首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trait combinations that lead to a higher efficiency in resource utilization are important drivers of divergent natural selection and adaptive radiation. However, variation in environmental features might constrain foraging in complex ways and therefore impede the exploitation of critical resources. We tested the effect of water transparency on intra-population divergence in morphology of Eurasian perch (Perca fluviatilis) across seven lakes in central Sweden. Morphological divergence between near-shore littoral and open-water pelagic perch substantially increased with increasing water transparency. Reliance on littoral resources increased strongly with increasing water transparency in littoral populations, whereas littoral reliance was not affected by water transparency in pelagic populations. Despite the similar reliance on pelagic resources in pelagic populations along the water transparency gradient, the utilization of particular pelagic prey items differed with variation in water transparency in pelagic populations. Pelagic perch utilized cladocerans in lakes with high water transparency and copepods in lakes with low water transparency. We suggest that under impaired visual conditions low utilization of littoral resources by littoral perch and utilization of evasive copepods by pelagic perch may lead to changes in morphology. Our findings indicate that visual conditions can affect population divergence in predator populations through their effects on resource utilization.  相似文献   

2.
Prey preference of top predators and energy flow across habitat boundaries are of fundamental importance for structure and function of aquatic and terrestrial ecosystems, as they may have strong effects on production, species diversity, and food‐web stability. In lakes, littoral and pelagic food‐web compartments are typically coupled and controlled by generalist fish top predators. However, the extent and determinants of such coupling remains a topical area of ecological research and is largely unknown in oligotrophic high‐latitude lakes. We analyzed food‐web structure and resource use by a generalist top predator, the Arctic charr Salvelinus alpinus (L.), in 17 oligotrophic subarctic lakes covering a marked gradient in size (0.5–1084 km2) and fish species richness (2–13 species). We expected top predators to shift from littoral to pelagic energy sources with increasing lake size, as the availability of pelagic prey resources and the competition for littoral prey are both likely to be higher in large lakes with multispecies fish communities. We also expected top predators to occupy a higher trophic position in lakes with greater fish species richness due to potential substitution of intermediate consumers (prey fish) and increased piscivory by top predators. Based on stable carbon and nitrogen isotope analyses, the mean reliance of Arctic charr on littoral energy sources showed a significant negative relationship with lake surface area, whereas the mean trophic position of Arctic charr, reflecting the lake food‐chain length, increased with fish species richness. These results were supported by stomach contents data demonstrating a shift of Arctic charr from an invertebrate‐dominated diet to piscivory on pelagic fish. Our study highlights that, because they determine the main energy source (littoral vs. pelagic) and the trophic position of generalist top predators, ecosystem size and fish diversity are particularly important factors influencing function and structure of food webs in high‐latitude lakes.  相似文献   

3.
While phenotypic responses to direct species interactions are well studied, we know little about the consequences of indirect interactions for phenotypic divergence. In this study we used lakes with and without the zebra mussel to investigate effects of indirect trophic interactions on phenotypic divergence between littoral and pelagic perch. We found a greater phenotypic divergence between littoral and pelagic individuals in lakes with zebra mussels and propose a mussel-mediated increase in pelagic and benthic resource availability as a major factor underlying this divergence. Lakes with zebra mussels contained higher densities of large plankton taxa and large invertebrates. We suggest that this augmented resource availability improved perch foraging opportunities in both the littoral and pelagic zones. Perch in both habitats could hence express a more specialized foraging morphology, leading to an increased divergence of perch forms in lakes with zebra mussels. As perch do not prey on mussels directly, we conclude that the increased divergence results from indirect interactions with the mussels. Our results hence suggest that species at lower food web levels can indirectly affect phenotypic divergence in species at the top of the food chain.  相似文献   

4.
Trade-offs in foraging efficiency leading to divergent natural selection between and within populations exploiting different resources are thought to be a primary cause of trophic polymorphism. In this study we focused on the trade-offs in foraging efficiency and growth in a polymorphic perch population. Specifically, we related habitat-specific growth and diet of perch to perch morphology. In a subsequent laboratory study we experimentally tested the trade-off by testing the efficiency of perch with different morphology feeding on pelagic ( Daphnia sp., Chaoborus sp.) and littoral (mayfly larvae) food resources. The feeding performance was tested in different physical environments to see if we could predict growth patterns in the field based on foraging rate and behavior of perch.
In the field study, we found that the perch from the littoral and the pelagic zones differed in both morphology and diet. Within the littoral zone the deeper-bodied individuals grew faster compared to the more streamlined individuals, whereas the opposite pattern was found in the pelagic zone. In the aquarium experiments, perch from the littoral zone had higher capture rates on the pelagic prey types in vegetation trials and on mayfly larvae in both open water and vegetation trials. The pelagic perch had higher capture rates on the pelagic prey types in open water trials. The littoral perch had lower search velocity than the pelagic perch in open water trials whereas the opposite pattern was found in vegetation trials. The attack velocity of the pelagic perch was also higher than that of the littoral perch independent of vegetation structure. Our results suggest that there is a functional trade-off between performance in alternate habitats and general body form in perch. Such trade-offs may promote divergent natural selection and could be the mechanism that give rise to and upholds the pattern in the field.  相似文献   

