首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 300 毫秒
1.
Three new chiral ligands bearing an O,O′,N donor set (OmethoxyOhydroxyNpyridine) were synthesised and coordinated to FeIII, FeII, NiII, CuII and ZnII to yield complexes with the general formula [M(OON)Clx]y. While the pyridine N and the hydroxy O atoms coordinate strongly to all applied metal ions, the methoxy donor seems not to be involved in coordination, although some evidence for a weak interaction between OMe and the ZnII were found in NMR spectra. In the bidentate O′,N coordination mode the new ligands exhibit several coordination geometries as analysed in the solid compounds by XRD, EXAFS and EPR and in solution by UV-Vis absorption, cyclic voltammetry, EXAFS, EPR or NMR spectroscopy.  相似文献   

2.
Hydrothermal reactions between H4ODPA (2,2′,3,3′-oxydiphthalic acid) and metal ion salts of Ba2+, Cu2+, Zn2+ and Gd3+ afford four novel coordination polymers [Ba(H2ODPA)(H2O)4] · H2O (1), [Cu2(ODPA)(H2O)3] · H2O (2), Zn2(ODPA)(H2O)2 (3) and [Gd(HODPA)(H2O)3.5] · H2O (4), accordingly. These polymers show great differences in regard to their structures and properties originated from the variation of size and coordination geometry of the metal ions. Compound 1 presents puckered achiral layer structure with (4.82) topology with helices, 2 has a 63 topology with copper tetramer as SBUs, 3 has chiral layer with two kinds of helices built up from Zn-binuclear “paddle-wheel” like SBUs, and 4 features a simple 1D helix with opposite chirality. Compound 3 shows obvious fluorescent emissions upon excitation. Compound 2 shows ferromagnetic interactions between CuII centers bridged by carboxylate groups, whereas compound 4 presents weak ferromagnetic interaction between GdIII ions.  相似文献   

3.
Methods of quantum chemistry have been applied to double-charged complexes involving the transition metals Ni2+, Cu2+ and Zn2+ with the aromatic amino acids (AAA) phenylalanine, tyrosine and tryptophan. The effect of hydration on the relative stability and geometry of the individual species studied has been evaluated within the supermolecule approach. The interaction enthalpies, entropies and Gibbs energies of nine complexes Phe•M, Tyr•M, Trp•M, (M = Ni2+, Cu2+ and Zn2+) were determined at the Becke3LYP density functional level of theory. Of the transition metals studied the bivalent copper cation forms the strongest complexes with AAAs. For Ni2+and Cu2+ the most stable species are the NO coordinated cations in the AAA metal complexes, Zn2+cation prefers a binding to the aromatic part of the AAA (complex II). Some complexes energetically unfavored in the gas-phase are stabilized upon microsolvation.  相似文献   

4.
The crystal structures of two copper(II) complexes of 4-fluorophenoxyacetic acid (4-FPAH) have been determined by X-ray diffraction. [Cu(4-FPA)2(H2O)2]·2(4-FPAH)·2H2O (1) is triclinic, space group P1 with Z = 1 in a cell of dimensions a = 14.808(2), b = 9.832(2), c = 6.847(2) Å, α = 87.77(2), β = 98.41(2), γ = 112.33(2)° and was refined to a residual of 0.038 for 1697 ‘observed’ reflections. The coordination sphere in this complex is tetragonally distorted octahedral comprising two waters [CuO, 1.940(3) Å], two unidentate carboxylate oxygens [CuO, 1.942(2) Å] and two ether oxygens [CuO, 2.471(2) Å]. Two adducted [4-FPAH] acid molecules are linked to the un-coordinated oxygens of the acid ligands by hydrogen bonds [2.547(4) Å]. [Cu2(4-FPA)4(2-aminopyrimidine)2] (2) is triclinic, space group P1 with Z = 1 in a cell of dimensions a = 12.688(2), b = 11.422(2), c = 7.951(1) Å, α = 78.74(1), β = 107.51(1), γ = 75.78(1)°, and was refined to a residual of 0.042 for 2683 ‘observed’ reflections. (2) is a centrosymmetric tetracarboxylate bridged dimer with four similar CuO (equatorial) distances [1.967–1.987 Å; 1.977(3) Å mean] and the axial position occupied by the hetero nitrogen of the 2-aminopyrimidine ligand [CuN, 2.176(3) Å]. The Cu---Cu separation is 2.710(1) Å. Crystal data are also presented which confirm the isostructurality of complex (2) with [Cu2(phenoxyacetate)4(2-aminopyrimidine)2], the CoII, MgII and MnII4-fluorophenoxyacetate complexes with their phenoxyacetic and 4-chlorophenoxyacetic acid analogues, and of CdII4-fluorophenoxyacetate with CdII and ZnII phenoxyacetates.  相似文献   

