondrial genes (including 13 protein-coding genes, two rRNA genes, and 22 tRNA genes) and exhibited the similar genomic features to reported Zygaenidae mitogenome. Comparative analyses of Zygaenidae mitogenomes showed a typical evolutionary trend of lepidopteran mitogenomes. In addition, we also investigated the gene order of lepidopteran mitogenomes and proposed that the novel gene order trnA-trnR-trnN-trnE-trnS-trnF from Zygaenidae and Gelechiidae and most other gene rearrangements of this tRNA cluster evolved independently. Finally, the mitogenomic phylogeny of Lepidoptera was reconstructed based on multiple mitochondrial datasets. And all the phylogenetic results revealed the sister relationships of Cossoidea and Zygaenoidea with both BI and ML methods, which is the first stable mitogenomic evidence for this clade.  相似文献   

8.
Seirinae is one of the most diverse subfamilies of Collembola. To date no detailed phylogeny of Seirinae has been proposed, which leads to difficulties in the understanding of evolutionary patterns regarding this taxon. The main aim of this study is to clarify the phylogenetic relationships within the Neotropical Seirinae, by generating and analysing the mitochondrial genomes of 26 terminal taxa of Entomobryidae, and one species of Paronellidae. Specifically, we first generated Illumina HiSeq 2000 shotgun sequence data from each species, then reconstructed the mitochondrial genome of each species using two methods: MitoZ and MIRA/MITOBim. Using these data, we were able to generate a well-supported phylogeny that combined all the above species as well as three publicly available mitogenomes from other species. Bayesian and maximum likelihood methods were applied using all 13 protein coding genes. In this way, monophyly for the internal groups of Seirinae was obtained based on molecular evidence for the first time, as was the potential validity of three main internal taxa of the subfamily. We furthermore validated that Tyrannoseira is a distinct lineage and propose the elevation of Lepidocyrtinus to genus. Lastly, we anticipate that these newly available mitogenomes will serve as a useful dataset for future studies on the evolution of the Collembola and Hexapoda.  相似文献   

9.
The phylum Chaetognatha (arrow worms) comprises a group of small marine predators that constitute a critical component of the zooplankton community throughout the world's oceans. Various phylogenetic affiliations have been proposed for the Chaetognatha, for which there are at least nine possible phylogenetic positions. Resolving the phylogenetic position of the chaetognaths is a key in understanding the fundamental developmental features of bilaterians. In comparison with the typical gene content of metazoan mitogenomes, two protein‐coding genes (atp6 and atp8) are absent from all chaetognaths. The two mitogenomes sequenced from Sagitta crassa and Zonosagitta nagae in this study nevertheless contain two and four tRNA genes, respectively, in contrast to those of the other five chaetognaths reported where only one tRNA gene (trnMet) is present, thus invalidating the view that all chaetognath mitogenomes have a single tRNA gene. A conserved major gene order shared by all chaetognaths could be partially identified in many protostome mitogenomes, but not in any ancestral mitogenome gene arrangement of the four deuterostome groups. Phylogenetic analysis of the deduced amino acid sequences of protein‐coding genes from 85 mitogenomes of 19 groups suggests the Chaetognatha to be a sister group to the protostomes, a result consistent with evidences from the developmental pattern and other molecular analyses.  相似文献   

10.
Xu  Xinyi  Wang  Qi  Wu  Qiong  Xu  Jiayan  Wang  Jie  Wang  Zhengfei 《Biochemical genetics》2021,59(3):617-636

Brachyuran crabs comprise the most species-rich clades among extant Decapoda and are divided into several major superfamilies. However, the phylogeny of Brachyuran remains controversial, comprehensive analysis of the overall phylogeny is still lacking. Complete mitochondrial genome (mitogenome) can indicate phylogenetic relationships, as well as useful information for gene rearrangement mechanisms and molecular evolution. In this study, we firstly sequenced and annotated the complete mitogenome of Macrophthalmus abbreviatus (Brachyura; Macrophthalmidae). The mitogenome length of M. abbreviatus is 16,322 bp, containing the entire set of 37 genes and a control region typically observed in Brachyuran mitogenomes. The genome composition of M. abbreviatus was highly A+T biased 76.3% showing positive AT-skew (0.033) and negative GC-skew (??0.351). In M. abbreviatus mitogenome, most tRNA genes were folded into the clover-leaf secondary structure except trnH, trnS1 and trnC, which was similar to the other species in Macrophthalmidae. Phylogenetic analysis showed that all families form a monophyletic, and Varunidae and Macrophthalmidae clustered into a monophyletic clade as sister groups. Comparative analyses of rearrangement among Brachyura revealed that Varunidae (Grapsoidea) and Macrophthalmidae (Ocypodoidea) had the same gene order, which reinforced the result of phylogeny. The combined results of two aspects revealed that the polyphyly of Ocypodoidea and Grapsoidea were well supported. In general, the results obtained in this research will contribute to further studies on molecular based for the classification and gene rearrangements of Macrophthalmidae or even Brachyura.

