首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
β-Cyclodextrin (β-CD), which resides in the α-hemolysin (αHL) protein pore, can act as a molecular adapter in single-molecule exonuclease DNA sequencing approaches, where the different nucleotide binding behavior of β-CD is crucial for base discrimination. In the present contribution, the inclusion modes of β-CD towards four 2′-deoxyribonucleoside 5′-monophosphates (dNMPs) were investigated using quantum mechanics (QM) calculations. The calculated binding energy suggests that the binding affinity of dAMP to β-CD are highest among all the dNMPs in solution, in agreement with experimental results. Geometry analysis shows that β-CD in the dAMP complex undergoes a small conformational change, and weak interaction analysis indicates that there are small steric repulsion regions in β-CD. These results suggest that β-CD has lower geometric deformation energy in complexation with dAMP. Furthermore, topological analysis and weak interaction analysis suggest that the number and strength of intermolecular hydrogen bonds and van der Waals interactions are critical to dAMP binding, and they both make favorable contributions to the lower interaction energy. This work reveals the reason why β-CD prefers to bind dAMP rather than other dNMPs, while opening exciting perspectives for the design of novel β-CD-based molecular adapters in the single-molecule exonuclease method of sequencing DNA.
Graphical Abstract The binding affinity of β-cyclodextrin towards four 2′-deoxyribonucleoside 5′-monophosphates was investigated using quantum mechanics calculations
  相似文献   

2.
Bond critical points (BCPs) in the quantum theory of atoms in molecules (QTAIM) are shown to be a consequence of the molecular topology, symmetry, and the Poincaré-Hopf relationship, which defines the numbers of critical points of different types in a scalar field. BCPs can be induced by a polarizing field or by addition of a single non-bonded atom to a molecule. BCPs and their associated bond paths are therefore suggested not to be a suitable means of identifying chemical bonds, or even attractive intermolecular interactions.
Graphical abstract Bond-critical points in QTAIM and weak interactions?
  相似文献   

3.
Bone morphogenetic proteins (BMPs) are a family of more than 30 ligands and several receptors, such as activin like kinases (ALKs) and bone morphogenetic protein receptor (BMPR). Physiological significance of these proteins lies in their prominent role during homeostasis, apoptosis, tissue remodeling, embryonic patterning, and normal development. Fibrodysplasia ossificans progressive (FOP) is one among several other diseases caused by impaired BMP signaling. FOP is caused by the pathogenicity of activating mutation of ALK2. In order to treat FOP, a search for good inhibitors of ALK2 based on dorsomorphin and LDN substitution, which in essence is a ligand based search of inhibitors, is in progress. Contributing to this area of research we identified several lead molecules based on protein structure using virtual screening. After virtual screening of a huge library of small molecules and ab initio calculation of selected molecules for drug efficacy, we did molecular dynamic simulation of lead molecules and protein complexes. We identified five potential drug molecules that show very stable binding on the same binding site as LDN-213844. We also ranked these lead molecules based on MM/PBSA binding energy. This study provides a basis to think beyond the pyrimidine nucleus of dorsomorphin/LDN and design new chemical derivatives for effective treatment of FOP.
Graphical abstract Small molecule inhibitors of ALK2
  相似文献   

4.
DSS1 is a small acidic intrinsically disordered protein (IDP) that can fold upon binding with PCID2 TREX-2. The resulting complex plays a key role in mRNA export. However, the binding mechanism between DSS1 and PCID2 is unsolved. Here, three independent 500-ns molecular dynamics (MD) simulations were performed to study the DSS1–PCID2 binding mechanism by comparing apo-PCID2 and bound PCID2. The results show that the conformational variation of bound PCID2 is smaller than that of apo-PCID2, especially in the binding domain of two helices (helix IV and VIII). The probability of coil formation between helix III and helix IV of bound PCID2 increases, and a short anti-parallel β-sheet forms upon DSS1 binding. The decomposition of binding free energy into protein and residue pairs suggests that electrostatic and hydrophobic interactions play key roles in the recognition between DSS1 and PCID2. There is a hydrophobic core of seven residues in DSS1 favorable to the binding of PCID2. These analytical methods can be used to reveal the recognition mechanisms of other IDPs and their partners.
Figure Differences of second structure of PCID2 in bound and unbound states. The interaction surface between the helix VIII of PCID2 and helix of DSS1
  相似文献   