5.
The synthesis and structural characterization of NiII, CuII and ZnII complexes of two chelating 1,2,4-oxadiazole ligands, namely 3,5-bis(2′-pyridyl)-1,2,4-oxadiazole (bipyOXA) and 3-(2′-pyridyl)5-(phenyl)-1,2,4-oxadiazole (pyOXA), is here reported. The formed hexacoordinated metal complexes are [M(bipyOXA)2(H2O)2](ClO4)2 and [M(pyOXA)2(ClO4)2], respectively (M = Ni, Cu, Zn). X-ray crystallography, 1H and 13C NMR spectroscopy and C, N, H elemental analysis data concord in attributing them an octahedral coordination geometry. The two coordinated pyOXA ligands assume a trans coplanar disposition, while the two bipyOXA ligands are not. The latter result is a possible consequence of the formation of H-bonds between the coordinated water molecules and the nitrogen atom of the pyridine in position 5 of the oxadiazole ring. The expected splitting of the d metal orbitals in an octahedral ligand field explains the observed paramagnetism of the d8 and d9 electron configuration of the nickel(II) and copper(II) complexes, respectively, as determined by the broadening of their NMR spectra.  相似文献   

6.
Three new coordination polymers [M(Pht)(1-MeIm)2]n (where M=Cu (1), Zn (2), Co (3); Pht2−=dianion of o-phthalic acid; 1-MeIm=1-methylimidazole) and two compounds [M(1-MeIm)6](HPht)2 · 2H2O (M=Co (4), Ni (5)) have been synthesized and characterized by X-ray crystallography. The structures of 1-3 (2 is isostructural to 3) consist of [M(1-MeIm)2] building units connected by 1,6-bridging phthalate ions to form infinite chains. In complex 1, each copper(II) center adopts a square coordination mode of N2O2 type by two O atoms from different phthalate ions and two N atoms of 1-MeIm, whereas in 3 two independent metal atoms are tetrahedrally (N2O2) coordinated to a pair of Pht ligands and a pair of 1-MeIm molecules. There are only van der Waals interactions between the chains in 1, while the three-dimensional network in 3 is assembled by C-H?O contacts. In contrast to polymers 1-3 the structures of 4 and 5 (complexes are also isostructural) are made up of the [M(1-MeIm)6]2+ cation, two hydrogen phthalate anions (HPht) and two H2O solvate molecules. The coordination around each metal(II) atom is octahedral with six nitrogen atoms of 1-MeIm. Extended hydrogen bonding networks embracing the solvate water molecules and a phthalate residue as well as the weak C-H?O interactions stabilize the three-dimensional structures. Magnetic studies clearly show that the magnetic ions do not interact with each other. Furthermore, in compound 4 we have another example of a highly anisotropic Co2+ ion with a rhombic g-tensor and large zero-field-splitting. The complexes were also characterized by IR and 1H NMR spectroscopy, thermogravimetric analysis, and all data are discussed in the terms of known structures.  相似文献   

