首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
After digestion by TaqI or nicking by DNAase I, five highly modified bacteriophage DNAs were tested as substrates for T4 DNA ligase. The DNAs used were from phages T4, XP12, PBS1, SP82, and SP15, which contain as a major base either glucosylated 5-hydroxymethylcytosine, 5-methylcytosine, uracil, 5-hydroxymethyluracil, or phosphoglucuronated, glucosylated 5-(4′,5′-dihydroxypentyl)uracil, respectively. The relative ability of cohesive-ended TaqI fragments of these DNAs and of normal, λ DNA to be ligated was as follows: λ DNA = XP12 DNA >SP82 DNA ? nonglucosylatedT4 DNA >T4 DNA = PBS1 DNA ? SP15 DNA. TaqI-T4 DNA fragments were also inefficiently ligated by Escherichia coli DNA ligase. However, annealing-independent ligation of DNAase I-nicked T4, PBS1, and λ DNAs was equally efficient. We conclude that the poor ligation of TaqI fragments of T4 and PBS1 DNAs was due to the hydroxymethylation (and glucosylation) of cytosine residues at T4's cohesive ends and the substitution of uracil residues for thymine residues adjacent to PBS1's cohesive ends destabilizing the annealing of the restriction fragments. Only SP15 DNA with its negatively charged, modified base was unable to serve as a substrate for T4 DNA ligase in an annealing-independent reaction; therefore, its modification directly interfered with enzyme binding or catalysis.  相似文献   

2.
The rates of cleavage of DNAs containing substituents at position 5 of thymine or cytosine have been measured for a variety of sequence-specific endonucleases, so as to determine which features in the DNA sequence are being probed. Phage phi e DNA fully substituted with 5-hydroxymethyluracil is cleaved more slowly by enzymes whose recognition sequences contain A-T base pairs than are DNAs containing thymine, but both types of DNA are cleaved at similar rates by enzymes recognizing sequences composed only of G-C base pairs. Phage PBS2 DNA with uracil completely substituted for thymine is cleaved slowly by several enzymes which recognize sequences containing A-T base pairs (endonucleases Hpa I, HindII, and HindIII), while the rates of cleavage by other enzymes (endonucleases EcoRI and BamHI) are not affected. Phage lambda- and P22 DNAs containing 5-bromouracil are cleaved more slowly by several enzymes (endonucleases HindIII, Hpa I, BamHI) than are thymine-containing DNAs. Enzymes that recognize sequence isomers with the composition G:C:2A:2T (endonucleases EcoRI, Hpa I, HindIII) are not equally affected by substitution at position 5 of thymine, suggesting that they differ in their contacts with A-T base pairs. DNA containing glucosylated 5-hydroxymethylcytosine in place of cytosine is resistant to cleavage by all the endonucleases examined.  相似文献   

3.
The Escherichia coli CT596 prophage exclusion genes gmrS and gmrD were found to encode a novel type IV modification-dependent restriction nuclease that targets and digests glucosylated (glc)-hydroxymethylcytosine (HMC) DNAs. The protein products GmrS (36 kDa) and GmrD (27 kDa) were purified and found to be inactive separately, but together degraded several different glc-HMC modified DNAs (T4, T2 and T6). The GMR enzyme is able to degrade both alpha-glucosy-HMC T4 DNA and beta-glucosyl-HMC T4 DNA, whereas no activity was observed against non-modified DNAs including unmodified T4 cytosine (C) DNA or non-glucosylated T4 HMC DNA. Enzyme activity requires NTP, favors UTP, is stimulated by calcium, and initially produces 4 kb DNA fragments that are further degraded to low molecular mass products. The enzyme is inhibited by the T4 phage internal protein I* (IPI*) to which it was found to bind. Overall activities of the purified GmrSD enzyme are in good agreement with the properties of the cloned gmr genes in vivo and suggest a restriction enzyme specific for sugar modified HMC DNAs. IPI* thus represents a third generation bacteriophage defense against restriction nucleases of the Gmr type.  相似文献   

4.
We have studied highly repeated DNA sequences ofTupaia glis (Tupaiidae, Scandentia) with restriction endonucleases and Southern blotting techniques. Five highly repeated DNA fragments have been isolated fromT. glis and hybridized with genomic DNAs (cleaved by different restriction enzymes) of several non-human primate species and one insectivore (E. europaeus), in order to highlight eventual differences or similarities of their highly repeated DNA sequences. Our first preliminary findings suggest that the newly isolated highly repeated DNA fragments ofT. glis are distinct from both non-human primates and insectivore, the two taxonomic groups considered most similar to the Tupaiidae.  相似文献   

