共查询到20条相似文献,搜索用时 9 毫秒
1.
Michelle J. Yoo John E. SchielDavid S. Hage 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2010,878(20):1707-1713
This study examined the use of affinity microcolumns as tools for the rapid analysis and high-throughput screening of drug–protein binding. The protein used was immobilized human serum albumin (HSA) and the model analytes were warfarin and l-tryptophan, two solutes often used as site-specific probes for drug binding to Sudlow sites I and II of HSA, respectively. The use of HSA microcolumns in binding studies was examined by using both zonal elution and frontal analysis formats. The zonal elution studies were conducted by injecting the probe compounds onto HSA microcolumns of varying lengths while measuring the resulting retention factors, plate heights and peak asymmetries. A decrease in the retention factor was noted when moving from longer to shorter column lengths while using a constant amount of injected solute. However, this change could be corrected, in part, by determining the relative retention factor of a solute versus a reference compound injected onto the same microcolumn. The plate height values were relatively consistent for all column lengths and gave an expected increase at higher linear velocities. The peak asymmetries were similar for all columns up to 1 mL/min but shifted to larger values at higher flow rates and when using short microcolumns (e.g., 1 mm length). The association equilibrium constants and number of binding sites estimated by frontal analysis for warfarin with HSA were consistent at the various column sizes that were tested and gave good agreement with previous literature values. These results confirmed affinity microcolumns provide comparable results to those obtained with longer columns and can be used in the rapid analysis of drug–protein binding and in the high-throughput screening of such interactions. 相似文献
2.
The protein corona, which immediately is formed after contact of nanoparticles and biological systems, plays a crucial role for the biological fate of nanoparticles. In the here presented study we describe a strategy to control the amount of corona proteins which bind on particle surface and the impact of such a protein corona on particle-cell interactions. For corona formation, polyethyleneimine (PEI) coated magnetic nanoparticles (MNP) were incubated in a medium consisting of fetal calf serum (FCS) and cell culture medium. To modulate the amount of proteins bind to particles, the composition of the incubation medium was varied with regard to the FCS content. The protein corona mass was estimated and the size distribution of the participating proteins was determined by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). Additionally, the zeta potential of incubated particles was measured. Human blood–brain barrier-representing cell line HBMEC was used for in vitro incubation experiments. To investigate the consequences of the FCS dependent protein corona formation on the interaction of MNP and cells flow cytometry and laser scanning microscopy were used. Zeta potential as well as SDS–PAGE clearly reveal an increase in the amount of corona proteins on MNP with increasing amount of FCS in incubation medium. For MNP incubated with lower FCS concentrations especially medium-sized proteins of molecular weights between 30 kDa and 100 kDa could be found within the protein corona, whereas for MNP incubated within higher FCS concentrations the fraction of corona proteins of 30 kDa and less increased. The presence of the protein corona reduces the interaction of PEI-coated MNP with HBMEC cells within a 30 min-incubation. 相似文献
3.
Jan Holm Christian Schou Linnea N. Babol Anders J. Lawaetz Susanne W. Bruun Morten Z. Hansen Steen I. Hansen 《Biochimica et Biophysica Acta (BBA)/General Subjects》2011
Background
The folate binding protein (FBP) regulates homeostasis and intracellular trafficking of folic acid, a vitamin of decisive importance in cell division and growth. We analyzed whether interrelationship between ligand binding and self-association of FBP plays a significant role in the physiology of folate binding.Methods
Self-association behavior of apo- and holo-FBP was addressed through size exclusion chromatography, SDS-PAGE, mass spectrometry, surface plasmon resonance and fluorescence spectroscopy.Results
Especially holo-FBP exhibits concentration-dependent self-association at pH 7.4 (pI), and is more prone to associate into stable complexes than apo-FBP. Even more pronounced was the tendency to complexation between apo-FBP and holo-FBP in accord with a model predicting association between apo and holo monomers [19]. This will lead to removal of apo monomers from the reaction scheme resulting in a weak incomplete ligand binding similar to that observed at FBP concentrations < 10 nM. The presence of synthetic and natural detergents normalized folate binding kinetics and resulted in appearance of monomeric holo-FBP. Fluorescence spectroscopy indicated molecular interactions between detergent and tryptophan residues located in hydrophobic structures of apo-FBP which may participate in protein associations.General significance
Self-association into multimers may protect binding sites, and in case of holo-FBP even folate from biological degradation. High-affinity folate binding in body secretions, typically containing 1–10 nM FBP, requires the presence of natural detergents, i.e. cholesterol and phospholipids, to avoid complexation between apo- and holo-FBP. 相似文献4.