5.
Although intraspecific variability is now widely recognized as affecting evolutionary and ecological processes, our knowledge on the importance of intraspecific variability within invasive species is still limited. This is despite the fact that understanding the linkage between within‐population morphological divergences and the use of different trophic or spatial resources (i.e., resource polymorphism) can help to better predict their ecological impacts on recipient ecosystems. Here, we quantified the extent of resource polymorphism within populations of a worldwide invasive crayfish species, Procambarus clarkii, in 16 lake populations by comparing their trophic (estimated using stable isotope analyses) and morphological characteristics between individuals from the littoral and pelagic habitats. Our results first demonstrated that crayfish occured in both littoral and pelagic habitats of seven lakes and that the use of pelagic habitat was associated with increased abundance of littoral crayfish. We then found morphological (i.e., body and chelae shapes) and trophic divergence (i.e., reliance on littoral carbon) among individuals from littoral and pelagic habitats, highlighting the existence of resource polymorphism in invasive populations. There was no genetic differentiation between individuals from the two habitats, implying that this resource polymorphism was stable (i.e., high gene flow between individuals). Finally, we demonstrated that a divergent adaptive process was responsible for the morphological divergence in body and chela shapes between habitats while difference in littoral reliance neutrally evolved under genetic drift. These findings demonstrated that invasive P. clarkii can display strong within‐population phenotypic variability in recent populations, and this could lead to contrasting ecological impacts between littoral and pelagic individuals.  相似文献   

6.
7.
La Guajira is an exploited tropical upwelling ecosystem in the Colombian Caribbean coast. A trophic model of 27 functional groups was constructed using the ECOPATH 5.0 Beta software to integrate the available information on the ecosystem. The model allowed a comparison with other trophic flow models of upwelling ecosystems. Total system biomass (68 t/km2/year), net system production (1,248.5 t/km2/year), and total system throughput (3,275 t/km2/year) make La Guajira moderate when compared with other systems. The largest amount of energy throughput is achieved from trophic level I to II (68.93 %), although an important proportion of the total flow originates from detritus (32 %). The production/respiration ratio exceeds 1, suggesting that La Guajira is an immature ecosystem and is in development, as determined by its low ascendency (33.7 %) and high development capacity (66.3 %), similar to other upwellings that have values of ascendency between 20 % and 35 %. Although the basic input data were good and covered 1995 to 2000, appropriate information is still not available on some trophic groups such as biomass (for phytoplankton, invertebrates, catfishes and pelagic predator fishes), secondary production data (invertebrates, pelagic predator fishes, and small pelagic fishes), and seabird and mammal populations, which are top trophic levels and an essential part of upwelling ecosystems.  相似文献   

8.
The influence of small-scale differences in resource origin on trophic position estimates was evaluated with the stable isotopes method. Perch Perca fluviatilis , a widespread freshwater predator, was used as a model organism. High individual variability was found in the contribution of benthic resources to the isotopic signatures of perch caught in the littoral zone, suggesting substantial within-habitat individual specialization. Small-scale resource origin and δ13C enrichment should be accounted for to avoid misleading estimates of both the absolute values and the ontogenetic trajectories of trophic position. A conceptual framework using end-member pathways is proposed to estimate trophic position with the stable isotope technique, particularly when marked ontogenetic niche shifts are expected.  相似文献   

