首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Photoreconvertible fluorophore systems were found in the superposition compound eyes of the mothDeilephila and the neuropterAscalaphus. The systems are very similar to those first described by Schlecht et al. (1987) on the apposition eye of the blowflyCalliphora. The fluorophore systems in the cone cells ofDeilephila andAscalaphus closely agree with those in the Semper cells ofCalliphora. In all 3 species the primary fluorophore is converted by UV into a blue-absorbing fluorophore with its max in the range between 410 and 450 nm. The intensity of the fluorescence from the photoproducts in all 3 pigment systems is highly dependent on pH; maximal intensity is recorded if pH5. The pK point is at 6.0 (Deilephila). The fluorescence from the Semper cells (and rhabdomeres) inCalliphora is maximal at low retinoid content showing that the chromophoric group of the fluorophore systems is not a retinoid. The probable candidates for the chromophoric group in these systems are quinones, like ubiquin-one. Phospholipid vesicles into which ubiquinone has been incorporated have fluorophore characteristics comparable to those of the fluorophores in the compound eyes: photoreconversion is induced by UV and blue light, the excitation maxima of the primary and secondary fluorophore are similar, and the intensity of the fluorescence from the secondary fluorophore is highly dependent on pH. The intensity of the fluorescence from the vesicles also depends on the direction of the pH gradient across the membrane, suggesting that this pH dependence is due to an asymmetric distribution of the quinone rings at the inner and outer membrane surface.  相似文献   

2.
Cytosolic and vacuolar pH changes caused by illumination or a changed composition of the gas phase were monitored in leaves of the NAD malic-enzyme-type C4 plant Amaranthus caudatus L. and the C3 plant Vicia faba L. by recording changes in the fluorescence of pH-indicating dyes which had been fed to the leaves. Light-dependent cytosolic alkalization and vacuolar acidification were maximal in the mesophyll cells under high-fluence-rate illumination and in the absence of CO2. Under the same conditions, measurements of light scattering and electrochromic absorption changes at 518 nm revealed maximum thylakoid energization. The results show an intimate relationship between the energization of the photosynthetic apparatus by light, an increase in cytosolic pH and a decrease in vacuolar pH. This was true for both the C4 and the C3 plant, although kinetics, extent and even direction of cytosolic pH changes differed considerably in these plants, reflecting the differences in photosynthetic carbon metabolism. Darkening produced rapid acidification in Vicia, but not in Amaranthus. Continued alkalization in Amaranthus is interpreted to be the result of the decarboxylation of a C4 intermediate and the release of liberated CO2. In the presence of CO2, energy consumption by carbon reduction decreased thylakoid energization, cytosolic alkalization and vacuolar acidification. Under low-fluence-rate illumination, thylakoid energization and light-dependent cytosolic and vacuolar pH changes were decreased in CO2-free air compared with thylakoid energization and pH changes in 1% oxygen/99% nitrogen not only in the C3 plant, but also in Amaranthus. Since oxygenation of ribulose bisphosphate initiates energy-consuming photorespiratory reactions in 21% oxygen, but not in 1% oxygen, this shows that photorespiratory reactions are active not only in the C3 but also in the C4 plant in the absence of external CO2. Photorespiratory conditions appeared to decrease energization not only in the chloroplasts, but also in the cytosol. This is indicated by decreased transfer of protons from the cytosol into the vacuole, a process which is energy-dependent.Abbreviations CDCF 5-(and 6-)carboxy-2,7-dichlorofluorescein - P700 electron-donor pigment in the reaction center of photosystem I - RuBP ribulose-1,5-bisphosphate This work was supported, within the framework of the Sonderforschungsbereiche 176 and 251 of the University of Würzburg, by the Gottfried-Wilhelm-Leibniz Program of the Deutsche Forschungsgemeinschaft. A.S.R. was the recipient of a fellowship from the Alexander-von-Humboldt-Foundation. We are grateful to Mr. Carsten Werner and Mrs. Spidola Neimanis for cooperation.  相似文献   

