首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new series of diverse isoxazoles and triazoles linked 6-hydroxycoumarin (1) were synthesized using click chemistry approach. All the derivatives were subjected to 3-(4,5-dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) cytotoxicity screening against a panel of five different human cancer cell lines viz. prostate (PC-3), colon (HCT-116 and Colo-205), leukemia (HL-60) and lung (A-549) to check their cytotoxic potential. Interestingly, among the tested molecules, some of the analogs displayed better cytotoxic activity than the parent 6-hydroxycoumarin (1). Of the synthesized isoxazoles, compounds 10 and 13 showed the best activity with IC50 of 8.2 and 13.6 μM against PC-3 cancer cell line, while as, among the triazoles, compounds 23 and 25 were the most active with the IC50 of 10.2 and 12.6 μM against A-549 cancer cell line. The other derivatives showed almost comparable activity with that of the parent molecule. The present study resulted in identification of ortho substituted isoxazole and triazole derivatives of 6-hydroxycoumarin as effective cytotoxic agents against prostate (PC-3) and lung (A-549) cancer cell lines, respectively.  相似文献   

2.
Nine novel 4beta-N-substituted-5-FU-4'-demethylepipodophyllotoxin derivatives were synthesized and evaluated as potential antitumor agents. All of the target compounds showed more significant cytotoxic activity against HL-60 and A-549 in vitro than VP-16 and 5-FU. Among them, 4beta-N-substituted-phenylalanine 5-Fu pentyl ester-4'-demethylepipodophyllotoxin (9 g) was found to exhibit most potent cytotoxic activity against HL-60 and A-549 cell (IC50 is 0.04 and <0.01 microM, respectively).  相似文献   

3.
Plants of the genera Ferula and Ferulago are known for their complex content in bioactive secondary metabolites such as coumarins, phenylpropanoids, and sesquiterpenes. We used the ground parts of Ferula communis subsp. communis, Ferula glauca subsp. glauca and Ferulago campestris as natural sources for the isolation of four coumarins (CU-1 to CU-4), two phenylpropanoids (PE-1 and PE-2), one polyacetylene (PA-1) and 16 daucane esters (DE-1 to DE-16). The cytotoxic activity of the isolated compounds was evaluated against a panel of seven human tumor cell lines. Fourteen of the daucane derivatives showed antiproliferative activity at least against one of the human tumor cell lines tested, four compounds (DE-5, DE-8, DE-11, and DE-16) were active against all the tested cell lines. Among them DE-11 was the most cytotoxic compound against HeLa (4.4 ± 0.7 μM), A549 (2.8 ± 1.4 μM), HL-60 (2.6 ± 0.4 μM), K562 (26.5 ± 6.0 μM) RS 4;11 (1.7 ± 0.3 μM) and SEM (2.4 ± 0.1 μM) cell lines, while DE-8 was the most active against Jurkat (3.3 ± 0.8 μM). Preliminary structure-activity relationship suggests that the most active compounds in the daucane series present the trans fusion of the penta- and hepta-atomic cycles, and lipophylic ester groups linked to position 6. Isomeric derivatives such as DE-8 and DE-9 or DE-3, DE-4, and DE-5 exhibited significant differences in their IC(50) supporting that the β orientation for the ester group in the position 2 enhances the cytotoxic activity. Furthermore, the pro-apoptotic effect of the most active compounds evaluated in Jurkat cell line showed that these compounds are able to induce apoptosis in a time and concentration-dependent manner. Our findings suggest the potential role of daucane derivatives as models for the development of proapoptotic compounds.  相似文献   

4.
We report herein in vitro anti-proliferative activity and duplex DNA complex studies of a series of N10-substituted acridone derivatives. All the molecules have been designed on the basis of the presence of specific recognition patterns consisting of hydrogen bond acceptors (or electron donors), carbonyl, chloro groups with precise spatial separation and structural features (lipophilicity, positive charge at neutral pH and presence of aromatic rings). The in vitro cytotoxic effects have been demonstrated against human promyelocytic leukemia sensitive cell line (HL-60), including its multidrug cross-resistance of two main (P-gp and MRP) phenotype sublines vincristine-resistant (HL-60/VINC) and doxorubicin-resistant (HL-60/DX) cancer cell lines. Compound 4 showed very good activity against sensitive and resistant cell lines. The noncovalent complexes of these molecules with DNA duplex has been investigated in gas phase by using a fast, robust and sensitive electrospray ionization mass spectrometry (ESI-MS) technique. Equilibrium association constants (K1) and percentage of intact complexes were determined. The combined results show that these acridone derivatives interact with DNA duplex by intercalation between the base pairs, possess higher affinity to GC than AT base pairs of the DNA and they could not interact noncovalently with the minor grooves of the DNA in solution-free gas phase. Examination of the relationship between lipophilicity and cytotoxic properties of acridone derivatives showed a poor correlation. The in vitro cytotoxic studies in resistant cancer cell lines of compound 4 showed that it might be a promising new hit for further development of anti-MDR agent.  相似文献   

