首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conversion of 2-phenylbenzimidazole using o-phenylenediamine and benzaldehyde can be improved significantly under β-cyclodextrin (β-CD). The density functional theory (DFT) method was applied to study the whole process. According to energy parameters (binding energy, deformation energy) and structural deformation, entry models and the reaction process can be pinpointed, with o-phenylenediamine embedding β-CD from a wide rim, and then benzaldehyde passing into the inclusion from the narrow rim. Subsequently, natural bonding orbital (NBO), Mulliken charge, frontier orbital, FuKui function and nuclear magnetic resonance (NMR) methods were employed to reveal the mechanism of electron transfer. The results illustrate that β-CD plays a catalytic role in synthesis reaction mechanism on the secondary side, improving the reactivity and selectivity of the process.
Graphical Abstract Density functional theory study of the effects of β-cyclodextrin in synthesis of 2-phenylbenzimidazole via benzaldehyde and o-phenylenediamine
  相似文献   

2.
3.
In order to understand the interaction between naratriptan and a fully hydrated bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-choline (POPC), we carried out molecular dynamics simulations. The simulations were performed considering neutral and protonated ionization states, starting from different initial conditions. At physiological pH, the protonated state of naratriptan is predominant. It is expected that neutral compounds could have larger membrane partition than charged compounds. However, for the specific case of triptans, it is difficult to study neutral species in membranes experimentally, making computer simulations an interesting tool. When the naratriptan molecules were originally placed in water, they partitioned between the bilayer/water interface and water phase, as has been described for similar compounds. From this condition, the drugs displayed low access to the hydrophobic environment, with no significant effects on bilayer organization. The molecules anchored in the interface, due mainly to the barrier function of the polar and oriented lipid heads. On the other hand, when placed inside the bilayer, both neutral and protonated naratriptan showed self-aggregation in the lipid tail environment. In particular, the protonated species exhibited a pore-like structure, dragging water through this environment.
Graphical Abstract Different behaviour of Naratriptan and Sumatriptan, when the drugs were originally placed in the lipid core
  相似文献   

4.
Herein we report a study of the switchable [3]rotaxane reported by Huang et al. (Appl Phys Lett 85(22):5391–5393, 1) that can be mounted to a surface to form a nanomechanical, linear, molecular motor. We demonstrate the application of semiempirical electronic structure theory to predict the average and instantaneous force generated by redox-induced ring shuttling. Detailed analysis of the geometric and electronic structure of the system reveals technical considerations essential to success of the approach. The force is found to be in the 100–200 pN range, consistent with published experimental estimates.
Graphical Abstract A single surface-mounted switchable rotaxane
  相似文献   

5.
6.
In this study, the doped defects in nitromethane crystals were investigated using first-principles calculations for the first time. We introduce dopant atoms in the interstitial sites of the nitromethane lattice, aiming to study the effects of element-doping on the structural properties, electronic properties, and sensitivity characteristics. The obtained results show that doped defects obviously affect the neighboring nitromethane molecules. The modification of electronic properties shows that the band gaps are significantly influenced by doped defects. Partial density of states and population analysis further reveal the mechanism for sensitivity control of nitromethane. It is shown that the new electronic states were introduced in the forbidden bands and the doped defects resulted in charge redistributions in the systems.
Graphical abstract The valence and conduction band edge positions as well as defect levels of pure and X-doped NM
  相似文献   

7.
A post-calculation correction is established for PM7 band gaps of transition-metal oxides. The correction is based on the charge on the metal cation of interest, as obtained from MOPAC PM7 calculations. Application of the correction reduces the average error in the PM7 band gap from ~3 eV to ~1 eV. The residual error after correction is shown to be uncorrelated to the Hartree–Fock method upon which PM7 is based.
Graphical Abstract Comparison between calculated band gaps and experimental band gaps for binary oxides. The orange crosses are for corrected PM7 band gaps. Blue squares are uncorrected values. The orange crosses fall closer to the diagonal dashed line, showing an overall improvement of the accuracy of calculated values
  相似文献   

8.
Unknown force-field parameters for metal organic beryllium complexes used in emitting and electron transporting layers of OLED structures are determined. These parameters can be used for the predictive atomistic simulations of the structure and properties of amorphous organic layers containing beryllium complexes. The parameters are found for the AMBER force field using a relaxed scan procedure and quantum-mechanical DFT calculations of potential energy curves for specific internal (angular) coordinates in a series of three Be complexes (Bebq2; Be(4-mpp)2; Bepp2). The obtained parameters are verified in calculations of some molecular and crystal structures available from either quantum-mechanical DFT calculations or experimental data.
Graphical Abstract Beryllium complexes in amorphous layers?
  相似文献   