3.
A novel styrylcyanine‐based fluorescent probe 1 was designed and synthesized via facile methods. Ferric ions quenched the fluorescence of probe 1, whereas the addition of ferrous ions led to only small changes in the fluorescence signal. When hydrogen peroxide was introduced into the solution containing probe 1 and Fe2+, Fe2+ was oxidized to Fe3+, resulting in the quenching of the fluorescence. The probe 1/Fe2+ solution fluorescence could also be quenched by H2O2 released from glucose oxidation by glucose oxidase (GOD), which means that probe 1/Fe2+ platform could be used to detect glucose. Probe 1 is fluorescent in basic and neutral media but almost non‐fluorescent in strong acidic environments. Such behaviour enables it to work as a fluorescent pH sensor in both the solution and solid states and as a chemosensor for detecting volatile organic compounds with high acidity and basicity. Subsequently, the fluorescence microscopic images of probe 1 in live cells and in zebrafish were achieved successfully, suggesting that the probe has good cell membrane permeability and a potential application for imaging in living cells and living organisms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Esculin, a pH-sensitive fluorescent dye, was used to indicate light-dependent pH changes in leaves of Spinacia oleracea L. and Pelargonium zonale L. Shortly after its introduction into the leaves via the transpiration stream, esculin was localized mainly in the symplasm. An increase in its blue fluorescence on illumination with red actinic light indicated that the cytosolic pH had increased. A similar light-dependent alkalinization was seen when the green fluorescence of pyranine was used to monitor changes in the cytosolic pH. After esculin had been transferred into the vacuoles, a light-dependent vacuolar acidification was indicated by a decrease in its blue fluorescence. Since the pK of esculin is close to neutrality, it is suitable as an indicator of proton transport into vacuoles provided the vacuolar sap is only moderately acidic. In leaf cells with very acidic vacuoles, esculin therefore responds only to cytosolic pH changes as long as it remains in the cytosol. The observations made with esculin after it had entered the vacuoles confirmed earlier conclusions on light-dependent proton transport into the vacuoles of mesophyll cells. Previous measurements had been made with 5-carboxy-2,7-dichlorofluoresceine (CDCF), which has a pK of 4.8. In contrast to esculin, CDCF can, in principle, record pH changes in very acidic vacuoles. However, earlier conclusions made on the basis of observed CDCF fluorescence are now recognized to have no unambiguous basis because new measurements, reported here, show that CDCF fluorescence is influenced not only by pH changes but also by changes in light scattering. The latter are, like pH changes, light-dependent and originate from the thylakoid system of chloroplasts. They indicate both the formation of a large transthylakoid proton gradient and the dissipation of excess light energy as heat. Decreased green fluorescence of leaves which had been fed CDCF may therefore, depending on conditions, indicate vacuolar acidification or the dissipation of excess light energy absorbed by the pigment system of chloroplasts, or both. Pyranine fluorescence was found to be much less influenced by light scattering than CDCF fluorescence.Abbreviations CDCF 5-(and 6-)carboxy-2,7-dichlorofluoresceine - P700 primary donor of PS I - PFD photon flux density - QA primary quinone acceptor of PS II - QP, QN photochemical, non-photochemical quenching of chlorophyll fluorescence, respectively This work was supported by the Deutsche Forschungsgemeinschaft within the framework of the research of the Sonderforschungsbereich 251 of the University of Würzburg. We are grateful to Drs. U. Schreiber and K.-J. Dietz and to Mrs. B. Hollenbach (all from our Institute) for discussions.  相似文献   