5.
Following our earlier finding that tetracyclic anthraquinone analogs with a fused pyridone ring exhibit cytotoxic activity toward multidrug resistant tumor cells, a series of new potential antitumor agents, 7-oxo-7H-naphtho[1,2,3-de]quinoline derivatives (3, 6-8, 10-12, 14, 15, and 18), bearing one or two basic side chains and various substituents at the pyridone ring, have been synthesized. The compounds have been obtained from 1-amino-4-chloroanthraquinone or 1-aminoanthraquinone by cyclization with diethyl malonate and the subsequent reactions of the key intermediates 2, 4, and 17. The compounds exhibited cytotoxic activity toward sensitive human leukemia cell line HL-60 and against its resistant sublines HL-60/VINC (MDR1 type) and HL-60/DX (MRP1 type).  相似文献   

6.
A series of novel cisplatin-type platinum complexes, formulated as [PtA2(OCOCH2OR)2] (A2 = two monoamines or one diamine, R is an alkyl group), were designed, characteristic of alkoxyacetate as carboxylato ligands. The pertinent compounds were prepared and characterized by elementary analyses, IR, 1H NMR, and ESI-MS spectra. The cytotoxic activities of compound 1a in vitro toward HL-60 human leukemia and BEL-7402 human hepatocellular carcinoma cell lines were pioneeringly studied. Then, compounds 1b-3d were evaluated for their in vitro cytotoxicity against Ramos human lymphoma, 3AO human ovarian carcinoma, and A549 human non-small cell lung cancer cell lines. Most of them showed better cytotoxic activity than carboplatin against above selected cell lines.  相似文献   

7.
A series of alkyl α/β-(1→6)-diglucopyranosides 1-12 were synthesized and assessed for cytotoxicity against HL-60, U937, Molt-3 and MCF-7 cancer cell lines. The menthyl derivatives displayed strong cytotoxic properties showing IC(50) values between 6 and 16 μM. Furthermore, we demonstrated that the selected synthetic (+)-menthyl β-(1→6)-diglucopyranoside 5 induces apoptotic cell death in human leukemia cells through a mechanism that involves activation of multiple caspases. Cell death was completely prevented by the non-specific caspase inhibitor z-VAD-fmk and found to be associated with the release of cytochrome c, an increase in the expression of Bax levels and a decrease in the generation of reactive oxygen species.  相似文献   

8.
Reaction of 2-chloromethylsaccharin with substituted potassium dithiocarbamates and substituted potassium dithiocarbonates furnished (1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)methyl N,N-disubstituted dithiocarbamates (4-15) and (1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)methyl O-alkyldithiocarbonates (16-20). The new derivatives were evaluated for in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv. Compounds 4-13, 15, and 16-20 described herein showed moderate to good inhibitory activity. In particular, seven analogs 4, 5, 6, 13, and 7, 8, and 12 exhibited excellent MIC values of 1.56 and 0.78 microg/mL, respectively. Compounds 4, 5, 10, 12, 13, and 16 were selected and screened for antitumor activity. Among the tested compounds, 4 and 5 were found to be cytotoxic, especially against leukemia cell lines CCRF-CEM, HL-60(TB), RPMI-8226, and SR with log10GI50 values lower than -6.69, and against non-small cell lung cancer NCI-H522 cell line with log10GI50 values lower than -6.31. Compound 10 was cytotoxic against leukemia cell line HL-60(TB), whereas 16 displayed favorable cytotoxicity against ovarian cancer cell line OVCAR-3 with log10GI50 values of -6.31 and -7.45, respectively.  相似文献   

9.
A new series of trans-stilbene benzenesulfonamide derivatives were designed and synthesized as potential antitumor agents. These new compounds were evaluated in the National Cancer Institute's 60 human tumor cell line in vitro screen. Compounds 9-13 were cytotoxic against several cell lines. Notably, two compounds, 9 and 12, demonstrated selective cytotoxic activity against BT-549 breast cancer (GI(50)=0.205 microM) and HT-29 colon cancer (GI(50)=0.554 microM), respectively.  相似文献   