7.
The thermostabilities of Fe2+ ligation in rubredoxins (Rds) from the hyperthermophile Pyrococcus furiosus (Pf) and the mesophiles Clostridium pasteurianum (Cp) and Desulfovibrio vulgaris (Dv) were compared. Residue 44 forms an NH...S(Cys) hydrogen bond to one of the cysteine ligands to the [Fe(SCys)4] site, and substitutions at this location affect the redox properties of the [Fe(SCys)4] site. Both Pf Rd and Dv Rd have an alanine residue at position 44, whereas Cp Fd has a valine residue. Wild-type proteins were examined along with V44A and A44V exchange mutants of Cp and Pf Rds, respectively, in order to assess the effects of the residue at position 44 on the stability of the [Fe(SCys)4] site. Stability of iron ligation was measured by temperature-ramp and fixed-temperature time course experiments, monitoring iron release in both the absence and presence of more thiophilic metals (Zn2+, Cd2+) and over a range of pH values. The thermostability of the polypeptide fold was concomitantly measured by fluorescence, circular dichroism, and 1H NMR spectroscopies. The A44V mutation strongly lowered the stability of the [FeII(SCys)4] site in Pf Rd, whereas the converse V44A mutation of Cp Rd significantly raised the stability of the [FeII(SCys)4] site, but not to the levels measured for wild-type Dv Rd. The region around residue 44 is thus a significant contributor to stability of iron coordination in reduced Rds. This region, however, made only a minor contribution to the thermostability of the protein folding, which was found to be higher for hyperthermophilic versus mesophilic Rds, and largely independent of the residue at position 44. These results, together with our previous studies, show that localized charge density, solvent accessibility, and iron site/backbone interactions control the thermostability of the [Fe(SCys)4] site. The iron site thermostability does make a minor contribution to the overall Rd thermostability. From a mechanistic standpoint, we also found that attack of displacing ions (H+, Cd2+) on the Cys42 sulfur ligand at the [Fe(SCys)4] site occurs through the V8 side and not the V44 side of the iron site.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-004-0525-4Abbreviations BPS bathophenanthroline sulfonate, sodium salt - Cp Rd (Pf Rd, Dv Rd) recombinant rubredoxin from Clostridium pasteurianum (Pyrococcus furiosus, Desulfovibrio vulgaris) - HEPES hydroxyethylpiperazineethanesulfonic acid - MES morpholinoethanesulfonic acid - Tris tris(hydroxymethyl)aminomethane - wt wild-type - ZnRd recombinant rubredoxin containing a [Zn(SCys)4] site  相似文献   

8.
New heterodinuclear ZnII/NiII (1) and homodinuclear NiII/NiII (2) water-soluble and air stable compounds of general formula [M(H2O)6][M′(dipic)2] · mH2O have been easily prepared by self-assembly of the corresponding metal(II) nitrates with dipicolinic acid (H2dipic) in water solution at room temperature.  The compounds have been characterized by IR, UV/Vis and atomic absorption spectroscopies, elemental and X-ray single crystal diffraction (for 1 · 4H2O and 2 · 5H2O) analyses.  3D infinite polymeric networks are formed via extensive hydrogen bonding interactions involving all coordinated and crystallization water molecules, and all dipicolinate oxygens, thus contributing to additional stabilization of dimeric units, metal-organic chains and 2D layers.  In 1 · 4H2O, the latter represent a rectangular-grid 2D framework with multiple channels if viewed along the c crystallographic axis, while in 2 · 5H2O intercalated crystallization water molecules are associated to form acyclic nonplanar hexameric water clusters and water dimers which occupy voids in the host metal-organic matrix, with a structure stabilizing effect via host-guest interactions.  The hexameric cluster extends to the larger (H2O)10 one with an unusual geometry (acyclic helical octamer with two pendent water molecules) by taking into account the hydrogen bonds to water ligands in [Ni(H2O)6]2+.  The obtained Zn/Ni compound 1 relates to the recently reported family of heterodimetallic complexes [M(H2O)5M′(dipic)2] · mH2O (M/M′ = Cu/Co, Cu/Ni, Cu/Zn, Zn/Co, Ni/Co, m = 2, 3), what now allows to establish the orders of the metal affinity towards the formation of chelates with dipicolinic acid (CoII > NiII > ZnII > CuII) or aqua species (CoII < NiII < ZnII < CuII).  相似文献   

