首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The virulence spectrum of 23 monopycnidiospore isolates of Mycosphaerella graminicola was determined using wheat genotypes that carried different resistance genes (Stb1Stb8 and Stb15). Disease severity was measured as the percentage of necrotic leaf area. The isolates used in the experiments were of diverse origin: eight from Poland, seven from Germany, and eight from other countries around the world. Analysis of variance revealed significant differences in the virulence of the isolates. Using multiple regression and Cook’s D statistic, 26 significant cultivar × isolate interactions were detected. The Israeli isolate IPO86036 showed the widest spectrum of specific reactions. It expressed specific virulence on at least four cultivars and specific avirulence on at least three. The other isolates showed specific interactions with 1–6 different cultivars. Despite the limited number of isolates that were tested, we recommend that a number of resistant lines, namely cultivars Veranopolis (Stb2), Cs/Synthetic 7D (Stb5), Arina (Stb15, Stb6 and partial resistance), and Liwilla (unknown resistance factors), could be incorporated into central European wheat breeding programmes that are aimed at developing resistance against septoria tritici blotch. In contrast, resistance gene Stb7, which is carried by cultivar Estanzuela Federal, was ineffective against most of the isolates that were used. These results on the virulence spectrum of M. graminicola isolates provide valuable information for effective wheat breeding programmes to develop resistance to the pathogen.  相似文献   

2.
Twenty‐nine synthetic hexaploid wheats (SHWs) were evaluated for resistance to five isolates of Zymoseptoria tritici, a devastating wheat pathogen worldwide. The five Z. tritici isolates varied in their virulence spectra towards wheat genotypes, indicating that they have distinct set of avirulence genes. New isolate‐specific resistances were identified that could be used in wheat breeding programmes. Comparing with the previous studies, the number of specific resistances identified in this study is considerable. Among 150 interactions, 78 isolate‐specific resistances were identified. Interestingly, 21 wheat genotypes showed specific responses to one or more isolates tested. Of these, 12 genotypes were highly resistant to all isolates, indicating that they possess known or novel effective resistance genes. The Stb15 and Stb16/Stb17 are effective resistance genes towards isolates used in this study, indicating that the conferred resistance in these genotypes is due to the presence of either of these genes in combination or individually. Alternatively, they may carry novel broad‐spectrum resistance gene(s) that their identification is of interest. Our data suggest that the presence of complete resistance to various Z. tritici isolates in SHWs justifies the need for more in‐depth research to characterize the likely novel genes.  相似文献   

3.
The effect of seed‐borne pathogens of wheat and barley on crown and root rot diseases of seven barley cultivars (Jimah‐6, Jimah‐51, Jimah‐54, Jimah‐58, Omani, Beecher and Duraqi) and three wheat cultivars (Cooley, Maissani and Shawarir) was investigated. Bipolaris sorokiniana and Alternaria alternata were detected in seeds of at least eight cultivars, but Fusarium species in seeds of only two barley cultivars (Jimah‐54 and Jimah‐58). Crown rot and root rot symptoms developed on barley and wheat cultivars following germination of infected seeds in sterilized growing media. Bipolaris sorokiniana was the only pathogen consistently isolated from crowns and roots of the emerging seedlings. In addition, crown rot and root rot diseases of non‐inoculated barley cultivars correlated significantly with B. sorokiniana inoculum in seeds (P = 0.0019), but not with Fusarium or Alternaria (P > 0.05). These results indicate the role of seed‐borne inoculum of B. sorokiniana in development of crown rot and root rot diseases. Pathogenicity tests of B. sorokiniana isolates confirmed its role in inducing crown rot and root rot, with two wheat cultivars being more resistant to crown and root rots than most barley cultivars (P < 0.05). Barley cultivars also exhibited significant differences in resistance to crown rot (P < 0.05). In addition, black point disease symptoms were observed on seeds of three barley cultivars and were found to significantly affect seed germination and growth of some of these cultivars. This study confirms the role of seed‐borne inoculum of B. sorokiniana in crown and root rots of wheat and barley and is the first report in Oman of the association of B. sorokiniana with black point disease of barley.  相似文献   

