首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil water repellency (SWR) has a drastic impact on soil quality resulting in reduced infiltration, increased runoff, increased leaching, reduced plant growth, and increased soil erosion. One of the causes of SWR is hydrophobic fungal structures and exudates that change the soil–water relationship. The objective of this study was to determine whether SWR and infiltration could be manipulated through inoculation with fungi. The effect of fungi on SWR was investigated through inoculation of three fungal strains (hydrophilic – Fusarium proliferatum, chrono-amphiphilic – Trichoderma harzianum, and hydrophobic – Alternaria sp.) on a water repellent soil (WR-soil) and a wettable soil (W-soil). The change in SWR and infiltration was assessed by the water repellency index and cumulative infiltration respectively. F. proliferatum decreased the SWR on WR-soil and slightly increased SWR in W-soil, while Alternaria sp. increased SWR in both the W-soil and the WR-soil. Conversely T. harzianum increased the SWR in the W-soil and decreased the SWR in the WR-soil. All strains showed a decrease in infiltration in W-soil, while only the F. proliferatum and T. harzianum strain showed improvement in infiltration in the WR-soil. The ability of fungi to alter the SWR and enmesh soil particles results in changes to the infiltration dynamics in soil.  相似文献   

2.
Wet dune slacks: decline and new opportunities   总被引:2,自引:2,他引:0  
For a number of infiltrated coastal dune areas it is discussed to what extent artificial infiltration for the public water supply affects the quality of soil, groundwater and vegetation around pools and ponds, and what its effect is on the vegetation. Further, the results of investigations into the quality of vegetation, soil and water of a number of non-infiltrated, less affected dune areas are presented. The emphasis is on changes in groundwater flow pattern and on changes in the chemical composition of groundwater on the vegetation of wet dune slacks. Finally, recommendations for the management of wet dune slacks are presented. It can be concluded that the introduction of nutrients through infiltration causes an abundance of nitrophilous herbaceous vegetation along the banks of all infiltration ponds and most dune pools. Of the three investigated macro-nutrients, nitrate, potassium and phosphate, the latter shows the most significant correlation with the composition, cover and biomass of the vegetation. The moist biotopes of non-infiltrated dunes have largely disappeared because of desiccation, mainly as a consequence of water withdrawal, afforestation and coastal erosion. Relatively unaffected dune slacks can be found in the dunes on the Dutch Wadden Sea islands and a small number of dune areas on the mainland. In most areas, however, a serious decline in many rare species has been observed during the past twenty years because of eutrophic and acid precipitation, often in combination with disturbances of the groundwater regime.  相似文献   

3.
Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR.  相似文献   

4.
Extreme drought events have the potential to cause dramatic changes in ecosystem structure and function, but the controls upon ecosystem stability to drought remain poorly understood. Here we used model systems of two commonly occurring, temperate grassland communities to investigate the short-term interactive effects of a simulated 100-year summer drought event, soil nitrogen (N) availability and plant species diversity (low/high) on key ecosystem processes related to carbon (C) and N cycling. Whole ecosystem CO2 fluxes and leaching losses were recorded during drought and post-rewetting. Litter decomposition and C/N stocks in vegetation, soil and soil microbes were assessed 4 weeks after the end of drought. Experimental drought caused strong reductions in ecosystem respiration and net ecosystem CO2 exchange, but ecosystem fluxes recovered rapidly following rewetting irrespective of N and species diversity. As expected, root C stocks and litter decomposition were adversely affected by drought across all N and plant diversity treatments. In contrast, drought increased soil water retention, organic nutrient leaching losses and soil fertility. Drought responses of above-ground vegetation C stocks varied depending on plant diversity, with greater stability of above-ground vegetation C to drought in the high versus low diversity treatment. This positive effect of high plant diversity on above-ground vegetation C stability coincided with a decrease in the stability of microbial biomass C. Unlike species diversity, soil N availability had limited effects on the stability of ecosystem processes to extreme drought. Overall, our findings indicate that extreme drought events promote post-drought soil nutrient retention and soil fertility, with cascading effects on ecosystem C fixation rates. Data on above-ground ecosystem processes underline the importance of species diversity for grassland function in a changing environment. Furthermore, our results suggest that plant–soil interactions play a key role for the short-term stability of above-ground vegetation C storage to extreme drought events.  相似文献   