5.
A theoretical 1H NMR spectroscopy and thermodynamic analysis of the host–guest inclusion process involving the norfloxacin (NFX) into β-cyclodextrin (β-CD) was carried out. DFT structure and stabilization energies were obtained in both gas and aqueous phases. We could establish that the complex formation is enthalpy driven, and the hydrogen bonds established between NFX and β-CD play a major role in the complex stabilization. Besides, a theoretical 1H NMR analysis has shown to be a supplementary proceeding to predict appropriately the inclusion mode of norfloxacin molecule into the β-CD. In this work, a theoretical study of the NFX@β-CD complex is reported for the first time, seeking a deep understanding of topology and thermodynamics of the inclusion complex formation.
Graphical Abstract Topology, thermodynamic and 1H NMR analysis of NFX@β-CD host-guest complexes
  相似文献   

6.
In this work several molecular properties of symmetrically disubstituted formaldehyde and thioformaldehyde have been studied using a quantum chemistry approach based on density functional theory. Five-membered heteroaromatic rings containing a single group 16 heteroatom were taken into account as the substituents (i.e., furan-2-yl, thiophen-2-yl, selenophen-2-yl, tellurophen-2-yl, and the experimentally as yet unknown polonophen-2-yl). For the resulting ten formaldehyde and thioformaldehyde derivatives, the geometry, energetics, frontier molecular orbitals, dipole moment and polarizability of their molecules were examined in order to establish the effect of ring heteroatom on these properties. Furthermore, these properties were also determined for the molecules in three solvents of low polarity (benzene, chloroform, and dichloromethane) in order to expand our study to include solvent effects. The dipole moment and polarizability of the investigated molecules show regular variations when the ring heteroatom descends through group 16 and the solvent polarity grows. The heteroatom and/or solvent effects on the part of the studied properties are, however, more complex. An attempt is made to rationalize the observed variations in the molecular properties. The conformational behavior of the investigated molecules was also explored and the conformationally weighted values of dipole moment and polarizability are presented.
Graphical abstract Some molecular properties of symmetrically disubstituted formaldehyde and thioformaldehyde
  相似文献   

7.
The conversion of 2-phenylbenzimidazole using o-phenylenediamine and benzaldehyde can be improved significantly under β-cyclodextrin (β-CD). The density functional theory (DFT) method was applied to study the whole process. According to energy parameters (binding energy, deformation energy) and structural deformation, entry models and the reaction process can be pinpointed, with o-phenylenediamine embedding β-CD from a wide rim, and then benzaldehyde passing into the inclusion from the narrow rim. Subsequently, natural bonding orbital (NBO), Mulliken charge, frontier orbital, FuKui function and nuclear magnetic resonance (NMR) methods were employed to reveal the mechanism of electron transfer. The results illustrate that β-CD plays a catalytic role in synthesis reaction mechanism on the secondary side, improving the reactivity and selectivity of the process.
Graphical Abstract Density functional theory study of the effects of β-cyclodextrin in synthesis of 2-phenylbenzimidazole via benzaldehyde and o-phenylenediamine
  相似文献   

8.
In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors.
Graphical abstract Bennett’s acceptance ratio (BAR) method
  相似文献   

9.
10.
Coarse-grained force field (CGFF) methods were applied to study the self-assembly of sodium dodecyl sulfate with fragrance additives. The CGFF parameters were parameterized and validated using experimental and all-atom simulation data. Direct molecular dynamics simulations were carried out to characterize the initial aggregation, partitioning of fragrances, and chemical potentials of the surfactant and fragrance molecules in aggregates of different sizes. The equilibrium critical micelle concentrations (CMCs) and micelle size distributions, which could not be obtained by direct simulation, were predicted using the calculated chemical potentials in combination with a thermodynamic model. The predicted partitioning of fragrances, CMCs, micelle sizes, and micelle structures agree well with previously reported experimental data.
Graphical abstract Enhancement of micelle size distribution using thermodynamic model
  相似文献   

