首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Reaction of the multifunctional phenolic ligands 2,5-bis[N,N-bis(carboxymethyl)aminomethyl]hydroquinone (H6cahq), 2,2'-bis[N,N-bis(carboxymethyl)aminomethyl]-4,4'-isopropylidenediphen ol(H6capd),2,2',2'-tris[N,N-bis(carboxymethyl)aminomethyl]-1,1 ,1-tris(4-hydroxyphenyl)ethane (H9catp) and the monofunctional 2-[N,N-bis(carboxymethyl)aminomethyl]-4-carboxyphenol (H3cacp), with VOSO4 and NaVO3 affords the oxo-bridged mixed-valence vanadium(IV/V) Na6[(VO)4(mu-O)2(mu-cahq)2] x Na2SO4 x 20H2O (1), HnNa(3-n)[(VO)2(mu-O)(mu-cacp)2] (2), HnNa(3-n)[(VO)4(mu-O)2(mu-capd)2] (3), HnNa(9-n)[(VO)6(mu-O)3(mu3-catp)2] (4). In addition to the synthesis, we report the infrared, magnetic, optical and electrochemical properties of these complexes. The hydrolytic stability at different pH values was also investigated using visible spectroscopy.  相似文献   

2.
Hydroxylation of l7α-acetoxy-6-chloro-16-methylene-4,6-pregnadiene-3,20-dione (Chlorosuperlutin, I) byCunninghamella blakesleeana yielded a 15β-hydroxyderivative II. Analogous transformation of 17α-acetoxy-16-methylene-4,6-pregnadiene-3,20-dione (Superlutin, IV) included a hydroxylation in position 15β and probably also in 11β with a concomitant reduction of the 6,7-double bond.  相似文献   

3.
Bolaform amides were designed from N,N'-bis(carboethoxy-L-valinyl)-diaminoethane (1) by linking t-butyloxycarbonyl-valine through ethylenediamine (EDA) to enable spectroscopic and X-ray diffraction analyses. N,N'-Bis(Boc-L-valinyl)-diaminoethane (2) and N,N'-bis(Boc-D-valinyl)-diaminoethane (3) were composed of L-Val and D-Val, respectively. N-(Boc-L-valinyl)-N'-(Boc-D-valinyl)-diaminoethane (4) was composed of both L-Val and D-Val, and was achiral (meso-peptide). Peptide 5 was a 1:1 mixture of 2 and 3, and was also achiral (racemate). These peptides mediated gelation of corn oil at a concentration of approximately 1%. Within crystals, the peptides formed beta-sheet ribbons, but differences were observed in hydrogen-bonding patterns and side-chain arrangements. These differences were also deduced from temperature dependence of amide protons. Force-field calculations based on the crystal structures indicated that association of beta-sheet ribbons had energy benefits, and it was assumed that molecular aggregation progressed spontaneously. These structural studies indicated the chirality of amino acids affected for the properties of bolaform amides.  相似文献   

4.
An interesting series of mononuclear organoruthenium complexes of formulation [Ru(CO)(PPh3)2(ap-R)] (where ap-R = -H, -Cl, -Me, -OMe, -OEt) have been synthesized from the reaction of five 2-(arylazo)phenol ligands with ruthenium(II) precursor [RuH(Cl)(CO)(PPh3)3] in benzene under reflux. The 2-(arylazo)phenolate ligands behave as dianionic tridentate ligand and are coordinated to ruthenium through C, N and O by dissociation of the phenolic and phenyl proton at the ortho position of the phenyl ring forming two five-membered chelate rings. These complexes have been characterized by elemental analysis, FT-IR, 1H NMR and UV-visible spectroscopy. In dichloromethane solution all the metal complexes exhibit characteristic metal-to-ligand charge transfer (MLCT) absorption and emission bands in the visible region. The structures of [Ru(CO)(PPh3)2(ap-H)] and [Ru(CO)(PPh3)2(ap-Cl)] have been determined by X-ray crystallography. Cyclic voltammetric data of all the complexes show a Ru(III)/Ru(II) oxidation and reduction Ru(II)/Ru(I) within the range 0.74-0.84 V and -0.38 to -0.50 V vs saturated calomel electrode (SCE) respectively. The potentials are observed with respect to the electronic nature of substituents (R) in the 2-(arylazo)phenolate ligands. Further, the free ligands and their ruthenium complexes have also been screened for their antibacterial and antifungal activities, which have shown great promise in inhibiting the growth of both gram +ve and gram -ve bacteria Staphylococcus aureus and Escherichia coli and fungus Candida albicans and Aspergillus niger. These results made it desirable to delineate a comparison between free ligands and their complexes.  相似文献   