  相似文献   

11.
《Genomics》2020,112(2):1363-1370
We document the complete (or nearly complete) mitogenomes of 20 Delphacidae taxa, and together with 17 other delphacid mitogenomes currently in GenBank, to reconstruct the phylogeny of the Delphacinae and to investigate mitogenome differences among members of Delphacini, Tropidocephalini and Saccharosydnini. The mitogenomes of the 20 species encode the complete set of 37 genes usually found in animal mitogenomes. The length of complete mitogenomes in Delphacinae ranges from 15,531 to 16,231 bp. The gene order of all newly sequenced mitogenomes are identical, and the mitogenome gene order of Stenocranus matsumurai Metcalf in Stenocraninae has a transposition of tRNAThr. The two-clade system in Tropidocephalini was supported with high value (PP = 1, BS = 100), and the monophyly of Bambusiphaga was recovered in this study. Finally, we found that the host shift from plants with a C3 to a C4 photosynthetic pathway appears to have occurred independently in several clades.  相似文献   

12.
《Genomics》2020,112(1):289-296
Oxya is a genus of grasshoppers (Orthoptera: Acridoidea) attacking rice and other gramineous plants in Africa and Asia. In the present study, we characterized complete mitochondrial genomes (mitogenomes) of three species, Oxya japonica japonica (15,427 bp), Oxya hainanensis (15,443 bp) and Oxya agavisa robusta (15,552 bp) collected from China. The three mitogenomes contained a typical gene set of metazoan mitogenomes and shared the same gene order with other Acridid grasshoppers, including the rearrangement of tRNAAsp and tRNALys. Analyses of pairwise genetic distances showed that ATP8 was the least conserved gene, while COI the most conserved. To determine the position of Oxya grasshoppers in the phylogeny of Acrididae, we reconstructed phylogenetic trees among 64 species from across 11 subfamilies using nucleotide sequences of mitogenomes. While the tree confirms traditional classifications of Acrididae at major higher-levels, it suggests a few modifications for classifications at lower-levels.  相似文献   

13.
While some aspects of the phylogeny of the five living echinoderm classes are clear, the position of the ophiuroids (brittlestars) relative to asteroids (starfish), echinoids (sea urchins) and holothurians (sea cucumbers) is controversial. Ophiuroids have a pluteus-type larva in common with echinoids giving some support to an ophiuroid/echinoid/holothurian clade named Cryptosyringida. Most molecular phylogenetic studies, however, support an ophiuroid/asteroid clade (Asterozoa) implying either convergent evolution of the pluteus or reversals to an auricularia-type larva in asteroids and holothurians. A recent study of 10 genes from four of the five echinoderm classes used ‘phylogenetic signal dissection’ to separate alignment positions into subsets of (i) suboptimal, heterogeneously evolving sites (invariant plus rapidly changing) and (ii) the remaining optimal, homogeneously evolving sites. Along with most previous molecular phylogenetic studies, their set of heterogeneous sites, expected to be more prone to systematic error, support Asterozoa. The homogeneous sites, in contrast, support an ophiuroid/echinoid grouping, consistent with the cryptosyringid clade, leading them to posit homology of the ophiopluteus and echinopluteus. Our new dataset comprises 219 genes from all echinoderm classes; analyses using probabilistic Bayesian phylogenetic methods strongly support Asterozoa. The most reliable, slowly evolving quartile of genes also gives highest support for Asterozoa; this support diminishes in second and third quartiles and the fastest changing quartile places the ophiuroids close to the root. Using phylogenetic signal dissection, we find heterogenous sites support an unlikely grouping of Ophiuroidea + Holothuria while homogeneous sites again strongly support Asterozoa. Our large and taxonomically complete dataset finds no support for the cryptosyringid hypothesis; in showing strong support for the Asterozoa, our preferred topology leaves the question of homology of pluteus larvae open.  相似文献   