5.
The aim of this study was to analyse and quantify the effects of the canopy of the native-invasive N-fixer woody shrub Retama monosperma in the dune ecosystem, affecting the structure and function of the dune environment as well as plant community, in the context of the facilitation mechanism. Air temperature and relative humidity; soil pH, electric conductivity, organic matter (OM) and nutrient content; above and below-ground vegetation biomass, litter mass, species richness and Shannon diversity were determined and compared from sampling plots below the R. monosperma canopy and in canopy gaps within a coastal dune system in SW Spain. The relationships between soil OM and nutrient contents and above and below-ground vegetation biomass, litter mass, species richness and Shannon diversity were also assessed. A predominance of positive interactions was confirmed. The canopy of R. monosperma ameliorated temperature extremes beneath, and soil OM and nutrient concentrations were increased by 188–466%, compared to those found in gaps. Plant biomass increased by 442% beneath the canopy and was composed almost exclusively of herbaceous annuals. Plant diversity was not affected. Plant communities were clearly structured as fertility islands, distributed in an environmentally stressful dune matrix characterized by scarce vegetation cover and low biomass.  相似文献   

6.
Sea‐level rise will alter the hydrology of terrestrial coastal ecosystems. As such, it becomes increasingly important to decipher the present role of ocean water in coastal ecosystems in order to assess the coming effects of sea‐level rise scenarios. Sand dunes occur at the interface of land and sea. Traditionally, they are conceived as freshwater environments with rain and ground water as the only water sources available to vegetation. This study investigates the possibility of ocean water influx to dune soils and its effect on the physiology of sand dune vegetation. Stable isotopes are used to trace the path of ocean water from the soil to the vegetation. Soil salinity, water content and δ18O values are measured concurrently with stem water and leaf tissue of eight species during the wet and dry season and from areas proximal and distal to the ocean. Our results indicate the dune ecosystem is a mixed freshwater and marine water system characterized by oceanic influence on dune hydrology that is spatially heterogeneous and fluctuates temporally. Ocean water influx to soil occurs via salt spray in areas 5–12 m from the ocean during dry season. Accordingly, vegetation nearest to the sea demonstrate a plastic response to ocean water deposition including elevated integrated water use efficiency (δ13Cleaf) and uptake of ocean water that comprised up to 52% of xylem water. We suggest physiological plasticity in response to periodic ocean water influx may be a functional characteristic common to species on the leading edge of diverse coastal habitats and an important feature that should be included in modeling coastal ecosystems. Rising sea level would likely cause a repercussive landward shift of dune species in response to encroaching maritime influences. However, human development would restrict this process, potentially causing the demise of dune systems and the protection from land erosion they provide.  相似文献   

7.
Recruitment limitation may limit the ability of sites to regenerate after disturbances such as weed invasion and weed management. We investigated seed bank constraints and dispersal limitation in coastal dune communities on the east coast of Australia. The ability of sites to regenerate naturally following weed removal was assessed in coastal dune communities invaded by the invasive alien, bitou bush (Chrysanthemoides monilifera subsp. rotundata). To investigate recruitment limitation, seed banks and vegetation of invaded, native, intensively managed (selective application of herbicide and some re-vegetation) and extensively managed (large-scale, non-selective herbicide application) sites were compared. We investigated the dispersal mechanisms of species in the seed bank and vegetation to determine if communities might be dispersal-limited, i.e. contain significant numbers of species with only short-distance dispersal capabilities. Species richness and composition of soil seed banks differed from the vegetation in foredunes and hinddunes. Invasion depleted seed banks further. About half of the species had short-distance dispersal mechanisms indicating the potential for dispersal limitation. Secondary weed invasion following management was evident although alien species occurred in both seed banks and vegetation. Our results indicated that coastal dune communities suffer recruitment limitation. Native, managed and invaded dune communities appear to be both seed bank and dispersal-limited although management and invasion exacerbates recruitment. Regeneration of coastal dune communities will require active reintroduction of species, particularly those with short-distance dispersal mechanisms.  相似文献   

