首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HCl, HNO3 and H2SO4 are implicated in atmospheric processes in areas such as polar stratospheric clouds in the stratosphere. Ternary complexes of HCl, HNO3 and H2SO4 were investigated by ab initio calculations at B3LYP level of theory with aug-cc-pVTZ and aug-cc-pVQZ basis sets, taking into account basis set superposition error (BSSE). The results were assessed in terms of structures (five hexagonal cyclic structures and two quasi-pentagonal cyclic structures), inter-monomeric parameters (all ternary complexes built three hydrogen bonds), energetics (seven minima obtained), infrared harmonic vibrational frequencies (red shifting of complexes from monomers), and relative stability of complexes, which were favorable when the temperature decreases under stratospheric conditions, from 298 K to 188 K, and in concrete, at 210 K, 195 K and 188 K.  相似文献   

2.
Abstract

Classical molecular dynamics simulation and ab initio mixed basis Car-Parrinello methods are discussed and applied to the investigation of the results of a recently performed STM-based experiment involving the adsorption of C60 molecules on the dimerized Si surface. We show that these methods are capable of providing the theoretical basis for this experiment and test the validity of the associated conjectures.

A mixed-basis all-electron formalism for the Car-Parrinello method is proposed to obtain the detailed understanding of the electronic states and dynamics of surface structure. A band structure calculation using this formalism is performed for the c(4 × 3) structure of C60 adsorbed on Si (100) surface and is compared with the experimental results.  相似文献   

3.
The applications of endohedral non-metallic fullerenes are limited by their low production rate. Recently, an explosive method developed in our group shows promise to prepare He@C60 at fairly high yield, but the mechanism of He inserting into C60 cage at explosive conditions was not clear. Here, ab initio molecular dynamics analysis has been used to simulate the collision between C60 molecules at high-temperature and high-pressure induced by explosion. The results show that defects formed on the fullerene cage by collidsion can effectively decrease the reaction barrier for the insertion of He into C60, and the self-healing capability of the defects was also observed.
Figure
Simulation of He@C60 formation by explosive method. Ab initio molecular dynamics has been used to simulate collision of C60. Defects caused by fullerenes reaction in explosion are shown by theory. The defects decrease the reaction barrier for He inserting into C60 cage. The method provides a promising technique to synthesized He@C60  相似文献   

4.
The reaction pathways of deprotonation versus nucleophilic substitution involving mPGES-2 enzyme catalysis were investigated by ab initio molecular orbital theory calculations for the reaction of methylthiolate with the endoperoxide core of PGH2 and by the combined quantum mechanical molecular mechanical methods. The calculations showed that deprotonation mechanism is energetically more favorable than the nucleophilic substitution pathway.  相似文献   

5.
The intermolecular interaction energies in central guanine triad of telomeric B-DNA were estimated based on ab initio quantum chemistry calculations on the MP2/aDZ level of theory. The source of structural information was molecular dynamics simulation of both canonical (AGGGTT) and oxidized (AG8oxoGGTT) telomere units. Our calculations demonstrate that significant stiffness of central triad occurs if 8oxoG is present. The origin of such feature is mainly due to the increase of stacking interactions of 8oxoG with neighbouring guanine molecules and stronger hydrogen bonding formation of 8oxoG with cytosine if compared with canonical guanine. Another interesting observation is the context independence of stacking interactions of 8oxoG. Unlike to 5′-G2/G3-3′ and 5′-G3/G4-3′ sequences which are energetically different, 5′-G2/8oxoG3-3′ and 5′-8oxoG3/G4-3′ sequences are almost iso-energetic.  相似文献   

6.
7.
Structural mechanisms of modulation of γ-aminobutyric acid (GABA) type A receptors by neurosteroids and hormones remain unclear. The thyroid hormone L-3,5,3’-triiodothyronine (T3) inhibits GABAA receptors at micromolar concentrations and has common features with neurosteroids such as allopregnanolone (ALLOP). Here we use functional experiments on α2β1γ2 GABAA receptors expressed in Xenopus oocytes to detect competitive interactions between T3 and an agonist (ivermectin, IVM) with a crystallographically determined binding site at subunit interfaces in the transmembrane domain of a homologous receptor (glutamate-gated chloride channel, GluCl). T3 and ALLOP also show competitive effects, supporting the presence of both a T3 and ALLOP binding site at one or more subunit interfaces. Molecular dynamics (MD) simulations over 200 ns are used to investigate the dynamics and energetics of T3 in the identified intersubunit sites. In these simulations, T3 molecules occupying all intersubunit sites (with the exception of the α-β interface) display numerous energetically favorable conformations with multiple hydrogen bonding partners, including previously implicated polar/acidic sidechains and a structurally conserved deformation in the M1 backbone.  相似文献   