14.
Pérez‐Portela, R., Almada, V. & Turon, X. (2012). Cryptic speciation and genetic structure of widely distributed brittle stars (Ophiuroidea) in Europe. —Zoologica Scripta, 00, 000–000. The development of molecular techniques has led to the detection of numerous cases of cryptic speciation within widely distributed marine invertebrate species and important taxonomic revisions in all the major marine taxa. In this study, we analysed a controversial marine species complex in the genus Ophiothrix, a widespread taxon in European waters traditionally assigned to two nominal species, Ophiothrix fragilis and O. quinquemaculata. These species are important components of the rocky shores and deep marine benthos along the North Atlantic and Mediterranean littoral. Their status (including variants of both species) has remained contentious due to overlapping variability in morphological characters. In this study, we analysed the genetic and morphological differences of Ophiothrix lineages along the Atlantic and Mediterranean coasts. We also assessed population genetic structure in the Atlantic and Mediterranean basins by sequencing two mitochondrial genes, the 16S rRNA gene and COI gene, of 221 specimens from 13 locations. Phylogenetic analyses demonstrated the existence of two genetically distinct lineages, attributable to two different species although unrelated to previous taxonomic distinctions. Morphological differences could also be detected between these lineages. Samples from the Northeast Atlantic and one from the deep Mediterranean grouped within Lineage I, whereas Lineage II pooled together the southern Atlantic and rocky shallow Mediterranean samples. In the northern region of the Iberian Peninsula and at a deep locality in the Mediterranean, both lineages overlap. Speciation processes likely happened during the Mio–Pliocene transition (about 4.8–7.5 million years ago), when marine‐level oscillations led to the blockage of major marine corridors in Europe and promoted genetic isolation by vicariance. Secondary contact between lineages following sea‐level increases and recolonization during the refilling of the Mediterranean after the Miocene salinity crisis could explain the present‐day distribution of genetic variability. No barriers to gene flow along the Atlanto‐Mediterranean area were detected for Lineage II, and the lack of genetic structure could be caused by a mixture of several factors, such as wide dispersal potential, recent demographic expansion and large population size.  相似文献   

15.
Complete sequences of two lineage-specific mitogenomes from mytilid bivalve Geukensia demissa are reported, confirming the existence of doubly uniparental inheritance system in this species. The reported mitogenomes show extreme sequence divergence; at protein level, it is in the range of 12%–55%, exceeding the highest values known from this family to date. Moreover, these mitogenomes are also extraordinarily AT-rich (~72%) making them the most compositionally biased mitogenomes from this family. The compositional bias is even more extreme at neutral sites, reaching 80% AT there. Despite high-sequence divergence, the mitogenomes are both compositionally and structurally similar, with only four trn genes relocated and overall gene order very similar to the phylogenetically close mitogenomes of Perumytilus purpuratus. Lineage-specific differences are limited to the non-coding regions and a short cox2 extension present in the paternally inherited M mitogenome. Phylogenetic analysis shows deeper separation of M and F lineages in Geukensia, than in Perumytilus consistent with higher protein divergence. It can be speculated that stronger mutational pressure in Geukensia is driving faster evolution of its mitogenomes.  相似文献   

16.
Hydrothermal vents are considered as one of the most extremely harsh environments on the Earth. In this study, the complete mitogenomes of hydrothermal vent squat lobsters, Munidopsis lauensis and M. verrilli, were determined through Illumina sequencing and compared with other available mitogenomes of anomurans. The mitogenomes of M. lauensis (17,483 bp) and M. verrilli (17,636 bp) are the largest among all Anomura mitogenomes, while the A+T contents of M. lauensis (62.40%) and M. verrilli (63.99%) are the lowest. The mitogenomes of M. lauensis and M. verrilli display novel gene arrangements, which might be the result of three tandem duplication–random loss (tdrl) events from the ancestral pancrustacean pattern. The mitochondrial gene orders of M. lauensis and M. verrilli shared the most similarities with S. crosnieri. The phylogenetic analyses based on both gene order data and nucleotide sequences (PCGs and rRNAs) revealed that the two species were closely related to Shinkaia crosnieri. Positive selection analysis revealed that eighteen residues in seven genes (atp8, Cytb, nad3, nad4, nad4l, nad5, and nad6) of the hydrothermal vent anomurans were positively selected sites.  相似文献   

17.
Stöhr S  O'Hara TD  Thuy B 《PloS one》2012,7(3):e31940
This review presents a comprehensive overview of the current status regarding the global diversity of the echinoderm class Ophiuroidea, focussing on taxonomy and distribution patterns, with brief introduction to their anatomy, biology, phylogeny, and palaeontological history. A glossary of terms is provided. Species names and taxonomic decisions have been extracted from the literature and compiled in The World Ophiuroidea Database, part of the World Register of Marine Species (WoRMS). Ophiuroidea, with 2064 known species, are the largest class of Echinodermata. A table presents 16 families with numbers of genera and species. The largest are Amphiuridae (467), Ophiuridae (344 species) and Ophiacanthidae (319 species). A biogeographic analysis for all world oceans and all accepted species was performed, based on published distribution records. Approximately similar numbers of species were recorded from the shelf (n = 1313) and bathyal depth strata (1297). The Indo-Pacific region had the highest species richness overall (825 species) and at all depths. Adjacent regions were also relatively species rich, including the North Pacific (398), South Pacific (355) and Indian (316) due to the presence of many Indo-Pacific species that partially extended into these regions. A secondary region of enhanced species richness was found in the West Atlantic (335). Regions of relatively low species richness include the Arctic (73 species), East Atlantic (118), South America (124) and Antarctic (126).  相似文献   