11.
In this work, we address the effects of molecular doping on the electronic properties of fluorinated and chlorinated silicon nanowires (SiNWs), in comparison with those corresponding to hydrogen-passivated SiNWs. Adsorption of n-type dopant molecules on hydrogenated and halogenated SiNWs and their chemisorption energies, formation energies, and electronic band gap are studied by using density functional theory calculations. The results show that there are considerable charge transfers and strong covalent interactions between the dopant molecules and the SiNWs. Moreover, the results show that the energy band gap of SiNWs changes due to chemical surface doping and it can be further tuned by surface passivation. We conclude that a molecular based ex-situ doping, where molecules are adsorbed on the surface of the SiNW, can be an alternative path to conventional doping.
Graphical abstract Molecular doping of halogenated silicon nanowires
  相似文献   

12.
BACE-1 and GSK-3β are potential therapeutic drug targets for Alzheimer's disease. Recently, both the targets received attention for designing dual inhibitors for Alzheimer’s disease. Until now, only two-scaffold triazinone and curcumin have been reported as BACE-1 and GSK-3β dual inhibitors. Docking, molecular dynamics, clustering, binding energy, and network analysis of triazinone derivatives with BACE-1 and GSK-3β was performed to get molecular insight into the first reported dual inhibitor. Further, we designed and evaluated a naphthofuran series for its ability to inhibit BACE-1 and GSK-3β with the computational approaches. Docking study of naphthofuran series showed a good binding affinity towards both the targets. Molecular dynamics, binding energy, and network analysis were performed to compare their binding with the targets and amino acids responsible for binding. Naphthofuran series derivatives showed good interaction within the active site residues of both of the targets. Hydrogen bond occupancy and binding energy suggested strong binding with the targets. Dual-inhibitor binding was mostly governed by the hydrophobic interactions for both of the targets. Per residue energy decomposition and network analysis identified the key residues involved in the binding and inhibiting BACE-1 and GSK-3β. The results indicated that naphthofuran series derivative 11 may be a promising first-in-class dual inhibitor against BACE-1 and GSK-3β. This naphthofuran series may be further explored to design better dual inhibitors.
Graphical abstract Naphthofuran derivative as a dual inhibitor for BACE-1 and GSK-3β.
  相似文献   

13.
In this study, the doped defects in nitromethane crystals were investigated using first-principles calculations for the first time. We introduce dopant atoms in the interstitial sites of the nitromethane lattice, aiming to study the effects of element-doping on the structural properties, electronic properties, and sensitivity characteristics. The obtained results show that doped defects obviously affect the neighboring nitromethane molecules. The modification of electronic properties shows that the band gaps are significantly influenced by doped defects. Partial density of states and population analysis further reveal the mechanism for sensitivity control of nitromethane. It is shown that the new electronic states were introduced in the forbidden bands and the doped defects resulted in charge redistributions in the systems.
Graphical abstract The valence and conduction band edge positions as well as defect levels of pure and X-doped NM
  相似文献   

14.
The number of hydrogen bonds and detailed information on the interlayer spacing of graphene oxide (GO) confined water molecules were calculated through experiments and molecular dynamics simulations. Experiments play a crucial role in the modeling strategy and verification of the simulation results. The binding of GO and water molecules is essentially controlled by hydrogen bond networks involving functional groups and water molecules confined in the GO layers. With the increase in the water content, the clusters of water molecules are more evident. The water molecules bounding to GO layers are transformed to a free state, making the removal of water molecules from the system difficult at low water contents. The diffuse behaviors of the water molecules are more evident at high water contents. With an increase in the water content, the functional groups are surrounded by fewer water molecules, and the distance between the functional groups and water molecules increases. As a result, the water molecules adsorbed into the GO interlamination will enlarge the interlayer spacing. The interlayer spacing is also affected by the number of GO layers. These results were confirmed by the calculations of number of hydrogen bonds, water state, mean square displacement, radial distribution function, and interlayer spacing of hydrated GO.
Graphical Abstract This work research the interaction between GO functional groups and confined water molecules. The state of water molecules and interlayer spacing of graphene oxide were proved to be related to the number of hydrogen bonds.
  相似文献   