4.
Septoria tritici blotch, caused by Mycosphaerella graminicola, is a serious foliar disease of wheat worldwide. Qualitative, race-specific resistance sources have been identified and utilized for resistant cultivar development. However, septoria tritici blotch resistant varieties have succumbed to changes in virulence of M. graminicola on at least three continents. The use of resistance gene pyramids may slow or prevent the breakdown of resistance. A clear understanding of the genetics of resistance and the identification of linked PCR-based markers will facilitate the recovery of wheat lines carrying multiple septoria tritici blotch resistance genes. The resistance gene in ST6 to isolate MG2 of M. graminicola was mapped with microsatellite markers in two populations, ST6/Erik and ST6/Katepwa. Bulk segregant analysis identified a marker on chromosome 4AL putatively linked to the resistance gene. A large linkage group was identified in each population using additional microsatellite markers mapping to chromosome 4AL. The resistance gene in ST6 mapped to the distal end of chromosome 4AL in each mapping population and was designated Stb7. Three of the microsatellite loci, Xwmc313, Xwmc219 and Xgwm160, mapped within 3.5 cM of Stb7; however, none flanked Stb7. Xwmc313 was the closest and mapped 0.3 and 0.5 cM from Stb7 in the crosses ST6/Katepwa and ST6/Erik, respectively. WMC313 will be very useful for marker-assisted selection of Stb7 in Canadian breeding programs because the ST6 allele of Xwmc313 was not identified in any of the Canadian common wheat cultivars tested.Communicated by P. Langridge  相似文献   

5.
Phenylalanine ammonia-lyase (PAL) activity was determined from leaves and roots of two barley (Hordeum vulgare L.) cultivars after infection with a necrotrophic pathogen, Bipolaris sorokiniana (Sacc.) Shoem., and treatment with its purified xylanase. PAL activity increased in leaves of both cultivars 16 h after fungal inoculation but two phases, with activity peaks at 24–32 h and 40 h, were recorded only for the more resistant cultivar, Agneta. Attempts to use a PAL inhibitor, χ-amin, ooxyacetic acid, to increase susceptibility to B. sorokiniana in barley leaves were unsuccessful. Treatments of leaves with purified xylanase resulted in more rapid (4–12 h after injection), although reduced, induction of PAL compared with fungal injection. The higher the concentration of xylanase applied the earlier the activity peaks were detected. Fungal inoculation only slightly increased PAL activity in barley roots while xylanase treatment had no effect. The basal level of PAL was however much higher in roots than in leaves. In wheat, Triticum aestivum L. resistant to B. sorokiniana, the time-course of PAL induction after fungal infection and xylanase treatment resembled that for cv. Agneta, while in oats, Avena sativa L. (non-host) PAL activity did not change after the treatments. The results suggest that the second phase of PAL induction, associated only with responses of barley cv. Agneta and wheat, is linked with their resistance to B. sorokiniana infection. The possible role of xylanase as an elicitor of PAL is discussed.  相似文献   

6.
Puccinia triticina (Pt), the causal agent of leaf rust evolves through forming new pathotypes that adversely affect the growth and yield of wheat cultivars. Therefore, continued production of resistant varieties through exploring novel sources of resistance in wild relatives which are abundantly found in Iran and the neighbouring regions is a major task in wheat breeding programs. The aim of the present study was to explore 60 wild wheat genotypes selected from the species Triticum monococcum, Aegilops tauschii, Ae. neglecta, Ae. cylindrica, Ae. triuncialis, Ae. umbellulata, Ae. speltoides, Ae. columnaris, Ae. crassa and Ae. ventricosa for resistance to leaf rust. The cultivar ‘Boolani’ and Thatcher near-isogenic lines were used as controls. Two-week-old seedlings were inoculated using 10 Pt pathotypes, and the infection types were recorded. The genotypes were also analysed for polymorphism using six sequence-tagged sites (STS) and sequence characterized amplified region (SCAR) markers. Forty-eight genotypes produced high infection types (3+) for two pathotypes, but the remaining genotypes produced low infection types of ‘0; =’ to ‘1+CN’ to all pathotypes. The latter included three accessions of Ae. tauschii, two accessions of each Ae. umbellulata, Ae. columnaris and Triticum monococcum, and one accession from each Ae. triuncialis, Ae. ventricosa and Ae. neglecta. Analysis for STS and SCAR markers suggested several genotypes could carry the genes Lr9, Lr10, Lr19, Lr24, Lr26 and Lr37 or their potential orthologs in addition to unknown resistance genes. In conclusion, the identified resistant genotypes could be further characterized and used in wheat breeding programs for leaf rust resistance.  相似文献   