9.
The solubility advantage (SA) of meloxicam cocrystalized with mono- and dicarboxylic acids was expressed in terms of equilibrium constants involving active pharmaceutical ingredient and coformer in aqueous solutions. It is argued that SA can be quantified by concentration of pairs formed in water. The pH and concentration of dissolved components is included explicitly in the model. The alternative behavior of mono- and dicarboxylic acids was emphasized and addressed to different structural motifs. The structural and energetic properties of meloxicam and its complexes with carboxylic acids were characterized, including tautmerism and dissociation in aqueous media. In particular, performed in silico modeling confirmed experimental observation that meloxicam dissolved in water or modest acidic solutions is expected to be a mixture of anionic form in equilibrium with at least five neutral isomers. Tautomer-related diversity of pairs formation and the possibility of salt formation is also discussed.
Graphical abstract Two types of motifs found in meloxicam cocrystals reveal two sources of solubility advantage
  相似文献   

10.
Based on the structure of MOF-808, different substituents were introduced to replace hydrogen atom on the phenyl ring of MOF-808. The GCMC method was used to study the effect of functional groups on the hydrogen storage properties of MOF-808-X (X?=??OH, ?NO2, ?CH3, ?CN, ?I). The H2 uptakes and isosteric heat of adsorption were simulated at 77 K. The results indicate that all these substituents have favorable impact on the hydrogen storage capacity, and –CN is found to be the most promising substituent to improve H2 uptake. These results may be helpful for the design of MOFs with higher hydrogen storage capacity.
Graphical abstract Atomistic structures of MOFs. (a) The structures of MOF-808-X. (b) Model of organic linker. Atom color scheme: C, gray; H, white; O, red; X, palegreen (X?=??OH, ?NO2, ?CH3, ?CN, ?I)
  相似文献   

11.
Density functional theory (DFT) was utilized to elucidate the reaction mechanisms of and the key factors that influence the Ni(0)-catalyzed cross-dimerization and -trimerization of trimethylsilylacetylene (R1) and diphenylacetylene (R2). Calculated results revealed that the electron-donating ability of the ligand plays a crucial role in determining the regionselectivity of this tandem reaction. The use of strongly electron-donating ligands favors the formation of cross-dimer intermediates, whereas cross-trimer products can easily be synthesized using weakly electron-donating ligands. A simple method of estimating the electron-donating abilities of different ligands based on the Mulliken charge distribution of the ligand–ligand pair was employed. The present theoretical results allow us to elucidate the reaction mechanisms for and to identify the factors that exert the greatest influence on the ligand-controlled cross-dimerization and -trimerization of trimethylsilylacetylene and diphenylacetylene. Guidelines for the design of novel ligand systems with Ni(0) catalysts are also proposed.
Graphical Abstract The electron-donating abilities of two different ligands
  相似文献   

12.
The factors that explain the competition between intramolecular NO linkage photoisomerization and NO photorelease in five ruthenium nitrosyl complexes were investigated. By applying DFT-based methods, it was possible to characterize the ground states and lowest triplet potential energy surfaces of these species, and to establish that both photoisomerization and photorelease processes can occur in the lowest triplet state of each species. This work highlights the crucial role of the sideways-bonded isomer, a metastable state also known as the MS2 isomer, in the photochemical loss of NO, while the results obtained also indicate that the population of the triplet state of this isomer is compulsory for both processes and show how photoisomerization and photorelease interfere.
Graphical Abstract Illustration of the crucial role of the 3MS2 state in the photoreactivities of ruthenium nitrosyl complexes
  相似文献   

13.
Theoretical calculations for the first tri-iron-based extended metal atom chain (EMAC) molecule are reported. The studied triple-high-spin (S?=?6) complex exhibits ferromagnetic ordering (according to Ising and spin-projection approximations), which renders it unique among all previously prepared and theoretically calculated EMAC compounds. This ordering originates from the prevailing ferromagnetic nearest-neighbor interactions, while the magnetic superexchange between terminal Fe2+ sites is weaker and antiferromagnetic. Calculations indicate that this linear chain system based on a tri-iron core shows potential for the development of spin-frustrated behavior, which could be achieved through rational modification of the equatorial and axial ligands.
Graphical abstract Effect of d(z2) orbital occupancy on central Fe(II) on spin orientations on termianal Fe(II) ions in extended metal atom chain
  相似文献   

14.
Quantum chemical computations were used for prediction of the structure and color of alizarin complex with alkali metal hydroxides in methanolic solutions. The color prediction relying on the single Gaussian-like band once again proved the usefulness of the PBE0 density functional due to the observed smallest color difference between computed and experimentally derived values. It was found that the alkali metal hydroxide molecules can bind to the two oxygen atoms of both hydroxyl groups of alizarin or to one of these atoms and the oxygen atom from the keto group in a complex with three methanol molecules. This means that two electronic transitions need to be taken into account when considering the spectra of the studied complexes. The resulting bond lengths and angles are correlated with the properties of the alkali metal atoms. The molar mass, the atomic radius, and the Pauling electronegativity of studied metals are quite accurate predictors of the geometric properties of hydroxide complexes with alizarin in methanol solution.
Graphical abstract The spectra of the neutral and monoanionic form of alizarin together with color changes resulting from addition of different metal hydroxides and represented in CIE color space
  相似文献   