5.
Previously, combination DNA/nonreplicating adenovirus (Ad)- or poxvirus-vectored vaccines have strongly protected against SHIV(89.6P), DNAs expressing cytokines have modulated immunity elicited by DNA vaccines, and replication-competent Ad-recombinant priming and protein boosting has strongly protected against simian immunodeficiency virus (SIV) challenge. Here we evaluated a vaccine strategy composed of these promising components. Seven rhesus macaques per group were primed twice with multigenic SIV plasmid DNA with or without interleukin-12 (IL-12) DNA or IL-15 DNA. After a multigenic replicating Ad-SIV immunization, all groups received two booster immunizations with SIV gp140 and SIV Nef protein. Four control macaques received control DNA plasmids, empty Ad vector, and adjuvant. All vaccine components were immunogenic, but the cytokine DNAs had little effect. Macaques that received IL-15-DNA exhibited higher peak anti-Nef titers, a more rapid anti-Nef anamnestic response postchallenge, and expanded CD8(CM) T cells 2 weeks postchallenge compared to the DNA-only group. Other immune responses were indistinguishable between groups. Overall, no protection against intrarectal challenge with SIV(mac251) was observed, although immunized non-Mamu-A*01 macaques as a group exhibited a statistically significant 1-log decline in acute viremia compared to non-Mamu-A*01 controls. Possible factors contributing to the poor outcome include administration of cytokine DNAs to sites different from the Ad recombinants (intramuscular and intratracheal, respectively), too few DNA priming immunizations, a suboptimal DNA delivery method, failure to ensure delivery of SIV and cytokine plasmids to the same cell, and instability and short half-life of the IL-15 component. Future experiments should address these issues to determine if this combination approach is able to control a virulent SIV challenge.  相似文献   

6.
We have partially purified a DNA methyltransferase from human placenta using a novel substrate for a highly sensitive assay of methylation of hemimethylated DNA. This substrate was prepared by extensive nick translation of bacteriophage XP12 DNA, which normally has virtually all of its cytosine residues replaced by 5-methylcytosine (m5C). Micrococcus luteus DNA was just as good a substrate if it was first similarly nick translated with m5dCTP instead of dCTP in the polymerization mixture. At different stages in purification and under various conditions (including in the presence or absence of high mobility group proteins), the methylation of m5C-deficient DNA and that of hemimethylated DNA were compared. Although hemimethylated , m5C-rich DNAs were much better substrates than were m5C-deficient DNAs and normal XP12 DNA could not be methylated, all of these DNAs were bound equally well by the enzyme. In contrast, from the same placental extract, a DNA-binding protein of unknown function was isolated which binds to m5C-rich DNA in preference to the analogous m5C-poor DNA.  相似文献   

7.
Actinomycin D caused the irreversible loss of PBS1 phage infectious centers and PBS1-mediated transductants. The loss of infectious centers occurred only within the first 4 min after the addition of phage to cells. Actinomycin did not inactivate free phage or inhibit phage adsorption. Electron micrographs indicated that phage adsorbed to cells in the presence of actinomycin ejected their deoxyribonucleic acid (DNA) normally. However, when cells were infected in the presence of actinomycin, 15 to 22% of their (32)P-labeled DNA appeared in the medium, whereas only 1.5 to 7.2% of the (32)P-labeled DNA appeared in the medium during normal infection. Neither 8-azaguanine nor chloramphenicol caused a similar loss of PBS1 infectious centers or transductants. Actinomycin also caused the loss of SP10 infectious centers but it had no effect on SP01 or phi29 infections. We conclude that actinomycin causes abortion of PBS1 infection by inhibiting the uptake or retention of phage DNA into host cells. The immunity of SP01 and phi29 infections to actinomycin probably reflects differences in the penetration mechanisms of these phages.  相似文献   

8.
Sea urchin (S. purpuratus) histone DNA of constructed plasmid chimeras cloned in E. coli was cleaved with the restriction endonucleases Eco RI, Hind III, Sal I, Bam I, and Hha I. The resulting fragments were ordered and isolated directly from agarose gels or cloned into other plasmids. Each fragment hybridized to one or another of the five histone mRNAs and elucidated the order of the histone genes in each of the cloned fragments. Some DNA did not hybridize to histone mRNAs and was identified as spacer DNA located between coding regions.Total sea urchin DNA was cleaved with restriction endonucleases, fractionated on agarose gels, and hybridized to histone mRNAs or histone DNA. The results revealed the order of the five histone genes in the histone gene repeat unit and demonstrate that the histone spacer DNAs have little sequence homology to other genes. Exonuclease III digestion of specific linear chimeric histone DNA plasmids followed by hybridization with mRNAs demonstrated the existence of all five histone genes on one strand of DNA and the 5′-3′ polarity of that strand. These results, in conjunction with the data of Wu et al. (1976), allow us to construct a map of coding and spacer sequences in the transcribed strand of the S. purpuratus histone gene repeat unit:
  相似文献   