7.
8.
9.
The resistance of wheat lines and cultivars from the Institute of Crop Breeding (Harbin, China) and synthetic, hexaploid wheat lines derived from T. durum and T. tauschii (CIMMYT) were screened for resistance to spot blotch Bipolaris sorokiniana Shoem. using field and laboratory tests. The highly and moderately resistant wheat samples were determined. The satisfactory coincidence of data obtained from evaluation of type reaction of seedlings and disease severity in adult plant stage was demonstrated. The genetics of resistance in Chinese lines Long 98-4554, Long 98-4546, Long mai 24, Long mai 23 and Canadian line 181-5 was studied using hybridological analysis. The resistance in these lines was inherited as quantitative traits and was conditioned by a few (one or two) genes. The absence of susceptible plants in F2 in crosses of resistant lines Long 98-4554, Long 98-4546, Long mai 24 and 181-5 can testify to the presence of a common gene of resistance. Our data reveals the poor genetic diversity for spot blotch resistance in studying wheat genotypes.  相似文献   

10.
We report the genetics of resistance of the Portuguese wheat breeding line TE 9111 to septoria tritici blotch (STB), which is caused by Mycosphaerella graminicola. TE 9111 is the most resistant line known in Europe and combines isolate-non-specific, partial resistance with several isolate-specific resistances. We show that, in addition to high levels of partial resistance to STB, TE 9111 has a new gene for resistance to M. graminicola isolate IPO90012, named Stb11, that maps on chromosome 1BS, the Stb6 gene for resistance to isolate IPO323 and, probably, the Stb7 gene for resistance to isolate IPO87019. All of these genes are closely linked to microsatellite markers, which can be used for marker-assisted selection. TE 9111 may therefore be a valuable source of resistance to STB for wheat breeding, especially in Mediterranean environments.  相似文献   

11.
Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola (anamorph Septoria tritici), was the most destructive disease of wheat in Indiana and adjacent states before deployment of the resistance gene Stb1 during the early 1970s. Since then, Stb1 has provided durable protection against STB in widely grown wheat cultivars. However, its chromosomal location and allelic relationships to most other STB genes are not known, so the molecular mapping of Stb1 is of great interest. Genetic analyses and molecular mapping were performed for two mapping populations. A total of 148 F1 plants (mapping population I) were derived from a three-way cross between the resistant line P881072-75-1 and the susceptible lines P881072-75-2 and Monon, and 106 F6 recombinant-inbred lines (mapping population II) were developed from a cross between the resistant line 72626E2-12-9-1 and the susceptible cultivar Arthur. Bulked-segregant analysis with random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and microsatellite or simple-sequence repeat (SSR) markers was conducted to identify those that were putatively linked to the Stb1 gene. Segregation analyses confirmed that a single dominant gene controls the resistance to M. graminicola in each mapping population. Two RAPD markers, G71200 and H19520, were tightly linked to Stb1 in wheat line P881072-75-1 at distances of less than 0.68 cM and 1.4 cM, respectively. In mapping population II, the most closely linked marker was SSR Xbarc74, which was 2.8 cM proximal to Stb1 on chromosome 5BL. Microsatellite loci Xgwm335 and Xgwm213 also were proximal to Stb1 at distances of 7.4 cM and 8.3 cM, respectively. The flanking AFLP marker, EcoRI-AGC/MseI-CTA-1, was 8.4 cM distal to Stb1. The two RAPD markers, G71200 and H19520, and AFLP EcoRI-AGC/MseI-CTA-1, were cloned and sequenced for conversion into sequence-characterized amplified region (SCAR) markers. Only RAPD allele H19520 could be converted successfully, and none of the SCAR markers was diagnostic for the Stb1 locus. Analysis of SSR and the original RAPD primers on several 5BL deletion stocks positioned the Stb1 locus in the region delineated by chromosome breakpoints at fraction lengths 0.59 and 0.75. The molecular markers tightly linked to Stb1 could be useful for marker-assisted selection and for pyramiding of Stb1 with other genes for resistance to M. graminicola in wheat.  相似文献   

12.
Mildew from susceptible genotypes (SI and S2) of Hordeum bulbosum was found to be avirulent on all H. vulgare genotypes tested, including such cultivars as Proctor with no known genes for resistance to mildew. The H. bulbosum genotype SI (2n =14) proved resistant to all isolates of mildew from H. vulgare. The mildew isolates used for these tests possessed most of the common virulence factors which attack the current ‘vulgare’ cultivars in Western Europe. Some H. bulbosum genotypes were resistant to the ‘bulbosum’ mildew. Attempts at combining resistance from both species are presented and discussed.  相似文献   