8.
Invasive nitrogen-fixing plants drive vegetation dynamics and may cause irreversible changes in nutrient-limited ecosystems through increased soil resources. We studied how soil conditioning by the invasive alien Lupinus nootkatensis affected the seedling growth of co-occurring native plant species in coastal dunes, and whether responses to lupin-conditioned soil could be explained by fertilisation effects interacting with specific ecological strategies of the native dune species. Seedling performance of dune species was compared in a greenhouse experiment using field-collected soil from within or outside coastal lupin stands. In associated experiments, we quantified the response to nutrient supply of each species and tested how addition of specific nutrients affected growth of the native grass Festuca arundinacea in control and lupin-conditioned soil. We found that lupin-conditioned soil increased seedling biomass in 30 out of 32 native species; the conditioned soil also had a positive effect on seedling biomass of the invasive lupin itself. Increased phosphorus mobilisation by lupins was the major factor driving these positive seedling responses, based both on growth responses to addition of specific elements and analyses of plant available soil nutrients. There were large differences in growth responses to lupin-conditioned soil among species, but they were unrelated to selected autecological indicators or plant strategies. We conclude that Lupinus nootkatensis removes the phosphorus limitation for growth of native plants in coastal dunes, and that it increases cycling of other nutrients, promoting the growth of its own seedlings and a wide range of dune species. Finally, our study indicates that there are no negative soil legacies that prevent re-establishment of native plant species after removal of lupins.  相似文献   

9.
Earth system models associate the ongoing global warming with increasing frequency and intensity of extreme events such as droughts and heat waves. The carbon balance of soils may be more sensitive to the impact of such extremes than to homogeneously distributed changes in soil temperature (Ts) or soil water content (θs). One parameter influenced by more pronounced drying/rewetting cycles or increases in Ts is the wettability of soils. Results from laboratory and field studies showed that low θs, particularly in combination with high Ts can increase soil water repellency (SWR). Recent studies have provided evidence that the stability of soil organic matter (SOM) against microbial decomposition is substantially enhanced in water repellent soils. This review hypothesizes that SWR is an important SOM stabilization mechanism that could become more important because of the increase in extreme events. We discuss wettability‐induced changes in soil moisture distribution and in soil aggregate turnover as the main mechanisms explaining the reduced mineralization of SOM with increasing SWR. The creation of preferential flow paths and subsequent uneven penetration of rainwater may cause a long‐term reduction of soil water availability, affecting both microorganisms and plants. We conclude that climate change‐induced SWR may intensify the effects of climatic drought and thus affects ecosystem processes such as SOM decomposition and plant productivity, as well as changes in vegetation and microbial community structure. Future research on biosphere–climate interactions should consider the effects of increasing SWR on soil moisture and subsequently on both microbial activity and plant productivity, which ultimately determine the overall carbon balance.  相似文献   

10.
Coastal sand dune ecosystems are subjected to many stress and disturbance factors that are particularly high in the foredunes compared to the backdunes. Although a few studies have been conducted on eastern coastline sand dunes of South Africa, none have examined the relationship between aspect and slope on vegetation composition and soil properties of coastal forest backdunes. Vegetation and soil sampling were conducted in 11 transects, each with four plots measuring 10 × 10 m, located on the seaward and landward sides and on middle and lower slopes of backdunes of Bathurst coastal forest. A total of 39 species were identified, of which 23 were trees and shrubs, thirteen were forbs and three were grasses. The data show that both aspect and slope had limited influence on vegetation community assemblage and soil properties, but had significant effects on individual species distribution. There was a grass‐dominated community on the middle slope and a tree‐ and shrub‐ dominated community on the lower slope. These two plant communities act as the required coastal forest ecosystem engineer driving variability in soil properties between the slopes, the most prominent being high soil nutrients and moisture in the lower slopes compared to the middle slopes.  相似文献   

11.

Background and Aims

Soil water repellency (SWR, i.e. the reduced affinity for water due to the presence of hydrophobic coatings on soil particles) has relevant hydrological implications on the rate of water infiltration, surface runoff, and overland flow. Here, we test how SWR varies along a 2490 m altitudinal gradient encompassing six ecosystems including Mediterranean, Temperate, and Alpine vegetation types.