5.
Hydrostatic pressure has a pronounced effect on the morphology and cytoskeletal organization of mammalian tissue cells. At pressures of about 300 atm (30 MPa), cells “round up”—they withdraw their lamellar extensions and greatly rearrange actin, tubulin, and several other cytoskeletal proteins. It has been proposed that these changes are caused by a pressure-induced elevation of cytosolic Ca2+concentrations. To test this hypothesis we constructed a miniature optical pressure chamber for fluorescent light microscopy to allow measurement of cytosolic Ca2+concentrations with the intracellular fluorescent indicator fura-2. This chamber and fura-2 were used to measure the concentrations of Ca2+in a mouse fibroblast line (C3H 10T1/2) at pressures up to 400 atm (40 MPa). Controls includedin vitrotests with standard buffers to determine the effect of pressure on fura-2 fluorescence. These controls detected a change in fura-2 fluorescence with increasing pressure, but the data indicated that pressure affects fura-2 fluorescence indirectly, by altering the pH of the solution via pressure-induced changes in the ionization of the pH buffer. Thesein vitrochanges in fura-2 fluorescence, nevertheless, were small relative to changes in fura-2 fluorescence produced by elevation in intracellular Ca2+concentrations in response to physiological stimulation of the cells (serum feeding after serum starvation). The mouse fibroblasts rounded at pressures of 275 atm or greater, as expected. However, no changes in cytosolic Ca2+concentrations were detected at any pressure, at the onset of pressure, during periods of high pressure (up to 10 min), or at the release of pressure. These results strongly suggest that the mechanism by which pressure alters cell morphology and cytoskeletal organization must, at least in these cells, be something other than elevation of cytosolic Ca2+concentrations.  相似文献   

6.
Green fluorescent protein (GFP)-centered fluorescence resonance energy transfer (FRET) relies on a distance-dependent transfer of energy from a donor fluorophore to an acceptor fluorophore and can be used to examine protein interactions in living cells. Here we describe a method to monitor the association and disassociation of heterotrimeric GTP-binding (G-proteins) from one another before and after stimulation of coupled receptors in living Dictyostelium discoideum cells. The Galpha(2)and Gbetagamma proteins were tagged with cyan and yellow fluorescent proteins and used to observe the state of the G-protein heterotrimer. Data from emission spectra were used to detect the FRET fluorescence and to determine kinetics and dose-response curves of bound ligand and analogs. Extending G-protein FRET to mammalian G-proteins should enable direct in situ mechanistic studies and applications such as drug screening and identifying ligands of new G-protein-coupled receptors.  相似文献   

7.
Cell, enzyme, and tissue activity in living organisms are closely related to intracellular pH. Detecting the changes of intracellular pH is important to understanding the physiological and pathological changes in the process of crucial cell metabolism. A pH probe (HTBI) based on hemicyanine was synthesized. The probe solution displayed a marked colour change from yellow to amaranth with the pH increase from neutral to basic; simultaneously, the emission spectra showed a significant red shift. The probe exhibited a ratiometric fluorescence emission (F586nm/F542nm) characteristic of pKa 8.82. As expected, HTBI exhibited high sensitivity and selectivity for pH, fine photostability, reversibility, and low cytotoxicity. Therefore, it would be a very useful tool for measuring the intracellular pH changes.  相似文献   

8.
Addition of aluminium chloride (50 μM Al) caused different effects on the transmembrane electrical potential (PD) of root cells in Al-tolerant wheat (Triticum aestivum) cv. Kadett and Al-sensitive cv. WW 20299. As changes in PD of plant cells may depend on transient fluxes of protons, potassium and/or calcium through cell membranes, the effect of Al was investigated on the cytosolic concentrations of these ions in protoplasts isolated from root tips of the same cultivars. The tetra[acetoxymethyl] esters of the fluorescent dyes bis-carboxyethyl-carboxyfluorescein, BCECF, K+-binding benzofuran isophthalate, PBFI, and the stilbene chromophore Fura 2-AM were used to determine pH, K+ and Ca2+, respectively. Changes in fluorescence ratios, directly reflecting changes in [H+], [K+] and [Ca2+] in the cytosol, were determined by photometry fluorescence microscopy. Additions and removals of Al to and from both cultivars caused hyperpolarizations and depolarizations, respectively, but only in the sensitive cv. WW 20299 did the resting PD decrease gradually. Addition of Al to the protoplasts caused rapid changes in cytosolic pH, free [K+] and [Ca2+]. In both cultivars Al caused a transient oscillating increase in cytosolic [Ca2+] for 1 or 2 min and a rapid pH-dependent change in cytosolic [K+]. At pH 5 the presence of K+ in the medium diminished the Al-induced decrease in cytosolic [K+]. Aluminium (50 μM) induced a transient increase in cytosolic [H+] (pH decreased) in both cultivars, but the cytosolic pH returned to its initial value only in the Al-tolerant cv. Kadett. In the Alsensitive cv. WW 20299, repeated additions of Al caused a gradual decline in pH. Moreover, in the presence of 1 mM KCl, pH recovered completely in both cultivars. Since only the effect on pH differed in the two cultivars, the more toxic effect of Al on the cv. WW 20299 should be related to the change in pH.  相似文献   