9.
P1B-type ATPases transport a variety of metals (Cd2+, Zn2+, Pb2+, Co2+, Cu2+, Ag+, Cu+) across biomembranes. Characteristic sequences CP[C/H/S] in transmembrane fragment H6 were observed in the putative transporting metal site of the founding members of this subfamily (initially named CPx-ATPases). In spite of their importance for metal homeostasis and biotolerance, their mechanisms of ion selectivity are not understood. Studies of better-characterized PII-type ATPases (Ca-ATPase and Na,K-ATPase) have identified three transmembrane segments that participate in ion binding and transport. Testing the hypothesis that metal specificity is determined by conserved amino acids located in the equivalent transmembrane segments of P1B-type ATPases (H6, H7, and H8), 234 P1B-ATPase protein sequences were analyzed. This showed that although H6 contains characteristic CPX or XPC sequences, conserved amino acids in H7 and H8 provide signature sequences that predict the metal selectivity in each of five P1B-ATPase subgroups identified. These invariant amino acids contain diverse side chains (thiol, hydroxyl, carbonyl, amide, imidazolium) that can participate in transient metal coordination during transport and consequently determine the particular metal selectivity of each enzyme. Each subgroup shares additional structural characteristics such as the presence (or absence) of particular amino-terminal metal-binding domains and the number of putative transmembrane segments. These differences suggest unique functional characteristics for each subgroup in addition to their particular metal specificity.  相似文献   

10.
The reactions of 4-aminobenzoic acid (4-abaH), 4,4′-bipyridine (4,4′-bipy) and transitional metal ions (ZnII, MnII and CuII) gave rise to four supramolecular architectures, namely, [(4-abaH)2(4,4′-bipy)] (1), {[Zn2(4,4′-bipy)2(4-aba)4] (H2O)5}n (2), {[Mn(4,4′-bipy)2(H2O)4] (4-aba)Br(H2O)3} (3) and {[Cu2(4,4′-bipy)3(H2O)2(4-aba)2](NO3)2(H2O)4}n (4). Their crystal structures were determined by X-ray diffraction and show different structural motifs. 1 is a one-dimensional hydrogen bonding ladder constructed by 4-abaH and 4,4′-bipy. In 2, 4,4′-bipy bridges Zn(4-aba)2 units forming a one-dimensional zigzag chain, which is extended into a three-dimensional framework by crystalline water molecules through hydrogen bonding interactions. Three-dimensional network of 3 is constructed by mononuclear [Mn(4,4′-bipy)2(H2O)4]2+ cations, neutral crystalline water molecules, and 4-aba and Br anions through extensive hydrogen bonding and π-π interactions. However, one-dimensional ladder formed by 4,4′-bipy and Cu(4-aba) units in 4 is extended into a three-dimensional architecture through interpenetration of the lateral 4-aba arms into squares of the adjacent Cu-(4,4′-bipy) ladders and extensive hydrogen bonding interactions.  相似文献   

11.
 The reaction of the macrocycles 1,4,7-tris (3,5-di-tert-butyl-2-hydroxy-benzyl)-1,4,7-triazacyclononane, L1H3, or 1,4,7-tris(3-tert-butyl-5-methoxy-2-hydroxy-benzyl)-1,4,7-triazacyclononane, L2H3, with Cu(ClO4)2·6H2O in methanol (in the presence of Et3N) affords the green complexes [CuII(L1H)] (1), [CuII(L2H)]·CH3OH (2) and (in the presence of HClO4) [CuII(L1H2)](ClO4) (3) and [CuII(L2H2)] (ClO4) (4). The CuII ions in these complexes are five-coordinate (square-base pyramidal), and each contains a dangling, uncoordinated pendent arm (phenol). Complexes 1 and 2 contain two equatorially coordinated phenolato ligands, whereas in 3 and 4 one of these is protonated, affording a coordinated phenol. Electrochemically, these complexes can be oxidized by one electron, generating the phenoxyl-copper(II) species [CuII(L1H)]+·, [Cu(L2H)]+·, [CuII(L1H2)]2+·, and [CuII(L2H2)]2+·, all of which are EPR-silent. These species are excellent models for the active form of the enzyme galactose oxidase (GO). Their spectroscopic features (UV-VIS, resonance Raman) are very similar to those reported for GO and unambiguously show that the complexes are phenoxyl-copper(II) rather than phenolato-copper(III) species. Received: 10 February 1997 / Accepted: 7 April 1997  相似文献   

