首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dy3+ and Eu3+ activated Ca3Y2Si3O12 phosphors were synthesized by the solid‐state synthesis method. The phosphors were characterized by X‐ray diffraction (XRD), mechanoluminescence (ML), thermoluminescence (TL) and photoluminescence (PL) to determine structure and luminescence. For ML glow curves, only one peak was observed, as only one type of luminescence centre was formed during irradiation. The Ca3Y2Si3O12:Dy3+ TL glow curve showed a single peak at 151.55°C and the Ca3Y2Si3O12:Eu3+ TL glow curve peaked at 323°C with a small peak at 192°C, indicating that two types of traps were activated. The trapping parameters for both the samples were calculated using Chen's peak shape method. Dy3+‐activated Ca3Y2Si3O12 showed emission at 482 and 574 nm when excited by a 351 nm excitation wavelength, whereas the Eu3+‐activated Ca3Y2Si3O12 phosphor PL emission spectra showed emission peaks at 613 nm, 591 nm, 580 nm when excited at 395 nm wavelength. When excited at 466 nm, prominent emission peaks were observed at their respective positions with very slight shifts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
We have synthesized and characterized a new BaCa2Al8O15:Eu2+,Dy3+ phosphor prepared by the combustion method. X‐ray diffraction, thermoluminescence, scanning electron microscope, time decay and optical spectral analysis photoluminescence excitation, emission spectra were used to characterize the phosphors. Broadband ultraviolet excited luminescence of the BaCa2Al8O15:Eu2+,Dy3+ was observed in the blue region (λmax = 435 nm) due to transitions from the 4f65d1 to the 4f7 configuration of the Eu2+ ion. Scanning electron microscopy has been used for exploring the morphological properties of the prepared phosphors. The BaCa2Al8O15:Eu2+ phosphor has a blue afterglow when Dy3+ ions were co‐doped. The thermoluminescence spectra show that the Dy3+ ion induces a proper trap in the phosphor with a depth of 0.67 eV and results in a long afterglow phosphorescence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Long persistence phosphor CaAl4O7: Eu2+, Dy3+ were prepared by a combustion method. The phosphors were characterized by means of X‐ray diffraction (XRD), scanning electron microscopy (SEM), decay time measurement techniques and photoluminescence spectra (PL). The CaAl4O7: Eu2+, Dy3+ phosphor showed a broad blue emission, peaking at 445 nm when excited at 341 nm. Such a blue emission can be attributed to the intrinsic 4f → 5d transitions of Eu2+ in the host lattices. The lifetime decay curve of the Dy3+ co‐doped CaAl4O7: Eu2+ phosphor contains a fast decay component and another slow decay one. Surface morphology also has been studied by SEM. The calculated CIE colour chromaticity coordinates was (0.227, 043). We have also discussed a possible long‐persistent mechanism of CaAl4O7:Eu2+, Dy3+ phosphor. All the results indicate that this phosphor has promising potential for practical applications in the field of long‐lasting phosphors for the purposes of sign boards and defence. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were synthesized using the solid‐state reaction method. X‐Ray diffraction (XRD) and photoluminescence (PL) analyses were used to characterize the phosphors. The XRD results revealed that the synthesized CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were crystalline and are assigned to the monoclinic structure with a space group C2/c. The calculated crystal sizes of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors with a main (221) diffraction peak were 44.87 and 53.51 nm, respectively. Energy‐dispersive X‐ray spectroscopy (EDX) confirmed the proper preparation of the sample. The PL emission spectra of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors have a broad band peak at 444.5 and 466 nm, respectively, which is due to electronic transition from 4f65d1 to 4f7. The afterglow results indicate that the CaMgSi2O6:Eu2+,Dy3+ phosphor has better persistence luminescence than the CaMgSi2O6:Eu2+,Ce3+ phosphor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A series of Ca2Mg0.25Al1.5Si1.25O7:Ce3+/Eu2+/Tb3+ phosphors was been prepared via a conventional