9.
This mini-review discusses the evolution of fluorescence as a tool to study living cells and tissues in vitro and the present role of fluorescent protein biosensors (FPBs) in microphysiological systems (MPSs). FPBs allow the measurement of temporal and spatial dynamics of targeted cellular events involved in normal and perturbed cellular assay systems and MPSs in real time. FPBs evolved from fluorescent analog cytochemistry (FAC) that permitted the measurement of the dynamics of purified proteins covalently labeled with environmentally insensitive fluorescent dyes and then incorporated into living cells, as well as a large list of diffusible fluorescent probes engineered to measure environmental changes in living cells. In parallel, a wide range of fluorescence microscopy methods were developed to measure the chemical and molecular activities of the labeled cells, including ratio imaging, fluorescence lifetime, total internal reflection, 3D imaging, including super-resolution, as well as high-content screening. FPBs evolved from FAC by combining environmentally sensitive fluorescent dyes with proteins in order to monitor specific physiological events such as post-translational modifications, production of metabolites, changes in various ion concentrations, and the dynamic interaction of proteins with defined macromolecules in time and space within cells. Original FPBs involved the engineering of fluorescent dyes to sense specific activities when covalently attached to particular domains of the targeted protein. The subsequent development of fluorescent proteins (FPs), such as the green fluorescent protein, dramatically accelerated the adoption of studying living cells, since the genetic “labeling” of proteins became a relatively simple method that permitted the analysis of temporal–spatial dynamics of a wide range of proteins. Investigators subsequently engineered the fluorescence properties of the FPs for environmental sensitivity that, when combined with targeted proteins/peptides, created a new generation of FPBs. Examples of FPBs that are useful in MPS are presented, including the design, testing, and application in a liver MPS.  相似文献   

10.
A series of lipid probes, phosphatidylcholines labeled with Me4-BODIPY-8 (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacen-8-yl) fluorophore attached to the end of acyl residue at different distances from the polar head, were used as depth-dependent probes for the apolar zone of the model membrane systems, large unilamellar vesicles (LUV). Data on the anisotropy of probe fluorescence demonstrated a different mobility profiles for the fluorophore microenvironment in LUVs of different composition at various temperatures, which indicates a high sensitivity of these probes as tools for studying membrane systems. An interesting anomaly was observed for LUVs from dimiristoylphosphatidylcholine (DMPC) or from a DMPC-cholesterol mixture: the anisotropy of the fluorophore located near the bilayer center is larger than that of the fluorophore located further from the center; i.e., the mobility of the microenvironment is lower in the first case. This anomaly is supposed to result from the penetration of unlabeled long chain of the probes to the opposite bilayer leaflet. Such a possibility should be taken into account when constructing the fluorescent probes and interpreting the results.  相似文献   