Methods

Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was quantified in 80 soil samples collected for 16 different elevations. Soil quality was assessed by measuring soil texture, pH, organic carbon, salinity, and nutrient availability.

Results

SWR showed a unimodal pattern along the 2490 m transect, peaking at intermediate elevations. Unexpectedly, SWR was the highest under broad-leaf deciduous forests, and the lowest under evergreen, sclerophyllous Mediterranean vegetation types. The soil organic carbon content, and the pH were the main determinants of water repellency, showing respectively a positive, and a negative correlation with the SWR. In contrast, soil texture and salinity resulted unrelated to the SWR.

Conclusions

With this study we demonstrated a linkage between SWR, vegetation type and soil pH and organic carbon content along the elevation gradient. Further studies are needed to explicitly evaluate the impact SRW on erosion risk at catchment scale in the context of climatic change.
  相似文献   

12.
The tropical coastal dunes in central Gulf of Mexico have been stabilizing over the last decades resulting in reduced substrate mobility, and promoting primary succession. We describe changes in species richness and diversity in dune vegetation during 20?years. Our questions: (a) Do species richness and diversity increase over time as predicted by models of ecological succession or do they show a hump-backed manner similar to the observations in temperate coastal dunes?, (b) What is the interaction between vegetation cover and diversity and species richness?, (c) Is there a relationship between species diversity and succession rate and does succession rate change over time?, and (d) How do plant functional types change during succession? In order to answer these questions, we set 140 4?×?4?m permanent plots in a mobile dune area and monitored vegetation cover and species richness from 1991 to 2011. In time, diversity increased in a logistic manner toward an asymptotic value once vegetation cover surpassed 60?%. Species richness increased in a humped-back shape, also reaching a maximum peak at 60?% vegetation cover. The succession rate of diversity was measured by the Euclidean distance, and showed a significant humped-back relation, meaning that it was slower in early and late successional stages. The study supports the intermediate disturbance theory. The conservation of coastal dunes vegetation should focus on all, species-poor and species-rich habitats that help to maintain the ecological integrity of these ecosystems. The understanding of community dynamics and diversity patterns becomes an essential component of coastal dune management and conservation.  相似文献   

13.
在荒漠生态系统中,水分是植物生长和植被动态的一个限制因子。来自深层土壤或地下水相对稳定的水分对于干旱条件下植物的生存至关重要。在荒漠生态系统中,保护和恢复濒危植物的根本在于理解它们的水分利用策略,例如蒙古高原的沙冬青(Ammopiptanthus mongolicus)。本 论文通过稳定氢、氧同位素技术研究了沙冬青和与其伴生的两种灌木黑沙蒿(Artemisiaordosica)和旱蒿(Artemisiaxerophytica)的 主要水分来源;利用IsoSource模型计算了不同水分来源对每个物种的贡献,并通过比较3种灌木叶片δ 13C值和和其根系分布探讨了3种 灌木的长期水分利用策略。结果表明,沙冬青依赖地下水和150–200 cm 深层土壤水,前者几乎贡献其水源的一半。黑沙蒿主要利用150–200 cm 深 层土壤水,但是夏季和秋季也利用100 cm以内的浅层土壤水。旱蒿主要利用150–200 cm深层土壤水和地下水,后者对其总水源的贡献率 大约为30%–60%。3种灌木具有双型根系或深根系,这些根系特征与其水分来源一致。常绿植物沙冬青的叶片δ 13C值高于两种落叶蒿属灌木,这可能使其在适应荒漠生态系统中具有优势。因此,地下水是干旱年份蒙古高原濒危灌木沙冬青的一个主要水源,而且沙冬青和两种蒿属灌木竞争深层土壤水和地下水。  相似文献   