high temperature solid‐state reaction and their luminescence properties were studied. The emission spectra of Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+ and Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Tb3+ phosphors show not only a band due to Ce3+ ions (409 nm) but also as a band due to Eu2+ (520 nm) and Tb3+ (542 nm) ions. More importantly, the effective energy transfer from Ce3+ to Eu2+ and Tb3+ ions was confirmed and investigated by emission/excitation spectra and luminescent decay behaviors. Furthermore, the energy level scheme and energy transfer mechanism were investigated and were demonstrated to be of resonant type via dipole–dipole (Ce3+ to Eu2+) and dipole–quadrupole (Ce3+ to Tb3+) reactions, respectively. Under excitation at 350 nm, the emitting color could be changed from blue to green by adjusting the relative doping concentration of Ce3+ and Eu2+ ions as well as Ce3+ and Tb3+ ions. The above results indicate that Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+/Tb3+ are promising single‐phase blue‐to‐green phosphors for application in phosphor conversion white‐light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A blue‐emitting phosphor Ca12Al14O32F2:Eu2+ was synthesized using a high‐temperature solid‐state reaction under a reductive atmosphere. The X‐ray diffraction measurements indicate that a pure phase Ca12Al14O32F2:Eu2+ can be obtained for low doping concentration of Eu2+. The phosphor has a strong absorption in the range 270–420 nm with a maximum at ~340 nm and blue emission in the range 400–500 nm with chromatic coordination of (0.152, 0.045). The optimal doping concentration is ~0.24. In addition, the luminescence properties of the as‐synthesized phosphor were evaluated by comparison with those of Ca12Al14O32Cl2:Eu2+ and the commercially available phosphor BaMgAl10O17:Eu2+. The emission intensity of Ca12Al14O32F2:Eu2+ was ~72% that of BaMgAl10O17:Eu2+ under excitation at λ = 375 nm. The results indicate that Ca12Al14O32F2:Eu2+ has potential application as a near‐UV‐convertible blue phosphor for white light‐emitting diodes.  相似文献   

7.
Calcium aluminate phosphor co‐doped Eu2+, Dy3+, Nd3+ is prepared by the combustion method. We study systemically the influences of the quantity of mixed Dy3+ ion, the quantity of flux H3BO3, the differences in dispersing methods between magnetic stirring and ultrasonic dispersing and the combustion temperature on the long‐persistence phosphor. The analytical results indicate that Dy3+ ion improves the properties of the phosphors CaAl2O4:Eu2+, Nd3+. The appropriate quantity of flux H3BO3 to reduce the forming temperature of the sample was determined. The monoclinic single phase of CaAl2O4 formed at 500°C and remained steady. The calcium aluminate co‐doped Eu2+, Dy3+, Nd3+ was synthesized by dispersal of the raw material using the ultrasonic method, and it had better optical properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A series of Ba2P2O7:xEu2+,yCe3+,zTb3+ phosphors was synthesized via a co‐precipitation method, then their crystal structure, quantum efficiency and luminescent properties were analyzed by XRD and FL, respectively. The results showed that these phosphors not only presented the excitation characteristics of Ba2P2O7:xEu2+,zTb3+, but also exhibited that of the Ba2P2O7:yCe3+,zTb3+ phosphor. Meanwhile, the tri‐doped phosphor showed a stronger absorption around 320 nm in contrast with the Eu2+/Ce3+:Tb3+ co‐doped phosphor. Not only can energy transfer from Ce3+→Eu2+ be observed; the energy transfer mechanism from Eu2+ to Tb3+ is discussed in the tri‐doped system. Ce3+ affects the luminescence properties of Ba2P2O7:xEu2+,yCe3+,zTb3+ phosphors just as the sensitizer whereas Eu2+ is considered both as the sensitizer and the activator. The chromaticity coordinates of tri‐doped phosphors excited at 320 nm stayed steadily in the bluish‐white light region,and the emitted color and color temperature (CCT) of these phosphors could be tuned by adjusting the relative contents of Eu2+, Ce3+ and Tb3+. Hence, the single phase Ba2P2O7:xEu2+,yCe3+,zTb3+ phosphors may be considered as potential candidates for white light‐emitting diodes.  相似文献   

9.