11.
Light-induced changes in the fluorescence of the pH-indicating dyes pyranine or 5-(and 6-)carboxy-2, 7-dichlorofluorescein (CDCF) which had been fed to leaves were examined to monitor cellular pH changes. After short-term feeding of pyranine (pK 7.3) to leaves of Amaranthus caudatus L., a NAD-malic-enzyme-type C4 plant, vascular bundles and surrounding cells became fluorescent. Fluorescence emission from mesophyll cells required longer feeding times. In CO2-free air, pyranine fluorescence increased much more on illumination after mesophyll cells had become fluorescent than when only the vascular bundles and the bundle sheath of Amaranthus leaves had been stained. After short feeding times and in the absence of actinic illumination, CO2 decreased pyranine fluorescence very slowly in Amaranthus and rapidly in C3 leaves. After prolonged feeding times, the extent of the light-dependent increase in pyranine fluorescence was several times greater in different C4 plants than in C3 species. The kinetics of the fluorescence changes were also remarkably different in C3 and C4 plants. Carbon dioxide (500 l · l–1) suppressed the light-induced increase in pyranine fluorescence more in C4 than in C3 leaves. Light-dependent changes in light scattering, which are indicative of chloroplast energization, and in 410-nm transmission, which indicate chloroplast movement, differed kinetically from those of the changes in pyranine fluorescence. Available evidence indicated that light-dependent changes in pyranine fluorescence did not originate from the apoplast of leaf cells. Microscopic observation led to the conclusion that, after prolonged feeding times or prolonged incubation, changes in pyranine fluorescence emitted from C4 leaves reflect pH changes mainly in the cytosol of mesophyll cells. A transient acidification reaction indicated by quenching of pyranine fluorescence in the dark-light transient and not observed in C3 species is attributed to the carboxylation of phosphoenolpyruvate. After short feeding times and in the absence of actinic illumination, CO2 (250 l l–1) decreased pyranine fluorescence very slowly in Amaranthus and more rapidly in C3 leaves. After prolonged feeding times, both the rate and the extent of CO2-dependent quenching of pyranine fluorescence increased, but the increase was insufficient to indicate the presence of highly active carbonic anhydrase in the compartment from which pyranine fluorescence was emitted. In contrast to pyranine, CDCF (pK 4.8) did not increase but rather decreased its fluorescence on illumination of an Amaranthus leaf, indicating acidification of an acidic compartment, most probably the vacuole of green leaf cells. The pattern of the acidification reaction was similar in C4 and C3 leaves. The remarkably large extent of the light-dependent increase in pyranine fluorescence from leaves of C4 species and its slow kinetics are proposed to be caused by an alkalization of the cytosol which in the absence of CO2 is larger in the mesophyll than in the bundle sheath. It gives rise to deprotonation of dye originally located in the mesophyll and, in addition, of dye which diffuses from the bundle sheath into the mesophyll following a pH gradient. Implications of slow diffusional transport of pyranine and CO2 between mesophyll and bundle-sheath cells and the fast metabolite transport required in C4 photosynthesis are discussed.Abbreviations CDCF 5-(and 6-)carboxy-2,7-dichlorofluorescein - DHAP dihydroxyacetone phosphate - PGA 3-phosphoglycerate This work was supported by the Sonderforschungsbereiche 176 and 251 of the University of Würzburg and by the Gottfried-Wilhelm-Leibniz Program of the Deutsche Forschungsgemeinschaft. A.S.R. was the recipient of a fellowship of the Alexander-von-Humboldt Foundation. We are grateful to Mrs. S. Neimanis for cooperation.  相似文献   

12.
The wild type red fluorescent protein eqFP578 (from sea anemone Entacmaea quadricolor, λex = 552 nm, λem = 578 nm) and its bright far‐red fluorescent variant Katushka (λex = 588 nm, λem = 635 nm) are characterized by the pronounced pH dependence of their fluorescence. The crystal structures of eqFP578f (eqFP578 with two point mutations improving the protein folding) and Katushka have been determined at the resolution ranging from 1.15 to 1.85 Å at two pH values, corresponding to low and high level of fluorescence. The observed extinguishing of fluorescence upon reducing pH in eqFP578f and Katushka has been shown to be accompanied by the opposite transcis and cis‐trans chromophore isomerization, respectively. Asn143, Ser158, His197 and Ser143, Leu174, and Arg197 have been shown to stabilize the respective trans and cis fluorescent states of the chromophores in eqFP578f and Katushka at higher pH. The cis state has been suggested as being primarily responsible for the observed far‐red shift of the emission maximum of Katushka relative to that of eqFP578f.  相似文献   