9.
We measured bacterioplankton (phylotypes detected by fluorescent in situ hybridisation, morphometric forms, abundance and production) in samples collected in summer in the littoral and pelagic zones of 10 subtropical shallow lakes of contrasting area (from 13 to 80,800 ha). Compared to the pelagic zones, the littoral zones were overall characterised by higher macrophyte dominance and lower concentrations of total phosphorus and alkalinity and higher concentrations of dissolved organic carbon (DOC) and humic substances. Similarities of bacterial production and biomass turnover and density of active phylotypes and morphotype proportions were related to similarities in a set of environmental variables (including nutrients, humic substances content, predator density and phytoplankton biomass), and some additionally to lake area. Horizontal heterogeneity in bacterioplankton variables (littoral versus pelagic) increased with lake area. Bacterioplankton biomass and production tended to be lower in the littoral zone than in the pelagic zone despite higher concentrations of DOC and humic substances. A likely explanation is higher predation on bacterioplankton in the littoral zone, although allelophatic effects exerted by macrophytes cannot be excluded. Our results indicate that organic cycling via bacterioplankton may be less efficient in the littoral zone than in the pelagic zone of shallow lakes.  相似文献   

10.
Predators should stabilize food webs because they can move between spatially separate habitats. However, predators adapted to forage on local resources may have a reduced ability to couple habitats. Here, we show clear asymmetry in the ability to couple habitats by Eurasian perch—a common polymorphic predator in European lakes. We sampled perch from two spatially separate habitats—pelagic and littoral zones—in Lake Erken, Sweden. Littoral perch showed stronger individual specialization, but they also used resources from the pelagic zone, indicating their ability to couple habitats. In contrast, pelagic perch showed weaker individual specialization but near complete reliance on pelagic resources, indicating their preference to one habitat. This asymmetry in the habitat coupling ability of perch challenges the expectation that, in general, predators should stabilize spatially separated food webs. Our results suggest that habitat coupling might be constrained by morphological adaptations, which in this case were not related to genetic differentiation but were more likely related to differences in individual specialization.  相似文献   

11.
Organisms with complex life cycles are characterized by a metamorphosis that allows for a major habitat shift and the exploitation of alternative resources. However, metamorphosis can be bypassed in some species through a process called paedomorphosis, resulting in the retention of larval traits at the adult stage and is considered important at both micro‐ and macroevolutionary scales. In facultatively paedomorphic populations of newts, some individuals retain gills and a fully aquatic life at the adult stage (paedomorphs), while others undergo complete metamorphosis (metamorphs), allowing for a terrestrial life‐stage. Because facultative paedomorphosis affects trophic structures and feeding mechanism of newts, one hypothesis is that it may be maintained as a trophic polymorphism, with the advantage to lessen intraspecific competition during the shared aquatic life‐stage. Here, we tested this hypothesis combining stomach content data with stable isotope techniques, using carbon and nitrogen stable isotopes, in facultatively paedomorphic alpine newts Ichthyosaura alpestris. Both stomach content and stable isotope analyses showed that paedomorphs had smaller trophic niches and were more reliant on pelagic resources, while metamorphs relied more on littoral resources, corresponding to a polyphenism along the littoral–pelagic axis and the extension of the population's trophic niche to otherwise ‘underused’ pelagic resources by paedomorphs. Interestingly, stable isotopes revealed that the trophic polyphenism was less marked in males than in females and potentially linked to sexual activity. Although paedomorphosis and metamorphosis are primarily seen as results of tradeoffs between the advantages of using aquatic versus terrestrial habitats, this study provides evidence that additional forces, such as intraspecific trophic niche differences between morphs and trophic niche expansion, may play an important role in the persistence of this dimorphism in heterogeneous environments. Moreover, the different patterns found in males and females show the importance of considering sex to understand the evolutionary ecology of trophic polymorphisms.  相似文献   

12.
According to assemblage theory, three factors regulate fish biogeography: restriction of dispersion, environmental restrictions and biotic interactions. The first two factors act on a regional scale and delimit the area of action of the third, which operates on a local scale. Salmonid introductions began in Patagonia in 1904, and this has led to a restructuring of trophic webs and an increase in the number of top predators. This situation allowed us to evaluate, in a natural setting, how communities are formed on different geographic scales. We studied two large basins in Patagonia, situated close to each other but with different assemblages of top predatory fish. We hypothesized that differences in the structuring of the top predator assemblages between and within the basins are due to 1) environmental factors and dispersion processes facilitated by connectivity on a regional scale; and 2) biotic interaction (internal dynamics) between native perch and salmonids, the former acting as a modulator of the top predator assemblages on a local scale. To test these hypotheses, we analysed the top predator assemblages of 16 lakes and one reservoir, as well as their environmental characteristics. We performed a cluster analysis and related the resulting assembly groups to environmental factors by means of a tree model. We also analysed fish diets, using a similarities test to study biotic interactions. On regional and local scales, water basin, degree of connectivity, area, temperature and Zoogeographic integrity coefficient (ZIC) were important factors in the structuring of top predator assemblages. On a local scale, creole perch modulates the salmonid populations through feeding and the consequent distribution of resources. Our work showed that the structure of top predator assemblages was determined by a combination of local and regional factors acting in synergy, as postulated by the assemblage theory.  相似文献   