Ca2MgSi2O7:Eu2+,Dy3+ phosphor was prepared by the solid‐state reaction method under a weak reducing atmosphere. The obtained phosphor was characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FT‐IR) techniques. The phase structure of the Ca2MgSi2O7:Eu2+,Dy3+ phosphor was akermanite type, which is a member of the melilite group. The surface morphology of the sintered phosphor was not uniform and phosphors aggregated tightly. EDX and FT‐IR spectra confirm the elements present in the Ca2MgSi2O7:Eu2+,Dy3+ phosphor. Under UV excitation, a broadband emission spectrum was found. The emission spectra observed in the green region centered at 535 nm, which is due to the 4f–5d transition. The mechanoluminescence (ML) intensity of the prepared phosphor increased linearly with increases in the mechanical load. The ML spectra were similar to the photoluminescence (PL), which indicates that ML is emitted from the same emitting center of Eu2+ ions as PL. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A series of Eu3+‐, Ce3+‐, Dy3+‐ and Tb3+‐doped (Y,Gd)BO3 phosphors was synthesized by a solid‐state diffusion method. X‐Ray diffraction confirmed their hexagonal structure and the scanning electron microscopy results showed crystalline particles. The excitation spectra revealed that (Y,Gd)BO3 phosphors doped with Eu3+, Ce3+ , Dy3+ and Tb3+ are effectively excited with near UV‐light of 395 nm/blue light, 364, 351 and 314 nm, respectively. Photoluminescence spectra of Eu3+‐, Ce3+‐ and Tb3+/Dy3+‐doped phosphor showed intense emission of reddish orange, blue and white light, respectively. The phosphor Y0.60Gd0.38BO3:Ce0.02 showed CIE 1931 color coordinates of (0.158, 0.031) and better color purity compared with commercially available blue BAM:Eu2+ phosphor. The phosphor (Y,Gd)BO3 doped with Eu3+, Dy3+ and Tb3+ showed CIE 1931 color coordinates of (0.667, 0.332), (0.251, 0.299) and (0.333, 0.391) respectively. Significant photoluminescence characteristics of the prepared phosphors indicate that they might serve as potential candidates for blue chip and near‐UV white light‐emitting diode applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Dysprosium ion (Dy3+) activated Ba2CaZn2Si6O17 phosphors were synthesized using high temperature solid‐state reaction method. Powder X‐ray diffraction (PXRD) analysis confirmed the phase formation of the as‐prepared phosphors. Scanning electron microscopy (SEM) analysis disclosed an agglomeration of particles with an irregular morphology. Under 350 nm excitation, the emission spectrum of Dy3+ ions showed bands at 481 nm (blue), 577 nm (yellow) and 674 nm (red). The influence of the Dy3+ concentration on its emission intensity was investigated. The optimum concentration of Dy3+ ions in the Ba2CaZn2Si6O17:Dy3+ phosphors were found to be x = 0.06. The critical energy transfer distance was calculated. The fluorescence lifetime was also determined for Ba2CaZn2Si6O17:0.06Dy3+. The Commission International deI’Eclairage (CIE) chromaticity coordinates of the phosphor were calculated to be x = 0.304, y = 0.382. The activation energy for the thermal quenching was calculated to be 0.168 eV. These results indicated that the Ba2CaZn2Si6O17:Dy3+ phosphor might be a potential candidate for near ultraviolet (NUV)‐based white light‐emitting diodes.  相似文献   

12.
Dy3+‐doped Y3Al5O12 phosphors were prepared at a relatively low temperature using molten salt synthesis. The phase of the prepared Dy3+‐doped Y3Al5O12 phosphors was confirmed using X‐ray powder diffraction. Results indicated that Dy3+ doping did not change the Y3Al5O12 phase. Following excitation at 352 nm, emission spectra of the Dy3+‐doped Y3Al5O12 phosphors consisted of blue, yellow, and red emission bands. The influence of Dy3+ concentration and excitation wavelength on emission was investigated. The ratio of yellow light to blue light varied with change in Dy3+ doping concentration, due to changes in the structure around Dy3+. Emission intensities also changed when the excitation wavelength was changed. This variation is luminescence generated a system for tunable white light for Dy3+‐doped Y3Al5O12 phosphors.  相似文献   

13.
Sr4Al2O7:Eu3+ and Sr4Al2O7:Dy3+ phosphors with alkali metal substitution were prepared using a sol–gel method. The effects of a charge compensator R on the structure and luminescence of Sr4Al2O7:Re3+,R+ (Re = Eu and Dy; R = Li, Na and K) phosphors were investigated in detail. Upon heating to 1400°C, the structure of the prepared samples was that of the standard phase of Sr4Al2O7. Under ultraviolet excitation, all Sr4Al2O7:Eu3+,R+ samples exhibited several narrow emission peaks ranging from 550 to 700 nm due to the 4f → 4f transition of Eu3+ ions. All Sr4Al2O7:Dy3+,R+ phosphors showed two emission peaks at 492 and 582 nm, due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. The luminescence intensity of Sr4Al2O7:Re3+,R+ (Re = Eu and Dy; R = Li, Na and K) phosphors improved markedly upon the addition of charge compensators, promoting their application in white light‐emitting diodes with a near‐ultraviolet chip.  相似文献   

14.