18.
Manfred Kutscher 《Geobios》2003,36(2):179-194
The Toarcian sediments exposed at Sainte-Verge (Deux-Sèvres, France) are especially rich in echinoderm remains. The present paper describes and illustrates the ophiuroids. On the basis of lateral arm plates, 13 species are distinguished, including two new ones: Sinosura fasciata sp. nov. and Sinosura extensa sp. nov. Most of the recognized species have been recorded previously from the Late Toarcian and Aalenian in Germany and, to a lesser extent, from the late Early Jurassic of England and Switzerland. High similarities between the faunas of northwest Europe suggest a boreal provincialism of ophiuroids. The recognition of 13 species is comparable to the diversity known from other stratigraphic levels (Jurassic and Cretaceous) or in the richest stations of recent oceans. The species association of the Toarcian of Sainte-Verge, with two Ophiolepididae, one Ophiacanthidae, four Ophioleucidae, two Ophiodermatidae, two Ophiuridae, and one Hemieuryalidae may be compared with species associations of recent shelf, offshore environments. Such persistence of components of diversity and ecological affinities of species suggests strong evolutionary conservatism of the ophiuroids, after a rapid radiation during the earliest Jurassic. © 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.  相似文献   

19.
《Systematic Entomology》2018,43(3):460-480
Swallowtail butterflies (Lepidoptera: Papilionidae) have been instrumental in understanding many foundational concepts in biology; despite this, a resolved and robust phylogeny of the group has been a major impediment to elucidating patterns and processes of their ecological and evolutionary history. This study presents a mitogenomic, time‐calibrated phylogeny for all swallowtail genera. A shotgun sequencing approach was performed to obtain 32 complete mitogenomes that were added to available butterfly mitogenomes, resulting in a dataset including 142 butterfly taxa (and four outgroups) representing all butterfly families. Phylogenetic analyses were carried out under maximum likelihood (ML) and Bayesian inferences (BIs) with alternative partitioning strategies and the mixture (CAT) model. To test competing hypotheses about the systematics of Papilionidae, such as the enigmatic position of Baronia brevicornis or the status of the tribe Teinopalpini, we estimated the marginal likelihood of alternative topologies and computed Bayes factors. Estimates of divergence times were assessed using a Bayesian relaxed‐clock approach calibrated with six fossils while testing for the number of clocks. The results recovered a well‐resolved and supported phylogeny confirming that Baroniinae is sister to Parnassiinae + Papilioninae, both recovered as monophyletic. It also laid the foundations for classification at tribe and genus level, suggesting that the tribe Teinopalpini only contains the genus Teinopalpus (Meandrusa being sister to Papilio ). The number of molecular clocks in dating analyses had a significant impact on divergence times. A single clock recovered an origin of butterflies in the Cretaceous (98, 66–188 Ma) and also for swallowtails (85, 55–163 Ma), while partitioning the clocks yielded an origin of Papilionoidea in the very Late Cretaceous (71, 64–86 Ma), and all butterfly families originated in the aftermath of the Cretaceous–Paleogene extinction. These results challenge previous studies suggesting that butterflies appeared in the Early Cretaceous, 110 Ma, concurrently with the rise of angiosperms.  相似文献   

20.
There are several studies of neural development in various echinoderms, but few on ophiuroids, which develop indirectly via the production of pluteus larvae, as do echinoids. To determine the extent of similarity of neuroanatomy and neural development in the ophiuroids with other echinoderm larvae, we investigated the development of the nervous system in the brittle star Amphipholis kochii (Echinodermata: Ophiuroidea) by immunohistochemistry. Immunoreactive cells first appeared bilaterally in the animal pole at the late gastrula stage, and there was little migration of the neural precursors during A. kochii ontogeny, as is also the case in echinoids and holothuroids. On the other hand, neural specification in the presumptive ciliary band near the base of the arms does occur in ophiuroid larvae and is a feature they share with echinoids and ophiuroids. The ophiopluteus larval nervous system is similar to that of auricularia larvae on the whole, including the lack of a fine network of neurites in the epidermis and the presence of neural connections across the oral epidermis. Ophioplutei possess a pair of bilateral apical organs that differ from those of echinoid echinoplutei in terms of relative position. They also possess coiled cilia, which may possess a sensory function, but in the same location as the serotonergic apical ganglia. These coiled cilia are thought to be a derived structure in pluteus-like larvae. Our results suggest that the neural specification in the animal plate in ophiuroids, holothuroids, and echinoids is a plesiomorphic feature of the Ambulacraria, whereas neural specification at the base of the larval arms may be a more derived state restricted to pluteus-like larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号