10.
Naturally fermented vinegar such as Kibizu (sugar cane vinegar in Amami Ohshima, Japan), Kurozu (black rice vinegar in Kagoshima, Japan), Kouzu (black rice vinegar in China) and red wine vinegar in Italy had potent radical-scavenging activity analyzed by DPPH method. For the elucidation of food factor for cancer prevention contained in naturally fermented vinegar, the induction of apoptosis in human leukemia cell HL-60 was investigated with sugar cane vinegar Kibizu. Fraction eluted by 40% methanol from Amberlite XAD 2 chromatography of sugar cane vinegar showed potent radical scavenging activity. The fraction also showed the activity repressing growth of typical human leukemia cells such as HL-60, THP-1, Molt-4, U-937, Jurkat, Raji and K-562. On the other hand, the fraction did not have any growth inhibition activity against human fetal lung cell TIG-1. The most potent radical-scavenging activity and the growth repression activity of the leukemia cell were observed in the same chromatographic fraction of methanol 40%. From cell sorting FACS analyses, electron microscopic observations and cytochemical staining of chromatin and nuclear segments in human leukemia cell HL-60 treated with the active fraction, it was concluded that apoptosis was induced in the leukemia cell by the fraction of sugar cane vinegar and resulted in the repression of growth of the human leukemia cells. Chromatographic fraction of sugar cane juice eluted by 20% methanol showed potent activities of radical-scavenging and growth repression of HL-60. These results led us the consideration that active components in sugar cane juice could be converted to more lipophilic compounds with activity to induce apoptosis in HL-60 by microbial fermentation with yeast and acetic acid bacteria.  相似文献   

11.
Boswellic acids have invariably been reported for their antiproliferative potential in various cell systems. In the present study the growth inhibitory effect of propionyloxy derivative of 11-keto-β-boswellic acid (PKBA; a semisynthetic analogue of 11-keto-β-boswellic acid) on HL-60 promyelocytic leukemia cells is being reported for the first time. In the preliminary studies, in vitro cytotoxicity of PKBA was investigated against eight human cancer cell lines viz., IMR-32, SF-295 (both neuroblastoma), PC-3 (prostate), Colo-205 (colon), MCF-7 (breast), OVCAR-5 (ovary), HL-60, Molt-4 (both leukemia) and their respective IC(50) values were found to be 5.95, 7.11, 15.2, 14.5, 15, 15.9, 8.7 & 9.5μg/ml, respectively. For determining the mechanism of cell death in HL-60 cells, PKBA was subjected to different mechanistic studies. DNA relaxation assay of PKBA revealed inhibition of both topoisomerases I & II. The fragmentation analysis of DNA revealed typical ladders indicating the cytotoxic effect to be mediated by induction of apoptosis. The morphologic studies of PKBA showed the presence of true apoptotic bodies. Apoptosis was confirmed further by flow-cytometric detection of sub-G(1) peaks and enhanced annexin-V-FITC binding of the cells. The activation of apoptotic cascade by PKBA in HL-60 cells was found to be associated with the loss of mitochondrial membrane potential, release of cytochrome c, activation of initiator and executioner caspases and cleavage of poly ADP ribose polymerase (PARP). In vivo studies of PKBA revealed anti-tumoral activity against both ascitic and solid murine tumor models. These studies thus demonstrate PKBA to induce apoptosis in HL-60 cells due to the inhibition of topoisomerases I and II.  相似文献   

12.
Nimbolide (1), a limonoid isolated from Azadirachta indica, is the chief cytotoxic principle in Neem leaves extract. Using nimbolide as a lead compound for anti-cancer analogue design, a series of nimbolide derivatives have been synthesized and evaluated for in vitro cytotoxic activity against a panel of human cancer cell lines. Out of 10 compounds screened 2g, 2h and 2i showed potent activity.  相似文献   

13.
A series of peptidyl vinyl ester derivatives bearing three different P1 substitutions as potential proteasome inhibitors were studied. The target molecules were designed based on CADD (computer aided drug design) protocol and synthesized. Their activities toward proteasome and four human cancer cell lines (including hepatoma cell line (Bel-7402), myeloid leukemic cell line (HL-60), gastric cancer cell line (BGC-823) and nasopharyngeal cancer cell line (KB)) were tested using fluorescence assay. Two compounds showed proteasome inhibitory activities, and four compounds showed weak antiproliferative activities toward HL-60 and BGC-823.  相似文献   