A series of Sr2ZnWO6 phosphors co‐doped with Eu3+, Bi3+ and Li+ were prepared using the Pechini method. The samples were tested using X‐ray diffraction and luminescence spectroscopy. The results show that the samples can be effectively excited by near‐ultraviolet (UV) and UV light. The introduction of Bi3+ and Li+ significantly enhances the fluorescence emission of Sr2ZnWO6:Eu3+ and changes the light emitted by the phosphors from bluish‐green to white. When excited at 371 nm, Sr2–x–zZn1–yWO6:xEu3+,yBi3+,zLi+ (x = 0.05, y = 0.05, z = 0.05, 0.1 and 0.15) samples emit high‐performance white light. Intense red–orange emission is also observed when excited by UV light. The obtained phosphor is a potential white‐emitting phosphor that could meet the needs of excitation sources with near‐UV chips. In addition, this phosphor might have promising application as a red–orange emitting phosphor for white light‐emitting diodes based on UV light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Red‐emitting Mg4Nb2O9:Eu3+ phosphor is synthesized via a solid‐state reaction method in air, and its crystal structure and luminescence are investigated. The phosphor can be excited efficiently by ~ 395 nm light, coupled well with a ~ 395 nm near‐ultraviolet chip and emits red light at ~ 613 nm with sharp spectra due to 5D07 F2 transition of the Eu3+ ion. Mg4Nb2O9:Eu3+ phosphor sintered at 1350 ºC shows Commission international de I'Eclairage (CIE) chromaticity coordinates of x = 0.6354, y = 0.3592, and is a potential red‐emitting phosphor candidate for white light‐emitting diodes (W‐LEDs) under ~ 395 nm near‐ultraviolet LED chip excitation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A series of Sr2P2O7:Dy3+, Sr2P2O7:Ce3+ and Sr2P2O7:Dy3+,Ce3+ phosphors was synthesized via the one‐step calcination process for the precursors prepared by co‐precipitation methods. The phases, morphology, quantum efficiency and photoluminescence properties of the obtained phosphors were characterized systematically. These results show that the near‐spherical particles prepared through calcining the precursors by means of ammonium dibasic phosphate co‐precipitation (method 3) have the smallest particle size and strongest emission intensity among the three methods in the paper. With Dy3+ concentration increasing in Sr2P2O7:Dy3+ phosphors, the luminescence intensity first increases, reaches maximum, and then decreases. A similar trend was followed by Sr2P2O7:Ce3+ with Ce3+concentration increasing. A successful attempt was made to initiate the energy transfer mechanism from Ce3+ to Dy3+ in the host lattice and an overlap between the emission band of Ce3+ and the excitation band of Dy3+ indicated that the Ce3+ → Dy3+ energy transfer may indeed exist. It is clear that the photoluminescence intensity of Dy3+ as well as the quantum efficiency of the phosphor can be enhanced markedly by co‐doping Ce3+. Sr2P2O7:Dy3+,Ce3+ has its (CIE) chromaticity coordinates in the bluish‐white‐light region, near the standard illuminant D65. The CIE 1913 chromaticity coordinates of Sr2P2O7:Dy3+ phosphors fall in the white‐light region, and are adjacent to the ideal white‐light coordinates. In addition, the colour temperature and colour tone of Sr2P2O7:Dy3+ could be adjusted by changing the relative concentration of Dy3+. In short, Sr2P2O7:Dy3+ can be a promising single‐phased white‐light emitting phosphor for near‐UV (NUV) w‐LEDs.  相似文献   

17.