5.
Two dinuclear manganese complexes, [Mn(2)BPMP(mu-OAc)(2)].ClO(4) (1, where BPMP is the anion of 2,6-bis([N,N-di(2-pyridinemethyl)amino]methyl)-4-methylphenol) and [Mn(2)L(mu-OAc)(2)].ClO(4) (2, where L is the trianion of 2,6-bis([N-(2-hydroxy-3,5-di-tert-butylbenzyl)-N-(2-pyridinemethyl)amino]methyl)-4-methylphenol), undergo several oxidations by laser flash photolysis, using ruthenium(II)-tris-bipyridine (tris(2,2-bipyridyl)dichloro-ruthenium(II) hexahydrate) as photo-sensitizer and penta-amminechlorocobalt(III) chloride as external electron acceptor. In both complexes stepwise electron transfer was observed. In 1, four Mn-valence states from the initial Mn(2)(II,II) to the Mn(2)(III,IV) state are available. In 2, three oxidation steps are possible from the initial Mn(2)(III,III)state. The last step is accomplished in the Mn(2)(IV,IV) state, which results in a phenolate radical. For the first time we provide firm spectral evidence for formation of the first intermediate state, Mn(2)(II,III), in 1 during the stepwise light-induced oxidation. Observation of Mn(2)(II,III) is dependent on conditions that sustain the mu-acetato bridges in the complex, i.e., by forming Mn(2)(II,III) in dry acetonitrile, or by addition of high concentrations of acetate in aqueous solutions. We maintain that the presence of water is necessary for the transition to higher oxidation states, e.g., Mn(2)(III,III) and Mn(2)(III,IV) in 1, due to a bridging ligand exchange reaction which takes place in the Mn(2)(II,III) state in water solution. Water is also found to be necessary for reaching the Mn(2)(IV,IV) state in 2, which explains why this state was not reached by electrolysis in our earlier work (Eur. J. Inorg. Chem (2002) 2965). In 2, the extra coordinating oxygen atoms facilitate the stabilization of higher Mn valence states than in 1, resulting in formation of a stable Mn(2)(IV,IV) without disintegration of 2. In addition, further oxidation of 2, led to the formation of a phenolate radical (g = 2.0046) due to ligand oxidation. Its spectral width (8 mT) and very fast relaxation at 15 K indicates that this radical is magnetically coupled to the Mn(2)(IV,IV) center.  相似文献   

6.
Three solids formed by the reaction of the hexaaquazinc(II) salt of 4,6-dimethyl-1,2,3-triazolo[4,5-d]pyrimidin-5,7-diona (Hdmax) and the potentially bridging ligands 1,2-bis(4-pyridyl)ethane (bpe), 1,3-bis(4-pyridyl)propane (bpp) and trans-1,2-bis(4-pyridyl)ethene (bpethe) are described. The crystal structure of those containing bpe and bpethe has been solved by X-ray diffraction turning out to be one-dimensional polymers with zigzag (bpe) or linear (bpethe) disposition of the metal atoms. The triazolopyrimidinato anion is in both cases monodentately coordinated through the N atom furthest from the pyrimidine ring whereas the bipyridyl ligands bridge through their N atoms consecutive metal atoms in the polymer. For the bpethe compound, an additional non-coordinated molecule of the spacer per Zn atom is present, accepting H-bonds from coordinated water molecules and linking in this way the one-dimensional chains into a two-dimensional superstructure. Therefore, bpethe acts as spacer both in the first and second coordination spheres.  相似文献   