Shumaila Afrin Yusra Rahman Mustafa Alhaji Isa Shahbaz Ahmed 《Journal of biomolecular structure & dynamics》2020,38(10):3046-3058
AbstractThe binding characteristic of anti-platelet drug dipyridamole has been investigated with a transport protein, serum albumin. A multi-spectroscopic approach has been employed, and the results were well supported by in silico molecular docking and simulation studies. The fluorescence quenching of serum albumin at three different temperatures revealed that the mechanism involved is static and the binding constant of the interaction was found to be of the order of 104 M?1. The reaction was found to be spontaneous and involved hydrophobic interactions. Synchronous, 3D fluorescence and CD spectroscopy indicated a change in conformation of bovine serum albumin (BSA) on interaction with DP. Using site-selective markers, the binding site of DP was found to be in subdomain IB. Molecular docking studies further corroborated these results. Molecular dynamic (MD) simulations showed lower RMSD values on interaction, suggesting the existence of a stable complex between DP and BSA. Furthermore, since β-Cyclodextrin (βCD) is used to improve the solubility of DP in ophthalmic solutions, therefore, the effect of (βCD) on the interaction of BSA and DP was also studied, and it was found that in the presence of βCD, the binding constant for BSA-DP interaction decreased. The present study is an attempt to characterize the transport of DP and to improve its bioavailability, consequently helping in dosage design to achieve optimum therapeutic levels.Communicated by Ramaswamy H. Sarma 相似文献
5.
Monirinasab Hannaneh Zakariazadeh Mostafa Kohestani Havva Kouhestani Morteza Fathi Farzaneh 《Journal of biological physics》2022,48(2):177-194
Journal of Biological Physics - The quality and strength of drug and albumin interaction affecting the drug-free concentration and physiological activity are important issues in pharmacokinetic... 相似文献
6.
Daniel Pushparaju Yeggoni Aparna Rachamallu Monika Kallubai 《Journal of biomolecular structure & dynamics》2013,31(6):1336-1351
Human serum albumin (HSA) and α-1-acid glycoprotein (AGP) (acute phase protein) are the plasma proteins in blood system which transports many drugs. To understand the pharmacological importance of piperine molecule, here, we studied the anti-inflammatory activity of piperine on mouse macrophages (RAW 264.7) cell lines, which reveals that piperine caused an increase in inhibition growth of inflammated macrophages. Further, the fluorescence maximum quenching of proteins were observed upon binding of piperine to HSA and AGP through a static quenching mechanism. The binding constants obtained from fluorescence emission were found to be Kpiperine?=?5.7 ± .2 × 105 M?1 and Kpiperine = 9.3± .25 × 104 M?1 which correspond to the free energy of ?7.8 and ?6.71 kcal M?1at 25 °C for HSA and AGP, respectively. Further, circular dichrosim studies revealed that there is a marginal change in the secondary structural content of HSA due to partial destabilization of HSA–piperine complexes. Consequently, inference drawn from the site-specific markers (phenylbutazone, site I marker) studies to identify the binding site of HSA noticed that piperine binds at site I (IIA), which was further authenticated by molecular docking and molecular dynamic (MD) studies. The binding constants and free energy corresponding to experimental and computational analysis suggest that there are hydrophobic and hydrophilic interactions when piperine binds to HSA. Additionally, the MD studies have showed that HSA–piperine complex reaches equilibration state at around 3 ns, which prove that the HSA–piperine complex is stable in nature. 相似文献
7.