8.
The geometry and energetics of a complex involving pyrazine and an acridine diacid cleft-like host designed by Rebek were investigated at several levels of theory. Molecular mechanics (using the Tripos and CHARMm force fields), semiempirical quantum chemical approaches (with the AM1 and PM3 methods), and an ab initio quantum chemical method (RHF/STO-3G) were used in the complete relaxation of the complex. The geometry of the complex optimized by the RHF/STO-3G method is in excellent agreement with a published X-ray structure; upon superposition, the rms deviation between the corresponding cleft heavy atoms is only 0.17 Å and the pyrazine molecules are superimposable. In addition, ab initio quantum chemical techniques were used to study the complex when the cleft is modeled by a pair of acetic acid molecules. All the calculations presented herein support a two-point interaction mechanism. The similarities found in the results for the full complex and the truncated model are consistent with a purely structural role for the acridine linker of the host. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
The relatively low capacity and capacity fade of spinel LiMn2O4 (LMO) limit its application as a cathode material for lithium‐ion batteries. Extending the potential window of LMO below 3 V to access double capacity would be fantastic but hard to be realized, as it will lead to fast capacity loss due to the serious Jahn–Teller distortion. Here using experiments combined with extensive ab initio calculations, it is proved that there is a cooperative effect among individual Jahn–Teller distortions of Mn3+O6 octahedrons in LMO, named as cooperative Jahn–Teller distortion (CJTD) in the text, which is the difficulty to access the capacity beyond one lithium intercalation. It is further proposed that the cationic disordering (excess Li at Mn sites and Li/Mn exchange) can intrinsically suppress the CJTD of Mn3+O6 octahedrons. The cationic disordering can break the symmetry of Mn3+ arrangements to disrupt the correlation of distortions arising from individual JT centers and prevent the Mn3+? O bonds distorting along one direction. Interestingly, with the suppressed CJTD, the original octahedral vacancies in spinel LMO are activated and can serve as extra Li‐ion storage sites to access the double capacity with good reversible cycling stability in microsized LMO.  相似文献   

10.
Molecular Mechanics-Generalized Born-Solvent Accessibility free energy calculations were used to analyse DNA binding affinity of 1-substituted carbazolyl-3,4-dihydro-β-carboline molecules. In this study, DNA structure with sequence of d(CGATCG)2 was used for simulations. 15 ns molecular dynamics simulations of the studied complexes were performed. The calculated free energy was compared with experimental antitumor activity (IC50). The predicted free energies decreased with the increase of IC50 values. It was shown that molecules 1–6 bind to DNA via intercalation mode, while molecules 7–9 bind through groove binding mode. Also, it was found that the vdW energy term (ΔEvdW) and the non-polar desolvation energy (ΔGSA) are the favorable terms for binding energy, whereas net electrostatic energies (ΔEele + ΔGGB) and conformational entropy energy (TΔS) are unfavorable ones.  相似文献   

11.
Human neutrophils treated with either Fc or with intact IgG and subsequently with fluorescein-labelled anti-IgG showed binding of the Fc or the IgG to the cell membrane. Neutrophils did not appear to bind F(ab′)2 fragments. Under suitable conditions, polar capping of fluorescence was seen. The data suggest receptors for Fc on the neutrophil membrane and mobility of these receptors.  相似文献   

12.
13.
The independent evolution of males and females is typically constrained by shared genetic variance. Despite substantial research, we still know little about the evolution of cross‐sex genetic covariance and its standardized measure, the cross‐sex genetic correlation (rMF). In particular, it is unclear if rMF tend to vary with age. We compiled 28 traits for which ontogenetic trends in rMF were documented. Decreases in rMF with age were observed significantly more often than increases and the mean effect size for the relationship between rMF and age was large and negative. This suggests that sexual dimorphism (SD) may typically evolve more readily for phenotypes expressed later in ontogeny and that evolutionary inferences related to the evolution of SD should be limited to the ontogenetic stage at which rMF was estimated. Knowledge about ontogenetic variation in rMF should help improving our understanding of evolutionary patterns related to SD and the resolution of intralocus sexual conflicts.  相似文献   