7.
The synthesis and characterization of the nickel(II) complexes of a series of pentadentate and hexadentate aminopyridine ligands that contain ethylenediamine and/or propylenediamine groups are described. The ligands include: 1,12-bis(2-pyridyl)-2,5,8,11-tetraazadodecane, TRIEN-pyr; 1,13-bis(2-pyridyl)-2,5,9,12-tetraazatridecane, DIEN-PN-pyr; 1,14-bis(2-pyridyl)-2,6,9,13-tetraazatetradecane, DIPN-EN-pyr; 1,15-bis(2-pyridyl)-2,6,10,14-tetraazapentadecane, TRIPN-pyr; 1,9-bis(2-pyridyl)-2,5,8-triazanonane, DIEN-pyr; and 1,11-bis(2-pyridyl)-2,6,10-triazaundecane, DIPN-pyr. The following methods were used to determine the binding geometries of the nickel(II) complexes in the solid, solution, and gas phases: magnetic susceptibility measurements, absorption spectroscopy, EPR spectroscopy, electrochemistry, and electrospray ionization mass spectrometry. All of the ligands form 6-coordinate compounds in the solid, liquid, and gas states, with the exception of the TRIEN-pyr, DIEN-PN-pyr(partially), DIPN-pyr, and DIEN-pyr ligands which form 5-coordinate species in the gas state. All of the complexes could be oxidized to Ni(III) species electrochemically, although the Ni(III) complexes of TRIPN-pyr and DIPN-pyr were much less stable than the other four ligands. EPR spectra of the frozen solutions showed the low spin d7 Ni(III) complexes of TRIEN-pyr and DIPN-EN-pyr to be similar to those that have been found for poly-aza macrocyclic compounds.  相似文献   

8.
Fe(III)-salen (N,N-bis(salicylidene)-ethane-1,2-diimine) complexes of simple hydroxamic acids and the MMP (matrix metalloproteinase) inhibitor marimastat have been evaluated as hypoxia activated drug carriers. The aceto- (aha), propion- (pha), benzohydroxamato (bha), and marimastat complexes were prepared and characterised by single crystal X-ray diffraction and electrochemical analysis. The hydroxamato ligands form a bidentate chelate to Fe(III) with the remaining octahedral coordination sites occupied by the tetradentate salen ligand. Bonding of the hydroxamato ligands is in the typical motif of the majority of Fe(III) complexes in the literature. The reduction potentials of the complexes are of the order of -1300 mV (vs ferrocene/ferrocenium) and show partial reversibility in the re-oxidation waveforms of the cyclic voltammetry scans. This suggests that the Fe-salen carrier system would provide a suitably redox inert framework yet would release the ligands at hypoxic tumour sites upon reduction to the more labile Fe(II) oxidation state. Furthermore, biological testing of the marimastat complex established that these carriers are stable in non-reducing biological environments and would serve to deliver MMP inhibitors to tumour sites intact.  相似文献   

9.
Six novel N,N-dialkyl derivatives of spermidine were synthesised and examined for activity against the oat stripe pathogen Pyrenophora avenae. Two of these spermidine analogues, N,N-dimethyl-N1-(3-aminopropyl)-1,3-diaminopropane trihydrochloride (27) and N,N-dimethyl-N1-(3-aminopropyl)-1,4-diaminobutane trihydrochloride (28), reduced radial extension of P. avenae on plates when used at 2 mM, and caused more substantial reductions in fungal growth in liquid culture when used at 1 mM. Preliminary data suggest that neither compound affected polyamine biosynthesis, determined by following the incorporation of label from ornithine into polyamines and examining intracellular polyamine concentrations in fungal tissue.  相似文献   