181 Integrative analysis of gene expression and protein–protein interaction networks in Glioblastoma
Seema Mishra 《Journal of biomolecular structure & dynamics》2013,31(1):116-117
Glioblastoma multiforme (GBM) is the most malignant of all the brain tumors with very low median survival time of one year, as per Central Brain Tumor Registry of the USA, 2001. Efforts are ongoing to understand this disease pathogenesis in complete details. Global gene expression changes in GBM pathogenesis have been studied by several groups using microarray technology (e.g. Carro et al., 2010). One of the many approaches to ‘understand the control mechanisms underlying the observed changes in the activity of a biological process’ (Cline et al., 2007) is integration of gene expression and protein–protein interactions (PPI) datasets. Among several examples, aberrant activation of Wnt/β-catenin signaling pathway as well as sonic hedgehog (SHH) signaling pathway is reported in GBMs (Klaus & Birchmeier, 2008). Further, these two pathways are also involved in proliferation and clonogenicity of glioma cancer stem cells (Li et al., 2009), which are thought to play a role in glioma initiation, proliferation, and invasion, and are one of the important points of intervention. Hedgehog–Gli1 signaling is also found to regulate the expression of stemness genes. In this paper, analyses of the relationship between the significant differential expression of these and other genes and the connectivity as well as topological features of a PPI network would be discussed. This way, genes potentially overlooked when relying solely on expression profiles may be identified which can be biologically relevant as possible drug target/s or disease biomarker/s. 相似文献
8.
Communicated by Ramaswamy H. Sarma 相似文献
9.
Daniel Pushpa Raju Yeggoni Darla Mark Manidhar Cirandur Suresh Reddy 《Journal of biomolecular structure & dynamics》2016,34(9):2023-2036
Coumarin molecules have biological activities possessing lipid-controlling activity, anti-hepatitis C activity, anti-diabetic, anti-Parkinson activity, and anti-cancer activity. Here, we have presented an inclusive study on the interaction of 8-substituted-7-hydroxy coumarin derivatives (Umb-1/Umb-2) with α-1-glycoprotein (AGP) and human serum albumin (HSA) which are the major carrier proteins in the human blood plasma. Binding constants obtained from fluorescence emission data were found to be KUmb-1=3.1 ± .01 × 104 M?1, KUmb-2 = 7 ± .01 × 104 M?1, which corresponds to ?6.1 and ?6.5 kcal/mol of free energy for Umb-1 and Umb-2, respectively, suggesting that these derivatives bind strongly to HSA. Also these molecules bind to AGP with binding constants of KUmb-1-AGP=3.1 ± .01 × 103 M?1 and KUmb-2-AGP = 4.6 ± .01 × 103 M?1. Further, the distance, r between the donor (HSA) and acceptor (Umb-1/Umb-2) was calculated based on the Forster’s theory of non-radiation energy transfer and the values were observed to be 1.14 and 1.29 nm in Umb-1–HSA and Umb-2–HSA system, respectively. The protein secondary structure of HSA was partially unfolded upon binding of Umb-1 and Umb-2. Furthermore, site displacement experiments with lidocaine, phenylbutazone (IIA), and ibuprofen (IIIA) proves that Umb derivatives significantly bind to subdomain IIIA of HSA which is further supported by docking studies. Furthermore, Umb-1 binds to LYS402 with one hydrogen bond distance of 2.8 Å and Umb-2 binds to GLU354 with one hydrogen bond at a distance of 2.0 Å. Moreover, these molecules are stabilized by hydrophobic interactions and hydrogen bond between the hydroxyl groups of carbon-3 of coumarin derivatives. 相似文献
10.