14.
The human prion protein binds Cu2+ ions in the octarepeat domain of the N-terminal tail up to full occupancy at pH 7.4. Recent experiments have shown that the HGGG octarepeat subdomain is responsible for holding the metal bound in a square-planar configuration. By using first principle ab initio molecular dynamics simulations of the Car–Parrinello type, the coordination of copper to the binding sites of the prion protein octarepeat region is investigated. Simulations are carried out for a number of structured binding sites. Results for the complexes Cu(HGGGW)(wat), Cu(HGGG), and [Cu(HGGG)]2 are presented. While the presence of a Trp residue and a water molecule does not seem to affect the nature of the copper coordination, high stability of the bond between copper and the amide nitrogen of deprotonated Gly residues is confirmed in all cases. For the more interesting [Cu(HGGG)]2 complex, a dynamically entangled arrangement of the two domains with exchange of amide nitrogen bonds between the two copper centers emerges, which is consistent with the short Cu–Cu distance observed in experiments at full copper occupancy.  相似文献   

15.
Hydration of protein cavities influences protein stability, dynamics, and function. Protein active sites usually contain water molecules that, upon ligand binding, are either displaced into bulk solvent or retained to mediate protein–ligand interactions. The contribution of water molecules to ligand binding must be accounted for to compute accurate values of binding affinities. This requires estimation of the extent of hydration of the binding site. However, it is often difficult to identify the water molecules involved in the binding process when ligands bind on the surface of a protein. Cytochrome P450cam is, therefore, an ideal model system because its substrate binds in a buried active site, displacing partially disordered solvent, and the protein is well characterized experimentally. We calculated the free energy differences for having five to eight water molecules in the active site cavity of the unliganded enzyme from molecular dynamics simulations by thermodynamic integration employing a three-stage perturbation scheme. The computed free energy differences between the hydration states are small (within 12 kJ mol−1) but distinct. Consistent with the crystallographic determination and studies employing hydrostatic pressure, we calculated that, although ten water molecules could in principle occupy the volume of the active site, occupation by five to six water molecules is thermodynamically most favorable. Proteins 32:381–396, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Ren Y  He J  Feng L  Liao X  Jin J  Li Y  Cao Y  Wan J  He H 《Bioorganic & medicinal chemistry》2011,19(24):7501-7506
Pyruvate dehydrogenase multienzyme complex (PDHc) E1 component plays a pivotal role in cellular metabolism to convert the product of glycolysis (pyruvate) to acetyl-CoA, and has been reported as a potential target for anti-microbial and herbicide. In present study, based on the thiamin diphosphate (ThDP) site, four novel hit compounds with high inhibitory activity against the PDHc-E1 from Escherichia coli were firstly designed by using structure-based molecular docking methods. As expected, among four compounds, the compound 3a is the best inhibitor by far, with IC50 value of 6.88 μM against PDHc-E1 from E. coli. To elucidate the interaction mechanism between the active site of PDHc-E1 and its inhibitor, the docking-based molecular dynamics simulation (MD) and MD-based ab initio fragment molecular orbital (FMO) calculations were also further performed. The positive results indicated that all modeling strategies presented in the current study most like to be an encouraging way in design of novel lead compounds with structural diversity for PDHc-E1 in the future.  相似文献   

17.

Background

Tumor necrosis factors, TNF and lymphotoxin-?? (LT), are cytokines that bind to two receptors, TNFR1 and TNFR2 (TNF-receptor 1 and 2) to trigger their signaling cascades. The exact mechanism of ligand-induced receptor activation is still unclear. It is generally assumed that three receptors bind to the homotrimeric ligand to trigger a signaling event. Recent evidence, though, has raised doubts if the ligand:receptor stoichiometry should indeed be 3:3 for ligand-induced cellular response. We used molecular dynamics simulations, elastic network models, as well as MM/PBSA to analyze this question.

Results

Applying MM/PBSA methodology to different stoichiometric complexes of human LT-(TNFR1)n=1,2,3 the free energy of binding in these complexes has been estimated by single-trajectory and separate-trajectory methods. Simulation studies rationalized the favorable binding energy in the LT-(TNFR1)1 complex, as evaluated from single-trajectory analysis to be an outcome of the interaction of cysteine-rich domain 4 (CRD4) and the ligand. Elastic network models (ENMs) help to associate the difference in the global fluctuation of the receptors in these complexes. Functionally relevant transformation associated with these complexes reveal the difference in the dynamics of the receptor when free and in complex with LT.