12.
Three new supramolecular complexes, [Cu(L1)H2O]n (1), [Zn(L2)(H2O)2]n (2), and [Cd(L2)(H2O)2]n (3), have been synthesized and characterized by FT-IR spectra, fluorescence spectra, and thermal analyses. And the structures of complexes 1-3 have been elucidated by X-ray analyses. Complex 1 is square pyramidal geometry with an unusually long bond (2.262 Å) from penta-coodinated CuII center to the oxygen atom of the apical coordinated water molecule. Molecules are linked by hydrogen bonding between the coordinated water and the phenolic oxygen atoms of adjacent molecules, thus formed a self-assembling continual zigzag chain supramolecular structure. The crystal structure of complex 2 (or 3) has indicated that the complex consists of one ZnII (or CdII) atom, one L2− unit and two coordinated water molecules, the coordination number of the ZnII (or CdII) atom is six, and formed an infinite metal-water chain supramolecular structure by intermolecular hydrogen bonds and π-π stacking of neighboring benzene rings. Meanwhile, the thermal and photophysical properties of the resulted complexes have also been discussed.  相似文献   

13.
The coordination chemistry of a flexible poly(triazolyl)alkane derivative, fluconazole (HFlu), with a series of transition metal ions and dicyanamide (dca) anionic co-ligand has been explored to afford six new metal-organic coordination polymers. Complexes [M(HFlu)2(dca)2]n (M = MnII for 1, FeII for 2, CoII for 3, ZnII for 5, and CdII for 6) have the isostructural 1-D double-chain array via bridging fluconazole, whereas [Cu3(Flu)2(dca)4(CH3OH)2]n (4) shows an unusual 2-D layered metal-organic framework with dimeric CuII subunits. Notably, both types of coordination patterns are extended into distinct 3-D supramolecular networks via hydrogen-bonding interactions. This result indicates that the choice of metal ion has a significant effect on these polymeric structures as well as the binding modes of the ligands, which is discussed in detail. The ZnII and CdII complexes 5 and 6 display similar fluorescent emissions at 260 nm in the solid state, which essentially are intraligand transitions.  相似文献   

14.
Supplementation with CaCl2·2H2O (50 mg l−1) or CuSO4·5H2O (10 mg l−1) improved mannitol production by Candida magnoliae by 14.5 and 18.6% (25 and 32 g/L), respectively. When used in combination, they acted synergistically: Ca2+ decreased the intracellular concentration of mannitol 30%, whereas Cu2+ increased the intracellular activity of mannitol dehydrogenase 1.6-times more than control. Ca2+ probably works by altering the permeability of cells to mannitol, whereas, Cu2+ increases the activity of an enzyme responsible for mannitol biosynthesis.  相似文献   

15.
In the search for new metal-based drugs for the treatment of Chagas disease, the most widespread Latin American parasitic disease, novel complexes of the bioactive ligand risedronate (Ris, (1-hydroxy-1-phosphono-2-pyridin-3-yl-ethyl)phosphonate), [MII(Ris)2]·4H2O, where M═Cu, Co, Mn and Ni, and [NiII(Ris)2(H2O)2]·H2O were synthesized and characterized by using analytical measurements, thermogravimetric analyses, cyclic voltammetry and infrared and Raman spectroscopies. Crystal structures of [CuII(Ris)2]·4H2O and [NiII(Ris)2(H2O)2]·H2O were solved by single crystal X-ray diffraction methods. The complexes, as well as the free ligand, were evaluated in vitro against epimastigotes and intracellular amastigotes of the parasite Trypanosoma cruzi, causative agent of Chagas disease. Results demonstrated that the coordination of risedronate to different metal ions improved the antiproliferative effect against T. cruzi, exhibiting growth inhibition values against the intracellular amastigotes ranging the low micromolar levels. In addition, this strong activity could be related to high inhibition of farnesyl diphosphate synthase enzyme. On the other hand, protein interaction studies showed that all the complexes strongly interact with albumin thus providing a suitable means of transporting them to tissues in vivo.  相似文献   

16.
Reactions of FeII, CoII, NiII, and ZnII salts with 6-quinolinecarboxylic acid (HL) under the hydrothermal conditions afford three monomeric complexes [M(L)2(H2O)4] (M = FeII for 1, CoII for 2, and NiII for 3) and a 1-D polymeric species {[Zn(L)2(H2O)] · H2O}n (4). The crystal structures of the ligand HL and these four complexes have been determined by using the X-ray single-crystal diffraction technique. The results suggest that complexes 1-3 are isostructural, displaying novel 3-D pillar-layered networks through multiple intermolecular hydrogen bonds, whereas in coordination polymer 4, the 1-D comb-like coordination chains are extended to generate a hydrogen-bonded layer, which is further reinforced via aromatic stacking interactions. Solid-state properties such as thermal stability and fluorescence emission of the polymeric ZnII complex 4 have also been investigated.  相似文献   