14.
Alien species can represent a threat to several ecosystems because they can alter species relationships and ecosystem function. In Italy, Acacia saligna is a major invader and it forms dense stands in coastal environments. We analyze the impact of A. saligna in Italian Mediterranean dune systems. We randomly sampled coastal dune vegetation and investigated its floristic composition with ordination techniques. We compared species richness in invaded and non-invaded plots with rarefaction curves and analyzed the frequency of focal and ruderal species. A. saligna invaded Mediterranean scrub (habitats 2250* and 2260) and coastal Pinus dune wood (habitat 2270*) and it is particularly prevalent in sunny areas of habitat 2270*. We observed an increase in ruderal species and a decrease in focal species in the invaded plots of habitat 2270*. We suggest that more open and disturbed areas are more prone to A. saligna invasion.  相似文献   

15.
Fine root growth in natural vegetation is difficult to predict due to its regulation by soil and plant factors. Field studies in arid ecosystems show a variety of root responses to soil resources and to plant aboveground phenology that sometimes differ from root responses predicted by controlled experiments. There is a pressing need to cover a greater diversity of plant species and ecological scenarios in field studies. In this paper, we have studied fine roots of Prosopis flexuosa trees living with or without access to phreatic water in an inter-dune valley and a dune flank, respectively, in the Central Monte Desert, Argentina. We have described fine root growth over time and at different depths by rhizotron observations and soil core auger samples in relation to soil water and nutrients, tree crown phenology, plant water and nutrient status. We have found that surface soil moisture from rainfall is the variable that best predicts seasonal topsoil fine root growth. Access to groundwater advanced leaf sprouting with respect to rainfall, but did not advance root growth that stayed linked to rainfall in valley and dune flank trees. Trees without access to phreatic water produced deeper and thicker or denser roots, which is consistent with the poor soil resource content of dunes. Variations in rainfall dynamics due to global climate change may have a particular impact on fine roots and ecosystem processes such as biogeochemistry and carbon budget in dune flank trees as well as in valley trees.  相似文献   

16.
The sand dune habitats found on barrier islands and other coastal areas support a dynamic plant community while protecting areas further inland from waves and wind. Foredune, interdune, and backdune habitats common to most coastal dunes have very different vegetation, likely because of the interplay among plant succession, exposure, disturbance, and resource availability. However, surprisingly few long-term data are available describing dune vegetation patterns. A nine-year census of 294 plots on St. George Island, Florida suggests that the major climatic drivers of vegetation patterns vary with habitat. Community structure is correlated with the elevation, soil moisture, and percent soil ash of each 1 m2 plot. Major storms reduce species richness in all three habitats. Principle coordinate analysis suggests that changes in the plant communities through time are caused by climatic events: changes in foredune vegetation are correlated with temperature and summer precipitation, interdune vegetation with storm surge, and backdune vegetation with precipitation and storm surge. We suggest that the plant communities in foredune, interdune, and backdune habitats tend to undergo succession toward particular compositions of species, with climatic disturbances pushing the communities away from these more deterministic trajectories.  相似文献   

17.
Coastal sand dunes support various ecosystem services, including storm protection and tourism. Restoration programs are often critical to preserve this ecosystem due to its fragility and high degree of degradation. Dune restoration still suffers from a general lack of knowledge of the ecological processes controlling tropical dune communities. We investigated if facilitation can increase restoration success by assisting plant survival in a Brazilian coastal dune degraded by buggies at the Environmental Protection Area of Jenipabu, RN, Brazil. We performed two field experiments on dune crest sites degraded by buggies. The first experiment tested how the presence of established vegetation and coconut mesh, mimicking soil‐stabilizing effect of vegetation, facilitates seedling survival and establishment of the early successional dominant dune plant Canavalia maritima (Fabaceae). The second experiment tested if coconut mesh and initial irrigation would allow the establishment of C. maritima outside the vegetation, using both seeds and transplants. We found that the presence of established vegetation positively affected seedling survival. Application of mesh positively affected microclimatic conditions and slightly increased survival, but only for seeds. Initial irrigation only had a small effect on transplanted seedlings survival. Nevertheless, there was extreme seedling mortality in the experiment in particular from sand burial. We conclude that restoration of these dune crests is very difficult. Facilitation by vegetation can reduce plant mortality by sand burial and desiccation, but successful restoration is likely to require a major effort involving a very high number of seedlings or seeds.  相似文献   