13.
Benzothiadiazole (BTH) is a novel chemical activator of disease resistance in tobacco, wheat and other important agricultural plants. In this report, it is shown that BTH works by activating SAR in Arabidopsis thaliana. BTH-treated plants were resistant to infection by turnip crinkle virus, Pseudomonas syringae pv ‘tomato’ DC3000 and Peronospora parasitica. Chemical treatment induced accumulation of mRNAs from the SAR-associated genes, PR-1, PR-2 and PR-5. BTH treatment induced both PR-1 mRNA accumulation and resistance against P. parasitica in the ethylene response mutants, etr1 and ein2, and in the methyl jasmonate-insensitive mutant, jar1, suggesting that BTH action is independent of these plant hormones. BTH treatment also induced both PR-1 mRNA accumulation and P. parasitica resistance in transgenic Arabidopsis plants expressing the nahG gene, suggesting that BTH action does not require salicylic acid accumulation. However, because BTH-treatment failed to induce either PR-1 mRNA accumulation or P. parasitica resistance in the non-inducible immunity mutant, nim1, it appears that BTH activates the SAR signal transduction pathway.  相似文献   

14.
15.
The ascomycete Mycosphaerella graminicola is the causal agent of septoria tritici blotch (STB), one of the most destructive foliar diseases of bread and durum wheat globally, particularly in temperate humid areas. A screening of the French bread wheat cultivars Apache and Balance with 30 M. graminicola isolates revealed a pattern of resistant responses that suggested the presence of new genes for STB resistance. Quantitative trait loci (QTL) analysis of a doubled haploid (DH) population with five M. graminicola isolates in the seedling stage identified four QTLs on chromosomes 3AS, 1BS, 6DS and 7DS, and occasionally on 7DL. The QTL on chromosome 6DS flanked by SSR markers Xgpw5176 and Xgpw3087 is a novel QTL that now can be designated as Stb18. The QTLs on chromosomes 3AS and 1BS most likely represent Stb6 and Stb11, respectively, and the QTLs on chromosome 7DS are most probably identical with Stb4 and Stb5. However, the QTL identified on chromosome 7DL is expected to be a new Stb gene that still needs further characterization. Multiple isolates were used and show that not all isolates identify all QTLs, which clearly demonstrates the specificity in the M. graminicola–wheat pathosystem. QTL analyses were performed with various disease parameters. The development of asexual fructifications (pycnidia) in the characteristic necrotic blotches of STB, designated as parameter P, identified the maximum number of QTLs. All other parameters identified fewer but not different QTLs. The segregation of multiple QTLs in the Apache/Balance DH population enabled the identification of DH lines with single QTLs and multiple QTL combinations. Analyses of the marker data of these DH lines clearly demonstrated the positive effect of pyramiding QTLs to broaden resistance spectra as well as epistatic and additive interactions between these QTLs. Phenotyping of the Apache/Balance DH population in the field confirmed the presence of the QTLs that were identified in the seedling stage, but Stb18 was inconsistently expressed and might be particularly effective in young plants. In contrast, an additional QTL for STB resistance was identified on chromosome 2DS that is exclusively and consistently expressed in mature plants over locations and time, but it was also strongly related with earliness, tallness as well as resistance to Fusarium head blight. Although to date no Stb gene has been reported on chromosome 2D, the data provide evidence that this QTL is only indirectly related to STB resistance. This study shows that detailed genetic analysis of contemporary commercial bread wheat cultivars can unveil novel Stb genes that can be readily applied in marker-assisted breeding programs.  相似文献   

16.
The effectiveness of resistance to subterranean clover mottle sobemovirus (SCMoV) previously identified in different genotypes of subterranean clover (Trifolium subterraneum) inoculated with infective sap in the glasshouse, was tested in two field experiments which used the grazing animal as virus vector. Replicated plots each consisting of paired test rows of 20 different genotypes were used. Clover plants infected with SCMoV were transplanted in between the paired test rows and these acted as sources of the virus for spread by grazing sheep. Although used in different years at different sites with different virus isolates, the field exposure methodology employed produced consistent results. The genotypes each behaved similarly in both experiments as regards the relative extents of SCMoV infection that developed, levels ranging from 0–98%. The previously identified resistance in six ‘highly resistant’ and three ‘partially resistant’ cultivars was effective under field conditions. However, the ‘partial resistance’ in three others was overcome, cvs Green Range and Mt Barker developing levels of infection approaching those in ‘susceptible’ cultivars, while an intermediate infection level developed in cv. Karridale. The three cultivars in which partial resistance was not effective all belonged to ssp. subterraneum. In subterranean clover breeding programmes, field screening using the grazing animal as a vector is advisable to determine whether SCMoV resistance found by sap inoculation is still effective under field conditions.  相似文献   