13.
In this study, the fluorescence spectra of sarafloxacin (SAR) under different pH conditions were investigated to determine the structural changes due to protonation that result from change in pH. At pH < 1.02, SAR exists in the H3L2+ form for which the maximum fluorescence emission wavelength was about 455 nm. At pH 1.87–4.94, SAR exists in the H2L+ form in which H3L2+ loses one proton in the nitrogen molecule at the 1‐position in the quinoline ring. Fluorescence intensity was strong and steady and the maximum emission wavelength was 458 nm. At pH 7.14–9.30, the maximum emission wavelengths were gradually blue shifted to 430 nm with increase in pH, here SAR exists in the form of a bipolar ion HL in which H2L+ loses a carboxyl group proton. At pH > 11.6, HL transforms into anionic L? in which HL loses one proton from the piperazine ring, leading to a decrease in fluorescence intensity, and the maximum emission wavelength was red shifted to approximately 466 nm. The two‐step dissociation constant pKa for SAR was calculated, pK a1 was 6.06 ± 0.37 and pK a2 for SAR was 10.53 ± 0.19. In a pH 3.62 buffer solution with quinine sulfate as the reference, the fluorescence quantum yield of SAR at the maximum excitation wavelength of 276 nm was 0.09.  相似文献   

14.
A fluorescent pH probe, N,N′‐bi( l ‐phenylalanine amine)‐perylene‐3,4;9,10‐dicarboxylic diimide (PDCDA) was synthesized and used for pH sensing in living cells. A significant fluorescence intensity change was observed over a pH range from 7.0 to 4.0. Electrostatic potential maps (MEP) suggested that the electronic repulsion between PDCDAs was increased by the high negative electrostatic potential which resulted in a high water solubility of PDCDA. PDCDA was successfully applied as a high‐performance fluorochrome for living HeLa cell imaging. The results demonstrate that the probe PDCDA is a good candidate for monitoring pH fluctuations in living cells with good water solubility, low cytotoxicity, high fluorescence quantum yield and photostability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Hubert Felle 《Planta》1988,174(4):495-499
In epidermal cells of maize (Zea mays L.) coleoptiles, cytosolic pH (pHc), cytosolic free calcium, membrane potential and changes thereof were monitored continuously and simultaneously (pHc/, m, Ca2+/ m) using double-barrelled ion-sensitive microelectrodes. In the resting cells the cytosolic pH was 7.3–7.5 and the concentration of free calcium was 119±24 nM. One-micromolar indole-3-acetic acid (IAA), added to the external medium at pH 6.0 triggered oscillations in m, pHc and free calcium with a period of 20 to 30 min. Acidification of the cytosolic pH increased the cytosolic free calcium. The m oscillations are attributed to changes in activity of the H+-extrusion pump at the plasmalemma, triggered off by pH and controlled by pH regulation (pH oscillation). The origin of the pHc and Ca2+ changes remains unclear, but is possibly caused by auxin-receptor-induced lipid breakdown and subsequent second-messenger formation. It is suggested that the observed cytosolic pH and Ca2+ changes are intrinsically interrelated, and it is concluded that this onset of regulatory processes through the phytohormone IAA is indicative of calcium and protons mediating early auxin action in maize coleoptiles. It is further concluded that the double-barrelled ion-sensitive microelectrode is an invaluable tool for investigating in-vivo hormone action in plant tissues.Abbreviations and symbols FC fusicoccin - IAA indole-3-acetic acid - Mes 2-(N-morpholino)ethanesulfonic acid - pHc cytosolic pH - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol - m membrane potential difference (mV)  相似文献   

16.
A coumarin–benzopyrylium ( CB ) platform has been developed for the colorimetric and fluorogenic detection of bisulfite. The proposed probe utilizes coumarin as the fluorophore and positively charged benzopyrylium as the reaction site. The method employs the nucleophilic addition of bisulfite to the benzopyrylium moiety of CB to inactivate the electron‐deficient oxonium ion. The driving force for photo‐induced electron transfer is considerably diminished, thereby promoting the emission intensity of the coumarin fluorophore. The fluorescence intensity at 510 nm is linear with bisulfite concentration over a range of 0.2–7.5 μM with a detection limit of 42 nM (3δ). CB shows a rapid response (within 30 s) and high selectivity and sensitivity for bisulfite. Preliminary studies show that CB has great potential for bisulfite detection in real samples and in living cells.  相似文献   