Yusra Rahman Shumaila Afrin Mustafa Alhaji Isa Shahbaz Ahmed 《Journal of biomolecular structure & dynamics》2020,38(5):1375-1387
AbstractNizatidine is a histamine H2 receptor antagonist which act by inhibiting the production of stomach acid, thereby, finds its application in treating various diseases related to the gastrointestinal tract. Studying albumin–drug interaction is important for understanding the pharmacokinetics and pharmacodynamics of therapeutic candidates. In the present work, the interaction of nizatidine with BSA was investigated by employing multi-spectroscopic and computational studies. The formation of BSA–nizatidine complex was characterised by UV-visible and fluorescence based-spectroscopic studies. Steady-state fluorescence demonstrated the static mode of quenching of BSA by nizatidine. The interaction was spontaneous and nizatidine binds to BSA with a stoichiometry of 1:1. Forster resonance energy transfer calculations revealed that there was a high possibility of energy transfer between nizatidine and BSA. The resultant secondary structural change in BSA on the addition of nizatidine was studied by circular dichroism spectroscopy. Moreover, synchronous and three-dimensional fluorescence spectroscopy was used to determine the conformational changes occurred in the structure of albumin on the binding of nizatidine. Competitive-site marker experiments suggested that nizatidine binds in the Sudlow site II of BSA. Additionally, the effect of β-cyclodextrin as an inclusion compound on the interaction was studied. Furthermore, molecular modelling and simulation studies were performed to corroborate the results obtained above.Communicated by Ramaswamy H. Sarma 相似文献
11.
Papageorgiou Foteini Natassa Pippa Nikolaos Naziris 《Journal of liposome research》2013,23(4):313-321
AbstractThe aim of the present study is to investigate the interactions between liposomes and proteins and to evaluate the role of liposomal lipid composition and concentration in the formation of protein corona. Liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or hydrogenated soybean phosphatidylcholine (HSPC) with 1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt) (DPPG), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-3000] (DPPE-PEG 3000), cholesterol (CH) or mixtures of these lipids, were prepared at different concentrations by the thin-film hydration method. After liposomes were dispersed in HPLC-grade water and foetal bovine serum (FBS), their physicochemical characteristics, such as size, size distribution, and ζ-potential, were determined using dynamic and electrophoretic light scattering. Aggregation of DPPC, HSPC, DPPC:CH (9:1 molar ratio), and HSPC:CH (9:1 molar ratio) in FBS was observed. On the contrary, liposomes incorporating DPPG lipids and CH both in a molar ratio of 11% were found to be stable over time, while their size did not alter dramatically in biological medium. Liposomes containing CH and PEGylated lipids retain their size in the presence of serum as well as their physical stability. In addition, our results indicate that the protein binding depends on the presence of polyethylene glycol (PEG), CH, concentration and surface charge. In this paper, we introduce a new parameter, fraction of stealthiness (Fs), for investigating the extent of protein binding to liposomes. This parameter depends on the changes in size of liposomes after serum incubation, while liposomes have stealth properties when Fs is close to 1. Thus, we conclude that lipid composition and concentration affect the adsorption of proteins and the liposomal stabilization. 相似文献
12.
13.
Sarewicz M Szytuła S Dutka M Osyczka A Froncisz W 《European biophysics journal : EBJ》2008,37(4):483-493
Sensitivity of the electron paramagnetic resonance (CW EPR) to molecular tumbling provides potential means for studying processes
of molecular association. It uses spin-labeled macromolecules, whose CW EPR spectra may change upon binding to other macromolecules.