13.
Natural populations often vary in their degree of ecological, morphological and genetic divergence. This variation can be arranged along an ecological speciation continuum of increasingly discrete variation, with high inter-individual variation at one end and well defined species in the other. In postglacial fishes, evolutionary divergence has commonly resulted in the co-occurrence of a pelagic and a benthic specialist. We studied three replicate lakes supporting sympatric pelagic and benthic European whitefish (Coregonus lavaretus (L.)) morphs in search for early signs of possible further divergence into more specialized niches. Using stomach content data (recent diet) and stable isotope analyses (time-integrated measure of trophic niche use), we observed a split in the trophic niche within the benthic whitefish morph, with individuals specializing on either littoral or profundal resources. This divergence in resource use was accompanied by small but significant differences in an adaptive morphological trait (gill raker number) and significant genetic differences between fish exploiting littoral and profundal habitats and foraging resources. The same pattern of parallel divergence was found in all three lakes, suggesting similar natural selection pressures driving and/or maintaining the divergence. The two levels of divergence (a clear and robust benthic – pelagic and a more subtle littoral – profundal divergence) observed in this study apparently represent different stages in the process of ecological speciation.  相似文献   

14.
研究利用保安湖沿岸带与敞水区两种生境中高营养级捕食者(达氏鲌与红鳍原鲌)的碳(δ13C)、氮(δ15N)稳定同位素数据,通过稳定同位素质量平衡混合模型、非度量多维尺度分析(NMDS)等方法,分析了两种生境中鲌类食物来源的差异.结果表明,两种生境中鲌类食物来源基本一致,且食物来源较为广泛,包括沿岸带饵料鱼类、敞水区饵料鱼...  相似文献   

15.
Top predator losses affect a wide array of ecological processes, and there is growing evidence that top predators are disproportionately vulnerable to environmental changes. Despite increasing recognition of the fundamental role that top predators play in structuring communities and ecosystems, it remains challenging to predict the consequences of predator extinctions in highly variable environments. Both biotic and abiotic drivers determine community structure, and manipulative experiments are necessary to disentangle the effects of predator loss from other co‐occurring environmental changes. To explore the consistency of top predator effects in ecological communities that experience high local environmental variability, we experimentally removed top predators from arid‐land stream pool mesocosms in southeastern Arizona, USA, and measured natural background environmental conditions. We inoculated mesocosms with aquatic invertebrates from local streams, removed the top predator Abedus herberti (Hemiptera: Belostomatidae) from half of the mesocosms as a treatment, and measured community divergence at the end of the summer dry season. We repeated the experiment in two consecutive years, which represented two very different biotic and abiotic environments. We found that some of the effects of top predator removal were consistent despite significant differences in environmental conditions, community composition, and colonist sources between years. As in other studies, top predator removal did not affect overall species richness or abundance in either year, and we observed inconsistent effects on community and trophic structure. However, top predator removal consistently affected large‐bodied species (those in the top 1% of the community body size distribution) in both years, increasing the abundance of mesopredators and decreasing the abundance of detritivores, even though the identity of these species varied between years. Our findings highlight the vulnerability of large taxa to top predator extirpations and suggest that the consistency of observed ecological patterns may be as important as their magnitude.  相似文献   

16.
Stable isotope analyses and derived population-level metrics were used to quantitatively analyse spatial and seasonal heterogeneity in the fish trophic dynamics in relation to environmental variables in Mwanza Gulf, Lake Victoria (Tanzania). The fish community in Lake Victoria, including the top predator Nile perch, is generally omnivorous with a heavy reliance on invertebrates. This is in contrast to findings based on stomach content analyses of Nile perch, which showed a stronger reliance on fish. We tested two hypotheses: (1) during the rainy seasons multiple carbon sources influence the food-web structure inside the Gulf, leading to increased carbon ranges and trophic diversity. (2) During dry periods, the food-web structure mainly relies on pelagic primary production, reducing carbon ranges and trophic diversity. Carbon sources indeed varied seasonally and spatially, affecting the fish community at the highest trophic levels. With the onset of rains, carbon sources became spatially highly differentiated with enriched δ13C values of fish in shallow water inside the Gulf and depleted δ13C values in open waters. Metrics associated with niche size correlated significantly with seasonally varying environmental variables, while δ13C ranges correlated with spatially varying environmental variables.  相似文献   