17.
The ability of cells to rapidly detect and react to alterations in their chemical environment, such as pH, ionic strength and redox potential, is essential for cell function and survival. We present here evidence that cells can respond to such environmental alterations by rapid induction of matriptase autoactivation. Specifically, we show that matriptase autoactivation can occur spontaneously at physiological pH, and is significantly enhanced by acidic pH, both in a cell-free system and in living cells. The acid-accelerated autoactivation can be attenuated by chloride, a property that may be part of a safety mechanism to prevent unregulated matriptase autoactivation. Additionally, the thio-redox balance of the environment also modulates matriptase autoactivation. Using the cell-free system, we show that matriptase autoactivation is suppressed by cytosolic reductive factors, with this cytosolic suppression being reverted by the addition of oxidizing agents. In living cells, we observed rapid induction of matriptase autoactivation upon exposure to toxic metal ions known to induce oxidative stress, including CoCl2 and CdCl2. The metal-induced matriptase autoactivation is suppressed by N-acetylcysteine, supporting the putative role of altered cellular redox state in metal induced matriptase autoactivation. Furthermore, matriptase knockdown rendered cells more susceptible to CdCl2-induced cell death compared to control cells. This observation implies that the metal-induced matriptase autoactivation confers cells with the ability to survive exposure to toxic metals and/or oxidative stress. Our results suggest that matriptase can act as a cellular sensor of the chemical environment of the cell that allows the cell to respond to and protect itself from changes in the chemical milieu.  相似文献   

18.
《Biophysical journal》2020,118(8):1820-1829
We report the use of pulsed interleaved excitation (PIE)-fluorescence lifetime imaging microscopy (FLIM) to measure the activities of two different biosensor probes simultaneously in single living cells. Many genetically encoded biosensors rely on the measurement of Förster resonance energy transfer (FRET) to detect changes in biosensor conformation that accompany the targeted cell signaling event. One of the most robust ways of quantifying FRET is to measure changes in the fluorescence lifetime of the donor fluorophore using FLIM. The study of complex signaling networks in living cells demands the ability to track more than one of these cellular events at the same time. Here, we demonstrate how PIE-FLIM can separate and quantify the signals from different FRET-based biosensors to simultaneously measure changes in the activity of two cell signaling pathways in the same living cells in tissues. The imaging system described here uses selectable laser wavelengths and synchronized detection gating that can be tailored and optimized for each FRET pair. Proof-of-principle studies showing simultaneous measurement of cytosolic calcium and protein kinase A activity are shown, but the PIE-FLIM approach is broadly applicable to other signaling pathways.  相似文献   

19.
Small-molecule fluorescent sensors that allow specific measurement of nuclear pH in living cells will be valuable for biological research. Here we report that Hoechst-tagged fluorescein (hoeFL), which we previously developed as a green fluorescent DNA-staining probe, can be used for this purpose. Upon excitation at 405 nm, the hoeFL–DNA complex displayed two fluorescence bands around 460 nm and 520 nm corresponding to the Hoechst and fluorescein fluorescence, respectively. When pH was changed from 8.3 to 5.5, the fluorescence intensity ratio (F520/F460) significantly decreased, which allowed reliable pH measurement. Moreover, because hoeFL binds specifically to the genomic DNA in cells, it was applicable to visualize the intranuclear pH of nigericin-treated and intact living human cells by ratiometric fluorescence imaging.  相似文献   

20.
Hypochlorite (ClO), as a kind of essential reactive oxygen species, plays a crucial role in vitro and in vivo. Here, a ratiometric fluorescent probe ( TPAM ) was designed and constructed for sensing ClO based on substituted triphenylamine and malononitrile, which exhibited obvious colour transfer from orange to colourless under daylight accompanied by noticeable fluorescence change from red to green in response to ClO. TPAM could effectively monitor ClO with the merits of fast response, excellent selectivity, high sensitivity and a low detection limit of 0.1014 μM. 1H NMR, mass spectra and theoretical calculations proved that ClO caused the oxidation of the carbon–carbon double bond in TPAM , resulting in compound 1 and marked changes in colour and fluorescence. In addition, TPAM was utilized for imaging ClO in living cells successfully with good photostability and biocompatibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号