The CaAlBO4:RE (RE = Dy3+, Eu3+, Sm3+) phosphor were prepared via combustion synthesis and studied by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), photoluminescence (PL) spectra and CIE coordinates. The phase formation of the obtained phosphor was analyzed by XRD and the result was confirmed by standard PDF Card No. 1539083. XRD data successfully indicated pure phase of CaAlBO4 phosphor. The crystal structure of CaAlBO4 phosphor is orthorhombic with space group Ccc2 (37). The SEM image of CaAlBO4 phosphor reveals an agglomerated morphology and non-uniform particle size. The EDS image provides evidence of the elements present and the chemical makeup of the materials. Under the 350 nm excitation, the emission spectrum of Dy3+ activated CaAlBO4 phosphor consists of two main groups of characteristic peaks located at 484 and 577 nm which are ascribed to 4F9/26H15/2 and 4F9/26H13/2 transition of Dy3+ respectively. The PL emission spectra of CaAlBO4:Eu3+ phosphor shows characteristics bands observed around 591 and 613 nm, which corresponds to 5D07F1 and 5D07F2 transition of Eu3+ respectively, upon 395 nm excitation wavelength. The emission spectra of Sm3+ activated CaAlBO4 phosphor shows three characteristic bands observed at 565, 601 and 648 nm which emits yellow, orange and red color. The prominent emission peak at the wavelength 601 nm, which is attributed to 4G5/26H7/2 transition, displays an orange emission. The CIE color coordinates of CaAlBO4:RE (RE = Dy3+, Eu3+, Sm3+) phosphor are calculated to be (0.631, 0.368), (0.674, 0.325) and (0.073, 0.185). As per the obtained results, CaAlBO4:RE (RE = Dy3+, Eu3+, Sm3+) phosphor may be applicable in eco-friendly lightning technology.  相似文献   

18.
Eu3+,Dy3+ co-doped Sr2LaZrO5.5-based phosphors were prepared through a sol–gel method. Through characterization, it was found that the Sr2LaZrO5.5-based fluorescent powder co-doped with Eu3+ and Dy3+ had a cubic structure. At an excitation wavelength of 290 nm, the substrate Sr2LaZrO5.5 exhibited strong blue emission at 468 nm, and the Sr2LaZrO5.5:18%Eu3+ phosphor exhibited a strong red emission peak at 612 nm. When the doping amount of Dy3+ was 5, 8, 12, 15, or 18%, the Sr2LaZrO5.5:18%Eu3+ phosphor changed from an orange-red light, to a warm white light, and to a cold white light. According to the emission spectra, the emission intensities of the substrates Sr2LaZrO5.5 and Sr2LaZrO5.5:Eu3+ decreased with increasing Dy3+ concentration, confirming the energy transfer between the host Sr2LaZrO5.5-Eu3+,Dy3+, and resulting in a lower CCT value, with significantly improved white light emission.  相似文献   

19.
Red emission intensity was optimized in three stages, by investigating the effects of: (i) host composition (Gd, Y and Gd/Y), (ii) codoping Li+ as a sensitizer and, finally, (iii) with a SiO2 shell coating as a protecting layer. Lanthanide vanadate powder phosphors were synthesized using a modified colloidal precipitation technique. The effects of SiO2 coating on phosphor particles were characterized using scanning electron microscopy (SEM)‐EDAX, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and photoluminescence (PL) measurements. An improvement in the PL intensity on Li codoping was due to improved crystallinity, which led to higher oscillating strengths for the optical transitions, and also a lowering of the inversion symmetry of Eu3+ ions. Red emission intensity due to 5D05D2 transition of the phosphor Y0.94VO4:Eu3+0.05,Li+0.01 was enhanced by 22.28% compared with Y0.95VO4:Eu3+0.05, and was further improved by 58.73% with SiO2 coating. The luminescence intensity (I) and colour coordinates (x, y) of the optimized phosphor Y0.94VO4:Eu3+0.05,Li+0.01@SiO2, where I = 13.07 cd/m2 and (x = 0.6721, y = 0.3240), were compared with values for a commercial red phosphor (Y2O2S:Eu3+), where I = 27 cd/m2 and (x = 0.6522, y = 0.3437). The measured colour coordinates are superior to those of the commercial red phosphor, and moreover, match well with standard NTSC values (x = 0.67, y = 0.33). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Ca2Al2O5:Eu3+, Ca2Al2O5:Dy3+ and Ca2Al2O5:Tb3+ phosphors were synthesized using a combustion synthesis method. The prepared phosphors were characterized by X‐ray powder diffraction for phase purity, by scanning electron microscopy for morphology, and by photoluminescence for emission and excitation measurements. The Ca2Al2O5:Eu3+ phosphors could be efficiently excited at 396 nm and showed red emission at 594 nm and 616 nm due to 5D0 → 7F1 and 5D0 → 7F2 transitions. Dy3+‐doped phosphors showed blue emission at 482 nm and yellow emission at 573 nm. Ca2Al2O5:Tb3+ phosphors showed emission at 545 nm when excited at 352 nm. Concentration quenching occurred in both Eu3+ and Dy3+phosphors at 0.5 mol%. Photoluminescence results suggested that the aluminate‐based phosphor could be a potential candidate for application in environmentally friendly based lighting technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号