When a spin-labeled molecule is mixed with its liganding partner, the EPR spectrum constitutes a linear combination of spectra
of the bound and unbound ligand (as seen in our example of spin-labeled cytochrome c
2 interacting with cytochrome bc
1 complex). In principle, the fraction of each state can be extracted by the numerical decomposition of the spectrum; however,
the accuracy of such decomposition may often be compromised by the lack of the spectrum of the fully bound ligand, imposed
by the equilibrium nature of molecular association. To understand how this may affect the final estimation of the binding
parameters, such as stoichiometry and affinity of the binding, a series of virtual titration experiments was conducted. Our
non-linear regression analysis considered a case in which only a single class of binding sites exists, and a case in which
classes of both specific and non-specific binding sites co-exist. The results indicate that in both models, the error due
to the unknown admixture of the unbound ligand component in the EPR spectrum causes an overestimation of the bound fraction
leading to the bias in the dissociation constant. At the same time, the stoichiometry of the binding remains relatively unaffected,
which overall makes the decomposition of the EPR spectrum an attractive method for studying protein–protein interactions in
equilibrium. Our theoretical treatment appears to be valid for any spectroscopic techniques dealing with overlapping spectra
of free and bound component. 相似文献
14.
Olfaction plays an essential role in feeding and information exchange in insects. Previous studies on the olfaction of silkworms have provided a wealth of information about genes and proteins, yet, most studies have only focused on a single gene or protein related to the insect's olfaction. The aim of the current study is to determine key proteins in the olfactory system of the silkworm, and further understand protein–protein interactions (PPIs) in the olfactory system of Lepidoptera. To achieve this goal, we integrated Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses. Furthermore, we selected 585 olfactory-related proteins and constructed a (PPI) network for the olfactory system of the silkworm. Network analysis led to the identification of several key proteins, including GSTz1, LOC733095, BGIBMGA002169-TA, BGIBMGA010939-TA, GSTs2, GSTd2, Or-2, and BGIBMGA013255-TA. A comprehensive evaluation of the proteins showed that glutathione S-transferases (GSTs) had the highest ranking. GSTs also had the highest enrichment levels in GO and KEGG. In conclusion, our analysis showed that key nodes in the biological network had a significant impact on the network, and the key proteins identified via network analysis could serve as new research targets to determine their functions in olfaction. 相似文献
15.
Md. Zahirul Kabir Amira Adlin Roslan Nor Farrah Wahidah Ridzwan Saharuddin B. Mohamad 《Journal of biomolecular structure & dynamics》2020,38(9):2693-2703
AbstractMolecular interaction of the 3,4-methylenedioxy-β-nitrostyrene (MNS), an inhibitor of platelet aggregation with the main transport protein, albumin from human serum (HSA) was explored using absorption, fluorescence and circular dichroism (CD) spectroscopy in combination with in silico analyses. The MNS–HSA complexation was corroborated from the fluorescence and absorption spectral results. Implication of static quenching mechanism for MNS–HSA system was predicted from the Stern–Volmer constant, KSV-temperature relationship as well as the bimolecular quenching rate constant, kq values. Stabilization of the complex was affirmed by the value of the binding constant (Ka = 0.56-1.48?×?104 M?1). Thermodynamic data revealed that the MNS–HSA association was spontaneously driven mainly through hydrophobic interactions along with van der Waal’s interaction and H-bonds. These results were well supported by in silico interpretations. Far-UV and near-UV CD spectral results manifested small variations in the protein’s secondary and tertiary structures, respectively, while three-dimensional fluorescence spectra displayed microenvironmental fluctuations around protein’s fluorophores, upon MNS binding. Significant improvement in the protein’s thermostability was evident from the temperature-stability results of MNS-bound HSA. Binding locus of MNS, as identified by competitive drug displacement findings as well as in silico analysis, was found to be located in subdomain IIA (Sudlow’s site I) of the protein.Communicated by Ramaswamy H. Sarma 相似文献
16.