17.
Reaction of M(OAc)2 (MII = CuII for 1, CoII for 2, and PbII for 3) with pyridine-2,6-dicarboxylic acid (H2pydc) in presence of a dipyridyl spacer 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (bpo) affords three novel metal-organic supramolecular networks [Cu2(bpo)(pydc)2(H2O)3] · 2.75H2O(1), [Co(bpo)(pydc)(H2O)2] · (H2O) (2) and [Pb(pydc)]n (3), which have been structurally determined by single-crystal X-ray diffraction. The dimeric Cu-pydc coordination framework bridged by a bpo spacer in 1 is hydrogen-bonded to four others to result in a two-dimensional (2-D) sheet array. The neutral monomeric molecules in 2 have an ordered 3-D stacking stabilized via hydrogen bonds and significant π-π interactions in the lattice, possessing large porous channels with the inclusion of guest solvates. In coordination polymer 3, the PbII ion takes the unusual distorted capped trigonal prismatic geometry (PbNO6) and each pydc dianion binds to four PbII centres to form a 2-D infinite network. The thermal stabilities of these complexes have also been investigated.  相似文献   

18.
Fluorescent proteins show fluorescence quenching by specific metal ions, which can be applied towards metal biosensing applications. In order to develop metal-biosensor, we performed spectroscopic analysis of the fluorescence quenching of fluorescent protein AmCyan and mOrange2 by various metal ions. The fluorescence intensity of AmCyan was reduced to 48.54% by Co2+ and 67.77% by Zn2+; Cu2+ reduced the fluorescence emission of AmCyan to 19.30% of its maximum. The fluorescence intensity of mOrange2 was quenched by only Cu2+, to 11.48% of its maximum. When analyzed by Langmuir equation, dissociation constants for AmCyan and mOrange2 were 56.10 and 21.46 µM, respectively. The Cu2+ quenching of AmCyan and mOrange2 were reversible upon treatment with the metal chelator EDTA, indicating that the metal ions were located on the protein surface. Their model structures suggest that AmCyan and mOrange2 have novel metal-binding sites.  相似文献   

19.
One-pot reactions of transition metal (CuII, NiII, CoII, or CdII) salt with malonic acid (H2mal) in the presence of mesocyclic diamine generate three supramolecular complexes and a coordination polymer. [Cu(mal)2(H2O)2](H2O)2(H2DACH) (1) and [M(mal)2(H2O)2](H2DACO) (M = Ni for 2, and Co for 3) are ion-pair products and managed by charge-assistant noncovalent interactions (DACO = 1,5-diazacyclooctane, and DACH = 1,4-diazacycloheptane). In these structures, the similar mononuclear [M(mal)2(H2O)2]2− building blocks are connected by hydrogen bonds to form 2D networks (with the aid of one lattice water in the case of 1), which are further extended by the cationic diamine components to yield 3D pillar-layered solids. While [Cd(mal)(H2O)2]n (4) is a neutral polymeric complex, in which the similar [Cd(mal)2(H2O)2]2− subunits are propagated by additional Cd-O coordinative forces to result in the final 2D layer.  相似文献   

20.
To test the effects of ketamine on metal ion balance in the spinal cord tissues after ischemic reperfusion (I/R), 24 white adult Japanese rabbits were randomly assigned to sham operation group, I/R group or ketamine-treated I/R group. Spinal cord injuries in I/R group and ketamine-treated I/R group were induced by aortic occlusions. Rabbits in ketamine-treated I/R group were intravenously infused 10 mg/kg ketamine twice: once at 10 min before aortic clamping and once at the onset of reperfusion. Post-operative neurological functions and concentrations of ions Ca2+, Mg2+, Cu2+ and Zn2+ in the spinal cord were assessed. Compared with the sham operation group, rabbits in the I/R group showed significantly worsened neurological functions as scored with the modified Tarlov criteria and altered concentrations of ions Ca2+, Mg2+, Cu2+ and Zn2+. These unfavorable changes were significantly reversed in the ketamine-treated I/R group, suggesting that the potent protective effects of ketamine against the I/R-induced spinal cord injuries may be due to its ability to maintain ion balance in the I/R affected tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号