17.
The importance of spatial pattern in ecosystems has long been recognized. However, incorporating patchiness into our understanding of forces regulating ecosystems has proved challenging. We used a combination of continuously sampling moored sensors, complemented by shipboard sampling, to measure the temporal variation, abundance and vertical distribution of four trophic levels in Hawaii's near shore pelagic ecosystem. Using an analysis approach from trophic dynamics, we found that the frequency and intensity of spatial aggregations-rather than total biomass-in each step of a food chain involving phytoplankton, copepods, mesopelagic micronekton and spinner dolphins (Stenella longirostris) were the most significant predictors of variation in adjacent trophic levels. Patches of organisms had impacts disproportionate to the biomass of organisms within them. Our results are in accordance with resource limitation-mediated by patch dynamics-regulating structure at each trophic step in this ecosystem, as well as the foraging behaviour of the top predator. Because of their high degree of heterogeneity, ecosystem-level effects of patchiness such as this may be common in many pelagic marine systems.  相似文献   

18.
Coarse woody debris (CWD) represents a relatively stable habitat in many lakes with forested shorelines providing a living place for a wide range of species. The spatial complexity of CWD is recognized as an important factor promoting the abundance, diversity and productivity of littoral biota, mainly by providing shelters and moderating predator–prey interactions. However, little is as yet known on the response of different species to various levels of CWD complexity and the effects of the spatial arrangement of CWD on the connectivity between littoral populations. It is also unclear how CWD decay, which modifies the surface complexity of wood and the quality of food, affects the diversity of wood-associated species and trophic interactions. Further research is also needed to recognize the contribution of littoral wood to carbon sequestration and nutrient fluxes, considering factors affecting the CWD decay rate, such as wood species and environmental conditions. CWD resources are systematically depleted by shoreline development which leads to disruptions in the functioning of lake ecosystems. Attempts at restoring CWD habitat provided ambiguous effects on littoral species and therefore better understanding of the role of CWD in lake ecosystems is crucial to the development of successful restoration projects and effective management programmes.  相似文献   

19.
东太平洋中部中上层鲨鱼群落营养生态位分化   总被引:1,自引:0,他引:1  
鲨鱼在大洋生态系统中占据着重要的生态地位,其作为顶级捕食者,通过下行效应直接影响生态系统的稳定.稳定同位素技术是目前研究摄食生态学强有力的手段之一,可利用碳氮稳定同位素在食物网中的特性分别指示鲨鱼的食物来源和营养级.本研究选取8种130尾采集自东太平洋中部的中上层鲨鱼,应用稳定同位素绘制其种群生态位图谱,比较不同种群间的生态地位及资源分配方式上的差异.结果表明:不同鲨鱼种群碳、氮稳定同位素比值存在显著差异;8种鲨鱼在东太平洋生态系统中的营养级为4.3~5.4,大青鲨、尖吻鲭鲨与其他6种鲨鱼存在摄食隔离,表现出独特的营养生态地位.这些结果充分证明大洋性中上层鲨鱼并非生态系统的冗余种,其营养生态位的独特性不会被其他捕食者简单地替代和弥补.  相似文献   

20.
Habitat coupling is an ecosystem process whereby semi-discontinuous habitats are connected through the movement of energy and nutrients by chemical, physical or biological processes. One oft-cited example is that of littoral–pelagic coupling in lakes. Theory has argued that such habitat coupling may be critical to food web dynamics, yet there have been few empirical studies that have quantified ecological factors that affect the degree of habitat coupling in ecosystems. Specifically, the degree to which habitat coupling occurs across important physical gradients has largely been ignored. To address this, we investigate the degree of littoral habitat coupling (i.e. the degree to which a top predator lake trout, Salvelinus namaycush, derives energy from the littoral zone) along a gradient of lake shape, where lake shape modifies the relative quantity of coupled epilimnetic benthic and pelagic habitats within each lake. Herein we demonstrate that littoral habitat coupling is intensified in simple circular lakes compared to their reticulate counterparts in seven Canadian Shield lakes. Although the more reticulate lakes had larger areas of epilimnetic benthic habitat, littoral food sources comprised 11% compared to 24% of lake trout diet in reticulate and circular lakes, respectively. This heightened interaction in circular lakes also appears to translate into increased omnivory in more circular lakes compared to reticulate lakes such that lake trout of circular lakes have a significantly lower trophic position than lake trout of reticulate lakes (F1,5=6.71 p=0.05). These results suggest that it is the accessibility of littoral production via thermal refugia, and not the amount of littoral production, that determines the degree to which lake trout couple littoral and pelagic habitats in lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号