Synthesis of two ω-aldehydoalkyl 1-thioglycosides of d-glucopyranose and of d-galactopyranose is described. 3-Oxopropyl and 2-oxoethyl 1-thioglycosides were prepared by treating a tetra-O-acetyl-1-thioaldose with either acrolein or 2-bromoacetaldehyde, followed by O-deacetylation under mild conditions. These ω-aldehydoalkyl 1-thioglycosides were successfully attached to bovine serum albumin (BSA) by reductive alkylation as described previously. With the 3-oxopropyl 1-thioglycosides, much higher levels of sugar attachment (e.g., ~80 mol of sugar per mol of BSA) were attained than hitherto possible with any sugar derivative tested. 相似文献
17.
D. W. McNees R. W. Lewis B. J. Ponzio F. J. Stein R. F. Sis 《Primates; journal of primatology》1983,24(4):537-545
The major objective of this study was to establish standard glucose and lactose tolerance curves for the common marmoset (Callithrix jacchus). These data were utilized to establish criteria for detection of abnormal glucose tolerance and characterization of some
aspects of the “marmoset wasting syndrome” which has been observed in this species. Glucose and lactose tolerance tests were
performed on healthy animals and typical “marmoset wasters.” Eighteen normal animals were 18 to 36 months old and weighed
194–280 g. Six “wasters” were in the age range of 24 to 84 months and weighed 163–253 g. Seven experiments were carried out
for each glucose tolerance test. In each trial it was observed that the serum glucose concentration (SGC) of the healthy animal
after 90 min was two times higher than the pre-administration concentrations. The SGC returned to the pre-administration concentration
within 150–300 min in animals administered glucose at dosages of 2 g/kg and 1 g/kg of body weight. However, at the dosage
level of 5 g/kg body weight, the SGC of the animals tripled after 30 min and required 300 min to return to the pre-administration
level. The 2 g/kg dosage level was chosen as typical. When similar experiments were conducted with animals identified as “chronic
wasters,” all of the animals except one were observed to be inefficient in the absorption of glucose. When lactose was administered
at a level of 4 g/kg, similar results were obtained.
Normal and “waster” marmosets were also subjected to serum total protein, albumin and electrophoresis determinations in an
effort to establish additional criteria that may be utilized in the identification of the “marmoset wasting” syndrome. Serum
albumin was significantly higher in the “waster” marmosets 30 min following an oral administration of glucose than was observed
in normal animals. Total protein values were not significantly lower in the “wasters” when subjected to the same tolerance
test. The albumin level in normal animals was not affected by similar glucose tolerance tests. The electrophoretic patterns
of serum protein for normal animals exhibited more bands than was observed in patterns of serum protein for “waster” marmosets.
From these data, it seems logical that these diagnostic tests may be useful in developing a profile for the early detection
of the “wasting” syndrome in marmosets. 相似文献
18.
Jyoti Singh Tomar 《Journal of biomolecular structure & dynamics》2017,35(5):1115-1126
In the current scenario, widespread multidrug resistivity in ESKAPE pathogens demands identification of novel drug targets to keep their infections at bay. For this purpose, we have identified a novel target Hpa2 of A. baumannii, a member of GNAT superfamily of HATs. But due to sequence identity of equal or less than 35%, the correct sequence alignment and construction of 3D monomeric and dimeric models of Hpa2 having optimal structural parameters is a troublesome task. To circumvent these problems, we have designed an easy and optimized protocol for Hpa2 monomer modeling, and for generation of dimeric Hpa2 model using data-driven protein–protein docking experiment. Improvement in the structural features of generated model is an onerous process and generally achieved by paying time and computational cost. Herein, it is achieved by reconciliation of FoldX commands which takes less time in execution. Evaluations performed to validate structural parameters and stability of monomeric and dimeric Hpa2 attests to its quality. Analysis of interfacial residues, energy terms and RMSD values indicated a clear correlation between experimental and theoretical interface properties of the dimers, corroborating to the regime used for Hpa2 dimer generation. Structural information from the refined models was used for virtual screening of substrate-derived library and polyamines to achieve a new platform for developing A. baumannii inhibitory molecules. Molecules showing preferential binding at the dimer interface could be used as allosteric inhibitors. Binding of polyamines with model illustrated the same binding pattern as described experimentally in case of yeast Hpa2. 相似文献
19.