10.
Adduct formation between R2SnCl2 (R = methyl and n-butyl) as acceptors, and nickel(II) complexes of tetradentate Schiff base ligands ([NiL]) where L = [3-methoxysalen, N,N′-bis(3-methoxysalicylidene)ethylenediamine], [4-methoxysalen, N,N′-bis(4-methoxysalicylidene)ethylenediamine], [5-methoxysalen, N,N′-bis(5-methoxysalicylidene)ethylenediamine], [salen, N,N′-bis(salicylaldehydo)ethylenediamine], [5-chlorosalen, N,N′-bis(5-chlorosalicylidene)ethylenediamine] and [5-bromosalen, N,N′-bis(5-bromosalicylidene)ethylenediamine] as donors have been investigated in chloroform as a solvent by means of UV-Vis spectrophotometeric analysis. Adducts have been characterized by 1H NMR, IR and electronic spectroscopy. The formation constants and the thermodynamic free energies were measured using UV-Vis spectrophotometry titration for 1:1 adduct formation at various temperatures (T = 278-308 K). The trend of the adduct formation of the nickel Schiff base complexes with a given tin acceptor decreases as follow:
Ni(3-MeOSalen)>Ni(5-MeOSalen)>Ni(4-MeOSalen)  相似文献   

11.
Platinum(IV) chloride complexes with heterocyclic ligands have been prepared and characterized by infrared and electronic spectra. The compounds are of general formula Pt(L)nCl4, where L = N-ethylimidazole, N-propylimidazole, isoxazole, 3,5-dimethylisoxazole, benzoxazole, 2-methylbenzoxazole, 2,5-dimethylbenzoxazole, ethylenediamine, n = 2, 4, and also Pt(enEt2)3Cl4 X 2H2O, where enEt2 = N,N-diethylethylenediamine. These complexes are hexacoordinate with cis or trans configuration. The antitumoral activity of some complexes in mice inoculated with leukemia L1210 is reported.  相似文献   

12.
The synthesis and characterization of the copper(II) complexes of a series of tetradentate, pentadentate and hexadentate aminopyridine ligands that contain ethylenediamine and/or propylenediamine groups are described. The ligands include: 1,12-bis(2-pyridyl)-2,5,8,11-tetraazadodecane, TRIEN-pyr; 1,13-bis(2-pyridyl)-2,5,9,12-tetraazatridecane, DIEN-PN-pyr; 1,14-bis(2-pyridyl)-2,6,9,13-tetraazatetradecane, DIPN-EN-pyr; 1,15-bis(2-pyridyl)-2,6,l0,14-tetraazapentadecane, TRIPN-pyr; 1,9-bis(2-pyridyl)-2,5,8-triazanonane, DIEN-pyr; 1,11-bis(2-pyridyl)-2,6,10-triazaundecanenane, DIPN-pyr; 1,6-bis(2-pyridyl)-2,5-diazahexane, EN-pyr; and 1,7-bis(2-pyridyl)-2,6-diazaheptane, PN-pyr. The following methods were used to determine the binding geometries of the copper(II) complexes in the solid, solution, and gas phases: magnetic susceptibility measurements, absorption spectroscopy, EPR spectroscopy, electrochemistry, and electrospray ionization mass spectrometry. An X-ray structure was determined for the DIPN-pyr complex. The solid state structures were all found to be monomeric Cu(II) complexes with the coordination number set by the denticity of the ligand while the solution structures of all of the complexes except those with TRIPN-pyr and DIPN-pyr were found to be square pyramidal or elongated octahedral. The TRIPN-pyr and DIPN-pyr complexes showed considerable trigonal bipyramidal distortions. The gas phase data showed that the substitution of 6-membered for 5-membered chelate rings helped the ligand span more coordination sites. The TRIEN-pyr complex was 4- or 5-coordinate compared to the 5- or 6-coordination seen with the other three hexadentate ligands, and the DIPN-pyr complex was weakly 5-coordinate as compared to the 4-coordinate DIEN-pyr complex. The preferred structures of the ligands were consistent with their electrochemical behavior which showed the stability of the Cu(II) complex decreased in the order: DIPN-EN-pyr, TRIEN-pyr, DIEN-PN-pyr > DIEN-pyr > DIPN-pyr > TRIPN-pyr >  PN-pyr > EN-pyr.  相似文献   