14.
The substituted chloroisoquinolinediones and pyrido[3,4-b]phenazinediones were synthesized, and the cytotoxic activity and topoisomerase II inhibitory activity of the prepared compounds were evaluated. Chloroisoquinolinediones have been prepared by the reported method employing 6,7-dichloroisoquinoline-5,8-dione. The cyclization to pyrido[3,4-b]phenazinediones was achieved by adding the aqueous sodium azide solution to the dimethylformamide solution of corresponding chloroisoquinoline-5,8-dione. The cytotoxicity of the synthesized compounds was evaluated by a SRB (Sulforhodamine B) assay against various cancer cell lines such as A549 (human lung cancer cell line), SNU-638 (human stomach cancer cell), Col2 (human colon cancer cell line), HT1080 (human fibrosarcoma cell line), and HL-60 (human leukemia cell line). Almost all the synthesized pyrido[3,4-b]phenazinediones showed greater cytotoxic potential than ellipticine (IC(50)=1.82-5.97 microM). In general, the cytotoxicity of the pyrido[3,4-b]phenazinediones was higher than that of the corresponding chloroisoquinolinediones. The caco-2 cell permeability of selected compounds was 0.62 x 10(-6)-35.3 x 10(-6)cm/s. The difference in cytotoxic activity among tested compounds was correlated with the difference in permeability to some degree. To further investigate the cytotoxic mechanism, the topoisomerase II inhibitory activity of the synthesized compounds was estimated by a plasmid cleavage assay. Most of compounds showed the topoisomerase II inhibitory activity (28-100%) at 200 microM. IC(50) values for the most active compound 6a were 0.082 microM. However, the compounds were inactive for DNA relaxation by topoisomerase I at 200 microM.  相似文献   

15.
A series of 22 cyclopenta[c]thiophene related compounds was obtained by the pharmacomodulation of 6-amino-5,6-dihydro-4H-cyclopenta[c]thiophen-4-ones 1a-g. All compounds were evaluated for potential anticancer activity in the NCI's in vitro human disease-oriented tumor cell line screening panel that consisted of 60 human tumor cell lines arranged in nine subpanels, representing diverse histologies. Among these tested compounds, seven were found to be cytotoxic, especially against leukemia cell lines, allowing us to point out some structure-activity relationships. These derivatives were further evaluated for potential in vivo anticancer activity in the hollow fiber assay developed at the NCI, which selected two compounds, 1f and 3a for standard xenograft testing.  相似文献   

16.
The present study illustrates the design and synthesis of new series of 3-trifluoromethylpyrazole tethered chalcone-pyrrole and pyrazoline-pyrrole derivatives. All compounds were further screened for in vitro cytostatic activities on full NCI 60 cancer cell lines at National Cancer Institute, USA. Compounds (2E)-3-(1H-pyrrol-2-yl)-1-{4-[3-(trifluoromethyl)-1H-pyrazol-1-yl]phenyl}prop-2-en-1-one ( 5a ) and (2E)-1-{3-methyl-4-[3-(trifluoromethyl)-1H-pyrazol-1-yl]phenyl}-3-(1H-pyrrol-2-yl)prop-2-en-1-one ( 5c ) displayed significant antiproliferative activity (Growth Percentage: −77.10 and −92.13, respectively at 10 μM concentration) against the UO-31 cell lines from renal cancer and were further selected for assay at 10-fold dilutions of five different concentrations (10−4 to 10−8 M). Both compounds 5a and 5c exhibited promising antiproliferative activity (GI50: 1.36 to 0.27 μM) against leukemia cancer cell lines HL-60 and RPMI-8226, colon cancer cell lines KM-12; breast cancer cell lines BT-549. Moreover, both compounds 5a and 5c were found to be non-cytotoxic (LC50>100) against HL-60, RPMI-8226, and KM-12 cell lines. Remarkably, GI50 values of compounds 5a and 5c were identified as more promising than sunitinib against most cancer cell lines. In silico study of compounds 5a and 5c exemplified the desired ADME properties for drug-likeness as well as tighter interactions with VEGFR-2. Hence, compounds 5a and 5c would be good cytotoxic agents after further clinical study.  相似文献   