9.
The 31 human adenovirus (Ad) serotypes form five groups based upon DNA genome homologies: group A (Ad12, 18, 31), group B (Ad3, 7, 11, 14, 16, 21), group C (Ad1, 2, 5, 6), group D (Ad8, 9, 10, 13, 15, 17, 19, 20, 22-30), and group E (Ad4) (M. Green, J. Mackey, W. Wold, and P. Rigden, Virology, in press). Group A Ads are highly oncogenic in newborn hamsters, group B Ads are weakly oncogenic, and other Ads are nononcogenic. However, most or all Ads transform cultured cells. We have studied the homology of Ad5, Ad7, and Ad12 transforming restriction endonuclease DNA fragments with DNAs of 29 Ad types. Ad5 HindIII-G (map position 0-7.3), Ad7 XhoI-C (map position 0-10.8), and Ad12 (strain Huie) EcoRI-C (map position 0-16) and SalI-C (map position 0-10.6) fragments were purified, labeled in vitro (nick translation), and annealed with DNAs of Ad1 to Ad16, Ad18 to Ad24, and Ad26 to Ad31. Hybrids were assayed by using hydroxylapatite. Ad5 HindIII-G hybridized 98 to 100% with DNAs of group C Ads, but only 1 to 15% with DNAs of other types. Ad7 XhoI-C fragment hybridized 85 to 99% with DNAs of group B Ads, but only 6 to 21% with DNAs of other types. Ad12 (Huie) EcoRI-C hybridized 53 to 68% with DNAs of five other Ad12 strains, 53% with Ad18 DNA, 56% with Ad31 DNA, but only 3 to 13% with DNAs of other types. In vitro-labeled Ad12 (Huie) SalI-C hybridized 35 to 71% with DNAs of 6 other Ad12 strains, 44% with Ad18 DNA, 52% with Ad31 DNA, but only 2 to 7% with DNAs Ad7, Ad2, Ad26, or Ad4. When assayed using S-1 nuclease, SalI-C annealed 17 to 44% with DNAs of group A Ads. The melting temperatures of the hybrids of Ad5 HindIII-G with all group C Ad DNAs were 84 degrees C in 0.12 M sodium phosphate (pH 6.8). The melting temperature of the Ad12 (Huie) EcoRI-C hybrid with Ad12 (Huie) DNA was 83 degrees C, but was only 71 to 77 degrees C with DNAs of other group A Ads. Thus, group C and group B Ads both have very homologous transforming regions that are not represented in DNAs of non-group C Ads or non-group B Ads, respectively. Similarily, group A Ads have unique but less homologous transforming regions. These different transforming nucleotide sequences may be reflected in the different oncogenic properties of group A, B, and C Ads.  相似文献   

10.
The uptake of radioactively labeled bacterial and phage DNA and the incorporation of acid-soluble DNAase I digests of these DNAs by cultures of human foreskin and 3T3 cells were studied. The presence of large amounts of unusually modified pyrimidine residues in donor phage DNAs allowed radioactive donor DNA in the nuclei of DNA-treated cells to be distinguished from host DNA labeled with breakdown products derived from donor DNA. This distinction could be made because it was found that radioactively labeled 5-methylcytosine residues in predigested XP-12 DNA and glucosylated 5-hydroxymethylcytosine residues in predigested T4 DNA could not be incorporated in an unaltered form into animal cell DNA.The results obtained from the study of uptake of these DNAs suggest that approx. 4–40 ng of phage DNA per 106 cells was transported to the nuclei of DEAE-dextran-pretreated cells during 3 days of incubation in medium after treatment with the DNA. However, interpretation of the results is complicated by the finding of considerable amounts of donor DNA binding to and persisting at the cell surface, which might attach to nuclei during subcellular fractionation.  相似文献   

11.
12.
The DNAs of the human papillomaviruses (HPVs) associated with the benign lesions of two patients suffering from epidermodysplasia verruciformis (patients JD and JK) were analyzed by using 12 restriction endonucleases. None of the restriction endonucleases were one-cut enzymes for the HPV DNA obtained from patient JD, referred to as the prototypical HPV-5, whereas five of them were one-cut enzymes for the DNA of the major virus found in patient JK, referred to as HPV-9. The molecular cloning of the two fragments resulting from the cleavage of HPV-5 DNA by endonuclease HindIII and of the single fragment obtained after treatment of HPV-9 DNA with endonuclease BamHI was performed in Escherichia coli after the fragments were inserted in plasmid pBR322. A cleavage map of the two cloned genomes was constructed. Little sequence homology (4 to 5%) was detected between HPV-5 and HPV-9 DNAs by DNA-DNA hybridization experiments in liquid phase at saturation; this homology was reproducibly higher than that (2 to 3%) detected under the same conditions between these DNAs and HPV-1a DNA. In addition, blot hybridization experiments performed under stringent conditions showed no or little sequence homology between the DNAs of HPV-5 and HPV-9 and those of HPV prototypes of types 1, 2, 3, 4, and 7 associated with skin warts. These results confirm that HPV-5 and HPV-9 are two distinct HPV types.  相似文献   