13.
The aqueous solution equilibria of a β-lactam antimicrobial agent containing a 3-hydroxy, 4-pyridinone group (L (PF)) binding to Fe(III) in aqueous solution has been characterized through spectrophotometric and potentiometric titrations. The metal-free ligand has four observable protonation constants, pK(a1)?=?2.6, pK(a2)?=?3.43, pK(a3)?=?6.43, and pK(a4)?=?9.62. L (PF) forms a 3:1 ligand:Fe(III) complex in aqueous solution through coordinate-covalent bond formation exclusively involving the bidentate hydroxypyridinone moiety. This 3:1 L (PF):Fe complex was found to have a stability constant of log β(130)?=?33.46. A speciation diagram for the L (PF) system demonstrates that in the region of physiological pH the tris-(L (PF))Fe(III) complex, Fe(L(PF)) (3) (6-) , predominates. This complex exhibits two irreversible reduction waves in solution at -30?mV versus NHE, corresponding to a ligand-based reduction, and at -385?mV versus NHE, corresponding to an irreversible Fe(3+)/Fe(2+) reduction of the Fe(L(PF)) (3) (6-) complex.  相似文献   

14.
Extract of steer wool odor was found to excite olfactory receptor(s) in a wall-pore olfactory sensillum on the distal knoll of the Haller's organ. Three active volatile compounds were revealed in this odor by gas chromatography. Electrophysiological experiments revealed two types of receptors (sensory neurons) within the sensilla examined. One type of receptor responded only to phenolic derivatives, such as o-chlorophenol, o-bromophenol, o-methylphenol, 2,6-dichlorophenol, 2,6-dibromophenol, 2,4,6-trichlorophenol, but not to o-nithrophenol, p-methylphenol, 2,5-dichlorophenol, 3,5-dichlorophenol, 2,6-dinithrophenol, 2,6-dimethylphenol, and pentachlorophenol. The other type of receptor responded only to gamma-valerolactone. It is assumed that these cells play an important role in perception of a host from long distances (10-15 m), which is typical of Ixodes ricinus ticks.  相似文献   

15.
The effects of exposure to different concentrations of phenoxyherbicides and their metabolites were studied in human erythrocytes, with particular attention to catalase (CAT-EC. 1.11.1. 6- hydrogen peroxide: hydrogen peroxide oxidoreductase). 4-chloro-2-methylphenoxyacetic acid (MCPA), 2,4-dimethylphenol (2, 4-DMP) and 2,4-dichlorophenoxyacetic acid (2,4-D) did not affect CAT activity, but 2,4-dichlorophenol (2,4-DCP) and 2,4,5-trichlorophenol (2,4,5-TCP) decrease its activity, the latter being the more inhibitory.  相似文献   

16.
A series of binuclear iron compounds has been synthesized using diamide, bis-phenolate ligands in which the carbon-linker between the amide nitrogen atoms has been varied. Two diferrous compounds in the series, along with their two-electron oxidized, di-μ-methoxy-bridged counterparts, have been crystallographically characterized, as have the di-μ-methoxy compounds (H2Hbab = 1,2-bis(2-hydroxybenzamido) benzene, H2Hbach = trans-1,2-bis(2-hydroxybenzamido) cyclohexane, H2Hbame = 1,2-bis(2-hydroxybenzamido) ethane, H2Hbap = 1,3-bis(2-hydroxybenzamido) propane, H2Hbabn = 1,4-bis(2-hydroxybenzamido) butane, H2Hbapen = 1,5-bis(2-hydroxybenzamido) pentane, N-MeIM = N-methylimidazole and OMe = methoxide). are structurally very similar to previously reported diferrous compounds of this family of ligands that have been shown to be active as oxygen atom transfer catalysts. Flexibility in the carbon-linker allows some variability in the orientation of the phenolate arms of the ligands in the diferric di-μ-methoxy compounds, but the Fe2O2 core remains largely unchanged across the series. Two-electron oxidation of the ferrous compounds in methanol shows a substantial ligand rearrangement that is consistent with other spectroscopic, electrochemical and kinetic investigations. The loss of both phenolate bridges upon oxidation is reminiscent of the “carboxylate shift” observed in binuclear non-heme enzymes and could provide insight into the driving force behind this family of compounds’ function as a catalyst.  相似文献   