15.
In this article, we explore, both theoretically and experimentally, the general reactivity of alkyl hydrogeno-phenylphosphinates with alcohols. We show that alcohol molecules act exclusively as nucleophilic species, and add to alkyl hydrogeno-phenylphosphinates, leading to pentacoordinated intermediates. These intermediates are shown to subsequently competitively undergo alcohol eliminations and/or Berry pseudorotations. This offers several possible routes for racemizations and/or alcohol exchange reactions. Transition standard Gibbs free energies predicted from DFT calculations for the overall alcohol exchange mechanism are shown to be compatible with those experimentally measured in case ethanol reacts with ethyl hydrogeno-phenylphosphinate (134.5~136.0 kJ mol?1 at 78 °C).
Graphical abstract ?
  相似文献   

16.
17.
Rv0045c is an esterase involved in lipid metabolism of Mycobacterium tuberculosis. It belongs to the α/β hydrolase family. In the current study, we performed sequence- and structure-based analysis of Rv0045c followed by molecular dynamics (MD) simulation for 100 ns to investigate conformational changes in the enzyme. Sequence analysis revealed that this enzyme is possibly a hormone-sensitive lipase. Further, through structural analysis, a putative catalytic tetrad containing “Ser-Asp-Ser-His” and residues involved in the formation of an oxyanion hole were identified. MD simulation of Rv0045c revealed a conformational transition from an open to a closed state. The active site pocket was found to be gated by four loops. The potential role of the cap domain and the mobile histidine is discussed. From the simulation, we see that the conformational changes mimic the different stages in the reaction mechanism of Rv0045c. These results support the hypothesis that free enzyme simulation encompasses all the conformations necessary for the different stages of catalysis. Our findings add to the growing knowledge of an important family of esterases in Mycobacterium tuberculosis.
Graphical Abstract Sequence and structural analysis of Rv0045c
  相似文献   

18.
Catalytic fields illustrate topology of the optimal charge distribution of a molecular environment reducing the activation energy for any process involving barrier crossing, like chemical reaction, bond rotation etc. Until now, this technique has been successfully applied to predict catalytic effects resulting from intermolecular interactions with individual water molecules constituting the first hydration shell, aminoacid mutations in enzymes or Si→Al substitutions in zeolites. In this contribution, hydrogen to fluorine (H→F) substitution effects for two model reactions have been examined indicating qualitative applicability of the catalytic field concept in the case of systems involving intramolecular interactions.
Graphical abstract Hydrogen to fluorine (H→F) substitution effects on activation energy in [kcal/mol]
  相似文献   

19.
20.
An experimentally determined structure for human CYP2J2—a member of the cytochrome P450 family with significant and diverse roles across a number of tissues—does not yet exist. Our understanding of how CYP2J2 accommodates its cognate substrates and how it might be inhibited by other ligands thus relies on our ability to computationally predict such interactions using modelling techniques. In this study we present a computational investigation of the binding of arachidonic acid (AA) to CYP2J2 using homology modelling, induced fit docking (IFD) and molecular dynamics (MD) simulations. Our study reveals a catalytically competent binding mode for AA that is distinct from a recently published study that followed a different computational pipeline. Our proposed binding mode for AA is supported by crystal structures of complexes of related enzymes to inhibitors, and evolutionary conservation of a residue whose role appears essential for placing AA in the right site for catalysis.
Graphical Abstract Arachidonic acid docked in the active site of CYP2J2 assumes a catalytically competent binding mode stabilised by hydrogen bonds to Arg117
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号