13.
Glucosylated deoxyribonucleic acid (DNA) from phages T4 and T6 competes poorly with homologous DNA causing only a slight decrease of transformation in Group H Streptococcus strain Challis. Other types of heterologous DNAs (Micrococcus luteus, Clostridium perfringens, Escherichia coli, calf thymus and non-glucosylated phage T6 DNA), in contrast to glucosylated T4 and T6 DNAs, compete with transforming DNA to the normal, high extent. These results indicate that as in transformation of Bacillus subtilis, the presence of glucose attached to 5-hydroxymethylcytosine in phage T6 DNA considerably decreases the interaction of such DNA with competent cells of the Challis strain. It also indicates that the guanine plus cytosine content of DNA is not decisive in determining its interaction with competent cells.  相似文献   

14.
Glucosylated and nonglucosylated bacteriophage T4 deoxyribonucleic acids (DNAs) are able to bind to competent cells of Bacillus subtilis, although the former does so in a rather unstable fashion, probably because of the glucosylation. Several heterologous DNAs compete with homologous DNA for the same receptors in binding and in transformation. A different pattern in competition for DNA binding was observed for homologous and T4 glucosylated DNAs in intact cells as compared with protoplasts or membrane vesicles. The results are consistent with the existence of two types of receptor sites on the membrane of competent B. subtilis cells.  相似文献   

15.
The cleavage of specific DNA sequences by the restriction endonucleases AluI, DdeI, HinfI, RsaI, and TaqI has been studied by monitoring the effect of various nucleotide modifications on the rate of DNA digestion. Bacteriophage fd DNA was completely substituted in one strand with a single nucleotide analog, using an in vitro primed DNA synthesis reaction on a single-stranded viral DNA template. Twelve deoxynucleotide analogs were incorporated into these DNA substrates: 2-aminopurine, 2,6-diaminopurine, deoxytubercidin, deoxyuridine, 5-bromodeoxyuridine, 5-allylamine deoxyuridine, 5-biotinyl deoxyuridine, deoxypseudouridine, deoxyinosine, 8-azadeoxyguanosine, 5-iododeoxycytidine, and 5-bromodeoxycytidine. The restriction enzymes tested varied considerably in their ability to digest hemi-substituted DNAs containing these modified nucleotides. Structural alterations in the base pairs immediately adjacent to the phosphodiester bonds cleaved by the enzyme reduced the rate of enzyme activity most dramatically, and in most cases more than a single determinant on each base pair altered activity. Interactions with nucleotides outside the recognition site seem to have little importance in the binding or catalytic activity of these enzymes.  相似文献   

16.
Mitochondrial DNA from rat liver contains six sites for cleavage by the restriction endonucleases Hind III and EcoRI. A large stretch of DNA, comprising about 40% of the mitochondrial genome is not cleaved by either of the enzymes; eight cleavage sites are located on a DNA stretch of 35% of the genome length suggestive of an unequal distribution of the A - T baspairs over the molecule. The number of Hind III and Eco R I fragments is much higher than reported for other mammalian mitochondrial DNAs up to now.  相似文献   

17.
18.
19.
K Kido  H Inoue    E Ohtsuka 《Nucleic acids research》1992,20(6):1339-1344
Antisense oligodeoxyribonucleotides (15mers), containing a 2-(N-iodoacetylaminoethyl)thio-adenine, were synthesized and tested for their ability to cleave complementary DNAs (21mers). Cleavage of the target DNAs was done by alkylation followed by treatment with piperidine, and the positions of the alkylated sites were estimated by identification of the cleaved products. By using several combinations of the modified strands and their target DNAs, it was determined that alkylation occurred at adenine or guanine, depending on the torsion angle of the modified nucleoside.  相似文献   

20.
Abstract Total cellular DNAs of 10 Frankia isolates from Alnus, Elaeagnus and Colletia spp. root nodules were cleaved with ten site-specific restriction endonucleases and analysed by agarose gel electrophoresis. Among the endonucleases tested, Bam HI, Bgl II, Sal I and Sma I proved to be the most suitable for the genome analysis in Frankia spp. DNA restriction banding patterns were reproducible and characteristic of each Frankia strain. The patterns of different strains differed marked indicating considerable genotypic heterogeneity among the isolates. The approach can be used for strain identification in Frankia spp. as well as for differentiation between phenotypically similar strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号