15.
The activation of human epidermal growth factor receptor (hEGFR) involves a large conformational change in its soluble extracellular domains (sECD, residues 1–620), from a tethered to an extended conformation upon binding of ligands, such as EGF. It has been reported that this dynamic process is pH-dependent, that is, hEGFR can be activated by EGF at high pH to form an extended dimer but remains as an inactive monomer at low pH. In this paper, we perform all-atom molecular dynamics (MD) simulations starting from the tethered conformation of sECD:EGF complex, at pH 5.0 and 8.5, respectively. Simulation results indicate that sECD:EGF shows different dynamic properties between the two pHs, and the complex may have a higher tendency of activation at pH 8.5. Twenty residues, including 13 histidines, in sECD:EGF have different protonation states between the two pHs (calculated by the H++ server). The charge distribution at pH 8.5 is more favorable for forming an extended conformation toward the active state of sECD than that at pH 5.0. Our study may shed light on the mechanism of pH dependence of hEGFR activation.
Graphical abstract pH dependence of ligand-induced human epidermal growth factor receptor activation
  相似文献   

16.
A theoretical 1H NMR spectroscopy and thermodynamic analysis of the host–guest inclusion process involving the norfloxacin (NFX) into β-cyclodextrin (β-CD) was carried out. DFT structure and stabilization energies were obtained in both gas and aqueous phases. We could establish that the complex formation is enthalpy driven, and the hydrogen bonds established between NFX and β-CD play a major role in the complex stabilization. Besides, a theoretical 1H NMR analysis has shown to be a supplementary proceeding to predict appropriately the inclusion mode of norfloxacin molecule into the β-CD. In this work, a theoretical study of the NFX@β-CD complex is reported for the first time, seeking a deep understanding of topology and thermodynamics of the inclusion complex formation.
Graphical Abstract Topology, thermodynamic and 1H NMR analysis of NFX@β-CD host-guest complexes
  相似文献   

17.
Determination of electrophilic and nucleophilic sites of a molecule is the primary task to find the active sites of the lead molecule. In the present study, the active sites of busulfan have been predicted by molecular electrostatic potential surface and Fukui function analysis with the help of dispersion corrected density functional theory. Similarly, the identification of active binding sites of the proteins against lead compound plays a vital role in the field of drug discovery. Rigid and flexible molecular docking approaches are used for this purpose. For rigid docking, Hex 8.0.0 software employing fast Fourier transform (FFT) algorithm has been used. The partial flexible blind docking simulations have been performed with AutoDock 4.2 software; where a Lamarckian genetic algorithm is employed. The results showed that the most electrophilic atoms of busulfan bind with the targets. It is clear from the docking studies that busulfan has inhibition capability toward the targets 12CA and 1BZM.
Graphical Abstract Docking of ligand and protein
  相似文献   

18.
19.
Schiff bases have many chemical and biological applications in medicine and pharmaceuticals due to the presence of an imine group (?C=N?). These bases are used in many different fields of technology, and in photochemistry because of their photochromic properties. Here, the structural and electronic properties of the Schiff base formed by tacrine and saccharin (TacSac) were explored using density functional theory with the B3LYP, M06-2X, M06L, and ωB97XD functionals in combination with the 6-311++G(d,p) basis set. The time-dependent formalism was used at the B3LYP/6-311++G(d,p) level to obtain electronic transitions. The calculations were repeated in an implicit solvent model mimicking water, using the polarizable continuum model in conjunction with a solvation model based on a density approach. The results indicate that TacSac cannot form spontaneously, but can be obtained in mild reactions. However, the resulting Schiff base displays different characteristics to its monomers. It also has the potential for use in photochemical intramolecular charge-transfer systems.
Graphical Abstract Intramolecular charge transfer between HOMO and LUMO of TacSac
  相似文献   

20.
The ternary complexes ML???PyZX2???NH3 (ML?=?CuCl, CuCN, AgCN, and AuCN; Z?=?P, As, and Sb; X?=?H and F) have been investigated with quantum chemical calculations. The results showed that the existence of coordination interaction has a prominent enhancing effect on the strength of pnicogen bonding. Even in ML???PySbH2???NH3, ML???PyAsF2???NH3, and ML???PySbF2???NH3, the pnicogen bond varies from a purely closed-shell interaction to a partially covalent interaction. The coordination interaction results in the enlargement of the σ-hole on the pnicogen atom and thus the enhancement of pnicogen bonding. In addition, the contribution of orbital interaction is also important.
Graphical Abstract The pnicogen bond is strengthened by the coordinaiton bond
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号