Conclusions

MM/PBSA predicts complexes with a ligand-receptor molar ratio of 3:1 and 3:2 to be energetically favorable. The high affinity associated with LT-(TNFR1)1 is due to the interaction between the CRD4 domain with LT. The global dynamics ascertained from ENMs have highlighted the differential dynamics of the receptor in different states.  相似文献   

18.
The binding geometry of fluorouracil/cucurbit[n]urils (CB[n]s) complexes with n?=?5–8 is investigated using the first-principles van der Waals density functional (vdW-DF) method, involving full geometry optimization. Such host-guest complexes are typically calculated using conventional DFT method, which significantly underestimates non-local dispersion forces (or vdW contributions) and therefore affects interactions between respected entities. We address here the role of vdW forces for the fluorouracil and CB[n]s molecules which can form directional hydrogen bonds with each other. It was found that the inclusion of dispersion interactions significantly affects the host-guest binding properties and the hydrogen bonding between the molecules provides the main binding mechanism, while results in the same geometries for the considered complexes. The 0.84 eV binding energy, for the thermodynamically favorable state, reveals that the interaction of fluorouracil with CB[n]s is an exothermic interaction and typical for strong hydrogen bonding. Furthermore, we have investigated the binding nature of these host-guest systems in aqueous solution with ab initio MD simulations adopting vdW-DF method. These findings afford evidence for the applicability of the vdW-DF approach and provide a realistic benchmark for the investigation of the host-guest complexes.
Figure
The binding geometry of fluorouracil/CB[n]s complexes is investigated using the first-principles vdW-DF method, involving full geometry optimization.  相似文献   

19.
Recent ab initio studies reported in the literature have challenged the mechanistic assignments made on the basis of volume of activation data [1,2]. In addition to that ab initio molecular orbital calculations on hydrated zinc(II)-ions were used to elucidate the general role of this ion in metalloproteins [3]. Due to our interest in both inorganic reaction mechanisms and enzymatic catalysis we started a systematic investigation of solvent exchange processes on divalent zinc-ion using density functional calculations. Our investigations cover aqua complexes of the general form [Zn(H2O)n]2+·mH20 with n=3-6 and m=0-2, where n and m represent the number of water molecules in the coordination and solvation sphere, respectively.The complexes [Zn(H2O)5]2+·2H2O and [Zn(H2O)4]2+·2H2O turnend out to be the most stable zinc complexes with seven and six water molecules, respectively. This implies that a heptacoordinated zinc(II) complex, where all water molecules are located in the co-ordination sphere, should be energetically highly unfavorable and that [Zn(H2O)6]2+ can quite readily push two coordinated water molecules into the solvation sphere. For the pentaqua complex [Zn(H2O)5]2+ only one water molecule is easily lost to the solvation sphere, which makes the [Zn(H2O)4]2+·H2O complex the most favorable in order to consider the limiting dissociative and associative water exchange process of hexacoordinated zinc(II). The dehydration and hydration energies using the most stable zinc(II) complexes [Zn(H2O)4]2+·2H2O, [Zn(H2O)5]2+·2H2O and [Zn(H2O)4]2+·H2O were calculated to be 24.1 and -21.0 kcal/mol, respectively.  相似文献   

20.
The high‐capacity cathode material V2O5·n H2O has attracted considerable attention for metal ion batteries due to the multielectron redox reaction during electrochemical processes. It has an expanded layer structure, which can host large ions or multivalent ions. However, structural instability and poor electronic and ionic conductivities greatly handicap its application. Here, in cell tests, self‐assembly V2O5·n H2O nanoflakes shows excellent electrochemical performance with either monovalent or multivalent cation intercalation. They are directly grown on a 3D conductive stainless steel mesh substrate via a simple and green hydrothermal method. Well‐layered nanoflakes are obtained after heat treatment at 300 °C (V2O5·0.3H2O). Nanoflakes with ultrathin flower petals deliver a stable capacity of 250 mA h g?1 in a Li‐ion cell, 110 mA h g?1 in a Na‐ion cell, and 80 mA h g?1 in an Al‐ion cell in their respective potential ranges (2.0–4.0 V for Li and Na‐ion batteries and 0.1–2.5 V for Al‐ion battery) after 100 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号