17.
Inhibition of microtubule function using tubulin targeting agents has received growing attention in the last several decades. The indole scaffold has been recognized as an important scaffold in the design of novel compounds acting as antimitotic agents. Indole-based chalcones, in which one of the aryl rings was replaced by an indole, have been explored in the last few years for their anticancer potential in different cancer cell lines. Eighteen novel (3′,4′,5′-trimethoxyphenyl)-indolyl-propenone derivatives with general structure 9 were synthesized and evaluated for their antiproliferative activity against a panel of four different human cancer cell lines. The highest IC50 values were obtained against the human promyelocytic leukemia HL-60 cell line. This series of chalcone derivatives was characterized by the presence of a 2-alkoxycarbonyl indole ring as the second aryl system attached at the carbonyl of the 3-position of the 1-(3′,4′,5′-trimethoxyphenyl)-2-propen-1-one framework. The structure–activity relationship (SAR) of the indole-based chalcone derivatives was investigated by varying the position of the methoxy group, by the introduction of different substituents (hydrogen, methyl, ethyl or benzyl) at the N-1 position and by the activity differences between methoxycarbonyl and ethoxycarbonyl moieties at the 2-position of the indole nucleus. The antiproliferative activity data of the novel synthesized compounds revealed that generally N-substituted indole analogues exhibited considerably reduced potency as compared with their parent N-unsubstituted counterparts, demonstrating that the presence of a hydrogen on the indole nitrogen plays a decisive role in increasing antiproliferative activity. The results also revealed that the position of the methoxy group on the indole ring is a critical determinant of biological activity. Among the synthesized derivatives, compound 9e, containing the 2-methoxycarbonyl-6-methoxy-N-1H-indole moiety exhibited the highest antiproliferative activity, with IC50 values of 0.37, 0.16 and 0.17?μM against HeLa, HT29 and MCF-7 cancer cell lines, respectively, and with considerably lower activity against HL-60 cells (IC50: 18?μM). This derivative also displayed cytotoxic properties (IC50 values ~1?μM) in the human myeloid leukemia U-937 cell line overexpressing human Bcl-2 (U-937/Bcl-2) via cell cycle progression arrest at the G2-M phase and induction of apoptosis. The results obtained also demonstrated that the antiproliferative activity of this molecule is related to inhibition of tubulin polymerisation. The presence of a methoxy group at the C5- or C6-position of the indole nucleus, as well as the absence of substituents at the N-1-indole position, contributed to the optimal activity of the indole-propenone-3′,4′,5′-trimethoxyphenyl scaffold.  相似文献   

18.
Three new abietane diterpenoids, fleuryinols A–C (13), together with fourteen known compounds, were isolated from the twigs and leaves of Podocarpus fleuryi. Their structures were established by spectroscopic analysis, including 1D- and 2D-NMR spectroscopic techniques. Compounds 18 were tested cytotoxic activity against five human cancer cell lines, HL-60, SMMC-772, A-549, MCF-7, and SW480, of which fleuryinol B (2) and 19-hydroxyferruginol (4) exhibited moderate cytotoxic activity against some cell lines.  相似文献   

19.
A series of cysteine diazomethyl- and chloromethyl ketone derivatives has been synthesized and evaluated against human B-lineage (Nalm-6) and T-lineage (Molt-3) acute lymphoblastic leukemia cell lines. The chloromethyl ketone compounds showed potent cytotoxicity against these cell lines, with IC50 values in the low micromolar range. The best compounds were N-acetyl-S-dodecyl-Cys chloromethyl ketone (IC50 = 2.0 microM against Nalm-6, 2.3 microM against Molt-3) and N-acetyl-S-trans,trans-farnesyl-Cys chloromethyl ketone (IC50 = 3.0 microM against Nalm-6 and 1.4 microM against Molt-3).  相似文献   

20.
Two 2-amino-1,3,4-thiadiazoles containing phenolic hydroxyl groups were combined with different carboxylic acid chlorides giving sixteen amide derivatives with good antioxidant and antiproliferative potential. The compound 3′c with an adamantane ring displayed excellent DPPH radical scavenging activity and good cytotoxic activity against human acute promyelocytic leukemia HL-60 cells, while 1,3,4-thiadiazole 3′h with 4-chlorophenyl moiety was found to be the most effective in inhibition of survival of lung carcinoma A549 cells. All examined thiadiazoles except 3a and 3′a exerted higher cytotoxic activities on A549 and HL-60 cancer cells when compared with normal fibroblasts MRC-5, pointing to selectivity in their antiproliferative action. Some of the most active novel compounds 3c, 3′c, 3′g and 3′h induced significant increase in the percentage of HL-60 cells in the subG1 cell cycle phase in comparison with the control cells. The induction of cell death in HL-60 cells by these compounds was at least partially dependent on activation of caspase-3 and caspase-8. The compounds 3c and 3′c exerted strong antiangiogenic activity. Furthermore, compounds 3c, 3′c, 3′g and 3′h showed the ability to down-regulate the MMP2 and VEGFA expression levels in the treated HL-60 cells when compared with the control cell samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号