M. Victoria Sánchez Mirta G. González Jorge F. Genise 《Palaeogeography, Palaeoclimatology, Palaeoecology》2010,285(3-4):224-236
The analysis of the total number of phytoliths, and the absolute frequencies of the different morphotypes, extracted from fossil dung beetle brood balls (Coprinisphaera) from the Middle Eocene–Early Miocene Sarmiento Formation (Patagonia, Argentina), revealed that this trace fossil represents a concentrated locus for phytolith sampling. Particularly, differences found in the total number of phytoliths among parts of that trace fossil and the bearing paleosol, allowed to infer that the infilling represents mostly a sample of the original surrounding soil, whereas in most cases the wall shows a significantly higher number of phytoliths than in the paleosol or infilling. Modern brood balls also revealed that in an environment with high density of grasses, the walls, composed of soil and dung fibres, showed a lower concentration of phytoliths than the soil. In contrast, in other environment with scarce grass coverage, the dung, which had a higher concentration of phytoliths than the soil, added to the wall produced an increase in the number of phytoliths in it. Accordingly, the larger number of phytoliths of the Coprinisphaera wall in comparison with that of the paleosol, would be reflecting the addition of dung fibres to the wall in palaeoenvironments with moderate to poor presence of phytolith-bearing plants. The absence of differences in the total number of phytoliths between the internal and the external layer of the brood ball wall, suggests that the dung fibres would have been uniformly distributed in most of the wall, due to the addition of dung fibres during the brood ball construction by the dung beetle. In contrast, the absence of differences among wall and paleosol or infilling, could be suggesting that no dung fibres were added to construct the wall, that those added had no phytoliths, that the Coprinisphaera involved could had been a brood ball of a necrophagous scarab, or that the soils were richer in phytoltihs than the dung. Those balls that showed evidence of increased numbers of phytoliths in the wall, likely caused by dung fibres added to it, enable the study of diet preferences of the herbivores that produced the dung. Differences found in the phytolith morphotype frequencies among the wall, and the other two samples (infilling and paleosol), allow to infer that some herbivores were more generalists among phytolith-bearing plants feeding on the most abundant grasses and palms, whereas others preferred more rare grasses and dicots. 相似文献
20.
Norris NC Bingham RJ Harris G Speakman A Jones RP Leech A Turkenburg JP Potts JR 《The Journal of biological chemistry》2011,286(44):38311-38320
Bacterial fibronectin-binding proteins (FnBPs) contain a large intrinsically disordered region (IDR) that mediates adhesion of bacteria to host tissues, and invasion of host cells, through binding to fibronectin (Fn). These FnBP IDRs consist of Fn-binding repeats (FnBRs) that form a highly extended tandem β-zipper interaction on binding to the N-terminal domain of Fn. Several FnBR residues are highly conserved across bacterial species, and here we investigate their contribution to the interaction. Mutation of these residues to alanine in SfbI-5 (a disordered FnBR from the human pathogen Streptococcus pyogenes) reduced binding, but for each residue the change in free energy of binding was <2 kcal/mol. The structure of an SfbI-5 peptide in complex with the second and third F1 modules from Fn confirms that the conserved FnBR residues play equivalent functional roles across bacterial species. Thus, in SfbI-5, the binding energy for the tandem β-zipper interaction with Fn is distributed across the interface rather than concentrated in a small number of "hot spot" residues that are frequently observed in the interactions of folded proteins. We propose that this might be a common feature of the interactions of IDRs and is likely to pose a challenge for the development of small molecule inhibitors of FnBP-mediated adhesion to and invasion of host cells. 相似文献