18.
The biogeochemical properties of soils drive ecosystem function and vegetation dynamics, and hence soil restoration after mining should aim to reinstate the soil properties and hydrological dynamics of remnant ecosystems. The aim of this study is to assess soil structure in two vegetation types in an arid ecosystem, and to understand how these soil properties compare to a reconstructed soil profile after mining. In an arid ecosystem in southeast Australia, soil samples were collected at five depths (to 105 cm) from remnant woodland and shrubland sites, and sites either disturbed or totally reconstructed after mining. We assessed soil physico‐chemical properties and microbial activity. Soils in the remnant arid ecosystem had coarse‐textured topsoils that overlay clay horizons, which allows water to infiltrate and avoid evaporation, but also slows drainage to deeper horizons. Conversely, reconstructed soils had high sand content at subsoil horizons and high bulk density and compaction at surface layers (0–20 cm). Reconstructed soils had topsoils with higher pH and electrical conductivity. The reconstructed soils did not show increased microbial activity with time since restoration. Overall, the reconstructed soil horizons were not organized in a way that allowed rainfall infiltration and water storage, as is imperative to arid‐zone ecosystem function. Future restoration efforts in arid ecosystems should focus on increasing sand content of soils near the surface, to reduce evaporative water loss and improve soil quality and plant health.  相似文献   

19.
The planting of sand‐binding vegetation in the Shapotou region at the southeastern edge of the Tengger Desert began in 1956. Over the past 46 years, it has not only insured the smooth operation of the Baotou–Lanzhou railway in the sand dune section but has also played an important role in the restoration of the local eco‐environment; therefore, it is viewed as a successful model for desertification control and ecological restoration along the transport line in the arid desert region of China. Long‐term monitoring and focused research show that within 4–5 years of establishment of sand‐binding vegetation, the physical surface structure of the sand dunes stabilized, and inorganic soil crusts formed by atmospheric dust gradually turned into microbiotic crusts. Among the organisms comprising these crusts are cryptogams such as desert algae and mosses. In the 46 years since establishing sand‐binding vegetation, some 24 algal species occurred in the crusts. However, only five moss species were identified, which was fewer than the species number in the crust of naturally fixed sand dunes. Other results of the planting were that near‐surface wind velocity in the 46‐year‐old vegetation area was reduced by 54.2% compared with that in the moving sand area; soil organic matter increased from 0.06% in moving sand dunes to 1.34% in the 46‐year‐old vegetation area; the main nutrients N, P, K, etc., in the desert ecosystem increased; soil physicochemical properties improved; and soil‐forming processes occurred in the dune surface layer. Overall, establishment of sand‐binding vegetation significantly impacted soil water cycles, creating favorable conditions for colonization by many herbaceous species. These herbaceous species, in turn, facilitated the colonization and persistence of birds, insects, soil animals, and desert animals. Forty‐six years later, some 28 bird species and 50 insect species were identified in the vegetated dune field. Thus, establishment of a relatively simple community of sand‐binding species led to the transformation of the relatively barren dune environment into a desert ecosystem with complex structure, composition, and function. This restoration effort shows the potential for short‐term manipulation of environmental variables (i.e., plant cover via artificial vegetation establishment) to begin the long‐term process of ecological restoration, particularly in arid climates, and demonstrates several techniques that can be used to scientifically monitor progress in large‐scale restoration projects.  相似文献   

20.
In this contribution, we report on patterns of spider species richness in large complexes of coastal grey dunes of northern France, Belgium and the Netherlands. Since grey dunes are considered a priority in Annex I of the EU Habitat Directive, conservation needs attention. Spider diversity is determined by the amount of nutrients available in grey dune patches. The richness of specific xerotherm species, however, is dependent only on the distance of the patches to the sea. Earlier investigation revealed that the richness of these species depends on the patch size. Since coastal dune management aims to focus on the conservation of dune-specific and xerotherm species, patch enlargement and grey dune restoration should receive priority attention and not internal grey dune management. Total spider richness and diversity is hence related to the functioning of the grey dune ecosystem. Eolic dynamics act as typical disturbance factors and are negatively related to species richness, as a result of the low but significant covariation with nutrient availability. The intermediate disturbance hypothesis is not applicable for spider diversity in grey dunes, possibly due to the narrow range of investigated environmental variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号