17.
Spot blotch is a major foliar disease of wheat caused by Bipolaris sorokiniana in warm and humid environments of the world including South Asian countries. In India, it has a larger impact in Indo-Gangetic plains of the country. Therefore, the present study was undertaken to phenotype a mapping population at different hot spots of India and to detect quantitative trait loci (QTL) for resistance to spot blotch in wheat. For this study, 209 single seed descent (SSD) derived F8, F9, F10 recombinant inbred lines (RILs) of the cross ‘Sonalika’ (an Indian susceptible cultivar)/‘BH 1146’ (a Brazilian resistant cultivar) were assessed for spot blotch resistance at two hot spot locations (Coochbehar and Kalyani) for three years and for two years under controlled conditions in the polyhouse (Karnal). The population showed large variation in spot blotch reaction for disease severity in all the environments indicating polygenic nature of the disease. Microsatellite markers were used to create the linkage maps. Joint and/or individual year analysis by composite interval mapping (CIM) and likelihood of odds ratio (LOD) >2.1, detected two consistent QTLs mapped on chromosome 7BL and 7DL and these explained phenotypic variation of 11.4 percent and 9.5 percent over the years and locations, respectively. The resistance at these loci was contributed by the parent ‘BH 1146’ and shown to be independent of plant height and earliness. Besides, association of some agro-morphological traits has also been observed with percent disease severity. These identified genomic regions may be used in future wheat breeding programs through marker assisted selection for developing spot blotch resistant cultivars.  相似文献   

18.
Disease resistance (R) gene, RPP13, plays an important role in the resistance of plants to pathogen infections; its function in resistance of wheat to powdery mildew remains unknown. In this study, a RNA-Seq technique was used to monitor expression of genes in susceptible wheat ‘Jing411’ and resistant near-isogenic line ‘BJ-1’ in response to powdery mildew infection. Overall, 413 differential expression genes were observed and identified as involved in disease resistance. RPP13 homologous gene on wheat chromosome 7D was preliminarily identified using the wheat 660K SNP chip. RPP13 was highly expressed in ‘BJ-1’ and encodes 1,027 amino acids, including CC, NB and LRR domain, termed TaRPP13-3. After inoculation with powdery mildew, expression of TaRPP13-3 in resistant wheat changed with time, but average expression was higher when compared to susceptible variety, thus indicating that TaRPP13-3 is involved in resistance to powdery mildew. Virus-induced gene silencing (VIGS) was used to inhibit expression of TaRPP13-3 in resistant parent ‘Brock’. Results indicated that silencing of TaRPP13-3 led to decreased disease resistance in ‘Brock’. Overall results of this study indicate that TaRPP13-3 gene is involved in the defence response of wheat to powdery mildew and plays a positive role in wheat powdery mildew interactions.  相似文献   

19.
Quantitative powdery mildew resistance in compatible host-pathogen-combinations was measured by the number of pastules/cm2 leaf area. Spring barley cultivar ‘Proctor’ was significantly less infected than ‘Golden Promise”. Using these two cultivars (having no effective major resistance gene) as controls, MO- and AR-resistant cultivars were inoculated with virulent mildew isolates. ‘Mona”, ‘Grit’ and ‘Nudinka’ had a higher or, at least, the same level of quantitative resistance as ‘Proctor”. None of the remaining cultivars showed the high susceptibility expressed by ‘Golden Promise”. Ranking of host genotypes was nearly constant while that of mildew isolates varied considerably. Only a small portion of the observed variance was due to interaction between host cultivars and pathogen isolates. ‘Triesdorfer Diva’ gave a resistant infection type after inoculation with different AR-virulent isolates, indicating that this cultivar has major resistance other than that conditioned by gene Ml-a12.  相似文献   

20.
Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola, is one of the most devastating foliar diseases of wheat. We screened five synthetic hexaploid wheats (SHs), 13 wheat varieties that represent the differential set of cultivars and two susceptible checks with a global set of 20 isolates and discovered exceptionally broad STB resistance in SHs. Subsequent development and analyses of recombinant inbred lines (RILs) from a cross between the SH M3 and the highly susceptible bread wheat cv. Kulm revealed two novel resistance loci on chromosomes 3D and 5A. The 3D resistance was expressed in the seedling and adult plant stages, and it controlled necrosis (N) and pycnidia (P) development as well as the latency periods of these parameters. This locus, which is closely linked to the microsatellite marker Xgwm494, was tentatively designated Stb16q and explained from 41 to 71% of the phenotypic variation at seedling stage and 28–31% in mature plants. The resistance locus on chromosome 5A was specifically expressed in the adult plant stage, associated with SSR marker Xhbg247, explained 12–32% of the variation in disease, was designated Stb17, and is the first unambiguously identified and named QTL for adult plant resistance to M. graminicola. Our results confirm that common wheat progenitors might be a rich source of new Stb resistance genes/QTLs that can be deployed in commercial breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号