17.
Novel methyl 4,6-O-benzylidenespiro[2-deoxy-α-d-arabino-hexopyranoside-2,2′-imidazolidine] and its homologue methyl 4,6-O-benzylidene-3′,4′,5′,6′-tetrahydro-1′H-spiro[2-deoxy-α-d-arabino-hexopyranoside-2,2′-pyrimidine] have been synthesized in good yields by reaction of methyl 4,6-O-benzylidene-α-d-arabino-hexopyranosid-2-ulose with 1,2-diaminoethane and 1,3-diaminopropane. The results are completely different from the reaction with arylamines or alkylamines. One-pot synthesis of novel (E)-methyl 4-[hydroxy (methoxy)methylene]-5-oxo-1-alkyl-(4,6-O-benzylidene-2-deoxy-α-d-glucopyranosido)[3,2-b]pyrrolidines has been achieved by the reaction of alkylamines with the butenolide-containing sugar, derived from the aldol condensation of methyl 4,6-O-benzylidene-α-d-arabino-hexopyranosid-2-ulose with diethyl malonate. These sugar-γ-butyrolactam derivatives are potential GABA receptor ligands.  相似文献   

18.
Series of phenoxypyrimidines and phenoxytriazines were prepared to be evaluated as herbicides. Among them, 2-(2,6-dichlorophenoxy)-pyrimidine (XV), 2-phenoxy-4,6-dimethyl- pyrimidine (XVII), 2-(3-methyl-4-chlorophenoxy)-4,6-bis(ethylamino)-5-triazine (LIV), 2-(2,4-dichlorophenoxy)-4,6-bis(ethylamino)-s-triazine (LVIII), and 2-(2,6-dichlorophenoxy)-4,6-bis(ethylamino)-s-triazine (LX) showed high pre-emergent herbicidai activity to radish. On the other hand, 2-chloro-4-(2,6-dichlorophenoxy)-6-methylpyrimidine (XXX) revealed high efficiency to millet. Some structure-activity relationship is discussed.  相似文献   

19.
To facilitate the use of oligosaccharides as analytical tools in biological studies, we have designed, synthesized, and conjugated to maltosaccharides a novel series of homologous small fluorescent moieties that differ in formal charge. These moieties are amide derivatives of anthranilic acid: uncharged N-(2-aminobenzoyl)glycinamide (ABGlyAmide; 2), acidic N,N-dimethyl-N(')-(2-aminobenzoyl)ethylenediamine (ABGlyDIMED; 3), and basic N-(2-aminobenzoyl)glycine (ABGly; 1). Routes for synthesis and optimal reaction conditions for glycoconjugation by conventional reductive amination are presented, as is the compatibility of these adducts with common analytical and preparative chromatographic methods, including RP-HPLC and HPAEC-PAD. These novel anthranilic acid derivatives confer both fluorescence and defined charge to oligosaccharides, and so enhance the repertoire of chromatographic and analytical methods for which anthranilic acid can be used. Furthermore, because glucosaccharides have rigid solution structure, these small fluorescent adducts with different formal charge are ideal tools for molecular sizing studies of membrane pores.  相似文献   

20.
Reaction of phenol with an alkylthiolate-ligated double cubane complex effects phenolate substitution at the terminal positions; the product can be isolated as its benzyltriethylammonium salt. The phenolate cluster possesses unaltered magnetic properties and blue shifted optical spectra, and undergoes ligand exchange reactions with electrophiles as expected for terminal phenolate substitution. Increased isotropic proton NMR shifts and large negative shifts in corresponding first and second reduction potentials are consistent with increased donation of electron density to the [MoFe3S4]3+ cores for phenolate versus thiophenolate terminal ligands to iron. Similar behavior has been observed for Fe4S4, Fe2S2 and MoS2Fe systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号